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1. Introduction. Let k be an algebraic number field and Ck its ideal class group (in
the wider sense). Suppose K is a finite extension of k. Then we say that an ideal class of k
capitulates in K if this class is in the kernel of the homomorphism

j : Ck - » CK

induced by extension of ideals from k to K. (See Section 2 below). In [4], Iwasawa gives
examples of real quadratic number fields, k = Q(Vp,/?2p3), with distinct primes /?, = 1
(mod 4), for which all the ideal classes of the 2-class group, Ckt2 (the 2-Sylow subgroup of
Ck), capitulate in an unramified quadratic extension of k. In these examples, Ck2 is
abelian of type (2,2), i.e. isomorphic to Z/2Z X Z/2Z, and so all four ideal classes
capitulate.

In this note, we consider an arbitrary unramified quadratic extension, K/k, of a real
quadratic number field, k, and determine the number of ideal classes of Ck which
capitulate in CK. As we shall see, the number of ideal classes that can capitulate is 2, 4, or
8. We give simple criteria involving the fundamental units of the three quadratic subfields
of K which determine the number of ideal classes that capitulate. We then make use of
the results of Cremona and Odoni [1,2] to show that there exist infinitely many
extensions K/k such that |kery'| = 2, 4, and 8 respectively. Examples are then provided.

For more information on the capitulation problem, see Miyake [7].

2. Main Results. Let k be a real quadratic number field of even class number with
discriminant

dk = d = pf ... pf, Pj distinct primes.

Here p* represents the fundamental discriminant divisible only by the prime p, i.e.
p* = {-\y-mp, lip is odd, and 2* e {-4,8, -8}.

Since the class number of k is even, there exists at least one quadratic extension, K,
of k unramified at all the primes (including the infinite ones, which means K is totally
real). By genus theory, see e.g. [5], K = k(Vd[) for some fundamental discriminant dx \ d
such that d , > l and d^d. Let d2 = d\dx. Then K = Q(Vd[, Vd~2) and thus K/Q is a
Galois extension, the Galois group of which is abelian of type (2,2). Consequently, K
contains three real quadratic subfields: /c() = k = Q(Vd), k]=Q(Vd~i) and A:2 = V ^
We have the following diagram.

= Q(Vd[) k = Q(Vd) k2 = Q(VI2)

Glasgow Math. J. 36 (1994) 385-392.

https://doi.org/10.1017/S0017089500031001 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500031001


386 E. BENJAMIN, F. SANBORN AND C. SNYDER

We denote by eo = e, eu and e2 the fundamental units (>1) of ko = k, ku and k2,
respectively. Also to simplify notation we let NKJ = Nkj/Q(Ki) for any K, e k, (i = 0,1,2).
Thus A7*,- = K/K- where K- denotes the conjugate of K, over Q.

Let / : C* —» CK be the homomorphism induced by extension of ideals from the ring of
integers, Ok, of k to OK. (Hence if [A] is the ideal class of Ck containing the ideal A, then
;([i4]) = [/4CV].) We shall be interested in determining |kery'|, the number of ideal classes
of Ck that capitulate in CK. It is well-known, cf. [3], that the exponent of the group ker;
divides [K:k] (which for us is 2). Hence ker/="Cj.,2, the 2-Sylow subgroup of Ck.
Moreover it is also well-known, cf. [9], that when K/k is cyclic and unramified at the
infinite primes,

\ = [K:k][Ek:NK/k(EK)].

Hence in our case |kery| = 2[Ek:NKlk{EK)\. Here Ek, EK represent the group of units in
Ok, OK, respectively. Notice that E2

k^NK/k(EK). But then since Ek = {±l}X(e), we see
that

[Ek:NKlk(EK)]^[Ek:Ek} = A.

Thus [Ek:NKlk(EK)] = 1, 2, or 4 and so |ker/| = 2, 4, or 8. We now determine conditions
under which each of these three possibilities can happen. To this end, we obtain more
information about EK.

By Dirichlet's unit theorem, since [K:Q] =4 and K is totally real, EK possesses a
system of three fundamental units, i.e. EK = {±l}x {^i}x{/x2}x{yu.3} for some fi,- e
£* 0 = 1,2,3).

By Kubota [6, Satz 1], there exist the following eight possibilities for a system of
fundamental units of EK\

(i) £,,£,-,£* (ii) Veh£h£k (iii) VehVej,ek

(iv) Ve~Sj,£j,ek (v) Ve^Ve^, ey

(vi) Ve~£j,\f£~e'k,Vek~£i (vii) \/e~E~Tk, eh ek

(viii) VeI.ey.eit, e,, ek (with Ate, = - 1 (/ = 0,1,2))
where {e,, e;, ek} = {e0, e{, E2}- Also in cases (ii)-(vii), any e, that appears under a radical is
assumed to have norm equal to 1.

PROPOSITION 1. Suppose Ne, = - 1 for i = 0,1,2. Then

r l if
[Ek:NKlk(EK)] = - .

12 otherwise.

REMARK. Using [6, Zusatz 1], it is easy to determine whether Ve0e,£2 e K. See the
first example of Section 3.

Proof of the Proposition. Since NK/k(ei) = Nkl/Q(ei) = Afei = —1, we have - 1 e
NK/k(EK). If Ve^72eK, then NK/k(Ve0ele2) = ±e0 (because (NK,kVE^e~2)

2 =
NKik(£o£\£2) = £2QNE1NS2 = el). Thus ±eoe NK/k(EK) and so [Ek:NKlk(EK)] = 1.

Now if V£0£,e2 ^ K, then £0, £,, £2 must be a system of fundamental units of EK and
thus NK/k(EK) = {±1} X {£o} which is of index 2 in Ek. This establishes the proposition.

PROPOSITION 2. Suppose Ate, = 1 for some i = 0, 1, 2. Furthermore suppose Ate, = - 1
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or Ne2 = —1. (Without loss of generality assume Ne2 = -1) . Then

'1 i

In particular, if Nen = - 1 , then [Ek:NK/k(EK)] = 2.

REMARK. We shall see that the condition Ve^, Veoe, e K is easy to check by Kubota
[6].

Proof of the Proposition. Suppose Ve^ e K or Veo£, e K. Then NK/k(Ve^s"x) = ±£0

(a = 0 or 1) (arguing as in the proof of Proposition 1). Moreover, NK/k(e2) = NE2 = —1.
Hence Ek = NK/k(EK) establishing part of the proposition.

Now suppose Vs^ £ K and V£oe, g AT. Then by Kubota [6, Satz 1] (cf. above) a
system of fundamental units of EK consists of e0, £\, e2 or perhaps e0, VeT, e2. (Note that
any unit, £,, under a radical must have positive norm). In either case, NKik{EK) = {-I, el)
which is of index 2 in Ek. This establishes the proposition.

In Proposition 3 below, we consider the case that Ne{ = Ns2 = 1. As this case requires
more effort we first single out a major concept.

DEFINITION. Suppose /u, is a unit of a real quadratic field such that N/x = 1. We define,
as in [6], S(/x) as the square-free kernel of the rational integer /A + /J,' + 2, i.e. if
/A + fi' + 2 = m2n for some integers m, n and n is square-free, then 5(/x) = n.

For convenience we isolate facts about 5 found in [6].

LEMMA. Let L be a noncyclic normal real quartic extension of Q containing three real
quadratic fields ku k2, and k3. Suppose 77, e Ek. with A^, = 1 for i = 1,2,3. Then

(1) «(i?/) I dk-
(2) Tj,rj2Tj3 e E2

L (the squares in EL) iff 8(T)\)8{T)2)b(Tu) e L2.
Also if k is any real quadratic field such that k = IOCS/A) with A square-free and such

that N(e) = 1 for the fundamental unit e, then
(3) 8 ( £ )*1 ,A .

I
- i

14

Proo/ See Kubota [6], Hilfssatze 8, 11, and 9, respectively.

PROPOSITION 3. Suppose Ne{ = Ne2 = 1. Then

2 if^^i^Ksomea, 6 e {0,1}

14 otherwise.

In particular, if Neo= - 1 , tfren [£*:#*/*(£*)] = 4.

Proof. We first claim that Ve7, Ve^, V e ^ ^ AT. To this end let k,, = Q(VA~)

(/ = 0,1,2) where A = Ao, A,, A2 are square-free rational integers. Also let 5, = S(e,) for
i = 1, 2 and 50 = S(e0) if A êo = 1. Notice that K = Q (VA7 , V ^ ) . We show that 5,, 52,
5i S2 ^ /C2. We do this by considering three cases according as A = l, - 1 , 2 (mod 4),
respectively. Also in each case /?, (i = 1 , . . . ,s) denote distinct primes =1 (mod 4) and
qj(j = 1 , . . . , t) distinct primes = - 1 (mod 4).

Case 1. Suppose A = 1 (mod 4). Then d = A.
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Let d-px . . . psqx ... q, - A with t even, (s = 0 or t - 0 is possible.)
Also let dt= pi ... pSlqi ... qti = Ai with r, even. Then d2

 = d/dl=A2. By
lemma,

5, | d, = A, and 5, ^ 1, A,,

the

and

Hence 5,, S,, S2, K2.

Case 2. Suppose A = - 1 (mod 4). Then d = 4A.
Let A= p \ ... psq{ ... q, with t odd. Without loss of generality, let A, =

P\ . . . pSxq\ • • • qt, with f, odd and so d, = 4A,. Then d2 = djdx = A/A, = A2.
By the lemma, S2 \ d2 = A2 and 82¥=1, A2; hence 82$K2. On the other hand,

5, | d ,=4A, and 5 , ^ 1 , A,. Thus since 5! is square-free 8{ = 2, 2A,, a,, or 2a, for
some a, | A,, a, ^ 1, A. If 5, = a, or 2a,, then 5,, 5,S2 £ /C2. If 5, = 2 or 2A,, then the only
way 5[ e A'2 can occur is if V2 E /C But then A:, = Q(V2) for some i = 1, 2, which is
contrary to the assumption that Ate, = Ne2 = 1. Thus 5l5 52, 5,52 ^ Â 2.

K2

3: Suppose A = 2(mod 4). Then d = 4A.
Let A = 2p] ... psqt .. . q,. Without loss of generality, let A, = 2p, . . . p.S)g

with tt = r(mod 2) and so d{ = 4A,. Then d2 = d\dx - A/A, = A2.
The argument of Case 2 now applies and we see once again that S,, 52, 8{82

Thus by the lemma we see Ve^, Ve~2, Ve,e2 $ K.
Now by Kubota [6, Satz 1] and by our claim we have the following possibilities for a

system of fundamental units in EK:
(i) £«,£,, e2 (ii) Ve^, e,,£2

(iv) Vfpfii, £,-, £2 (/ = 0 or 1) or Vg( )e2, £,, e, (/ = 0 or 2)

(vii) Ve()£,£2, e,., ey (/ or ; e{l,2}).
From this list it follows that if Veoe"e2 e /C, then [£<.:NK/k(EK)] = 2, whereas if not, then
we are in case (i) in which case [EK:NK/k(EK)] = 4.

This establishes the proposition.

We summarize our results in the following theorem.

THEOREM. Let K be an unramified quadratic extension of a real quadratic number field
k. Then

(1) |kery| = 2<£>(a) Ne,• = - 1 for / = 0, 1, 2 and V£()e,e2e/C or (b) (Ate, - - 1 or
Ns2 = -1 ) and NE{) = 1 and (Ve^) or V£()e, or V£()e2 e /C).

(2) |ker/| = 8 » ( a ) Ne, =NE2 = 1 and Ne0 = - 1 or (b) Ate, = 1 for i = 0, 1, 2 and
K for all a,b e {0,1}.

(3) (keryj = 4Oanything else occurs.

PROPOSITION 4. There exist infinitely many real quadratic fields k for which there exists
an unramified quadratic extension K in which |ker/| = 2, 4, and 8, respectively.

Proof. First consider |ker)| = 2. Let k = Q(SP\Pi) where p, = l(mod4). Then by
genus theory, Ck2 is cyclic and nontrivial. Since the kery is a nontrivial elementary
subgroup of Q 2, it follows that |ker/| = 2. Obviously there are infinitely many such fields k.

Next consider |ker/| = 4. Let k = Q(Vp,/j2p3), where p, = l(mod 4). Then by genus
theory, Ck2 has 2-rank equalling 2 and so |ker/| = 2 or 4 since kery is nontrivial and
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elementary. Hence by our theorem, if we can choose px, p2, p3 such that Ate(> = - 1 and
Ate, = 1, then |ker;| = 4. To this end choose k = Q(V(5)(41)p where p = 3 (mod 205) and
p = l(mod 4). Then we claim if K = k(Vp), then |kery| = 4. For let fc, = Q(V205). Then
Ate, = 1. Moreover the graph y(5,41) is

5 41

since for p = 3(mod205), (-) = f — j = - ( — J = - 1 . (See [1] for the relevant definitions

about graphs.) Thus, since y(5,41,p) is odd, Proposition 1.1 of [1] implies Ateo=—1.
There are obviously infinitely many such k.

Finally consider |kery| = 8. Let k = Q(Vp7p~2p~3p~4), Pi = l(mod 4). If we are able to
choose K = Q(Vp~t~pl, Vp3/?4) with k{ = Q(y/p\P2) and k2 = Q(Vp3p4) such that Ate0 =
- 1 and Ate, =Ate2 = l, then our theorem implies that |keryj = 8. We begin by letting
Pi = 13, p2 = 17, p3 = 5, p4 = p such that p = 2(mod 13 X 17) and p = I(mod5). Then the
graph y(13,17,5,p) is

13 17

(—) = (~) = {^zj = ~ ( ' T ) = ~ ( T ) = ^ N o t i c e t h a t this graph is odd and thussince

Ateo= - 1 . Moreover, Ate, = 1. We now need to put additional restrictions on p to insure
that Ate2 = 1. To this end, write p = nn in Z[i] with it, ft prime and it primary, i.e.
it = l(mod(l + /)3). Choose such a prime it in Z[i] such that

n = \ (mod(l + /)3), it = i (mod 1 + 2/), n = i (mod 1 - 2i),

K = 1 + i(mod 13), K = \ +i (mod 17).

The last two congruences imply p = 2 (mod 13 x 17) whereas the first three show that the
biquadratic residues

2//4 VI-2//4

By (2.2) of [8], this implies that Ate2 = 1. Moreover since the righthand sides of the above
congruences determine a ray class modulo the ideal (1 + /)(2210) in Z[i], we conclude by
class field theory that there are infinitely many primes it of residue class degree one over
Q satisfying the congruences. Hence there are infinitely many p such that p = 2
(mod 13 X 17), p = \ (mod 5) and such that Ate2 = 1.

This proves the proposition.

3. Examples. In this section we present examples of K/k in which 2, 8, and 4 ideal
classes capitulate, respectively. We follow the format of our theorem.
1. |kery| = 2.
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(a) Let k = Q(Vd) where d = 65 = (5)(13). Let K = jfe(V5) = Q(V5, Vl3). Let
k, = Q(Vd,) (i = l, 2) with rf, = 5 and d2 = 13. Then

£ = £(, = 8 +V65, Neo=-1,

1 + V5
£i= 2 , JVe, = - l ,

3 + VT3
e2 = — - — , M;2 = - l .

Set

Co = 7>K/Q(£O£I£2 + £0 + £I - £2) = 117,

c, = TrK/Q(e0ele2 + e0 - £, + e2) = 125,

c2 = TrK/Q(e0elE2 ~ e0 + £, + £2) = 65,

c3 = ^/c/o(£o£i £2 - £0 - £1 - £2) = 49.

Since Vĉ  e K for ;' = 0 , . . . , 3, we have Ve^£~2 e K by [6, Zusatz lj.
(b) Let k = Q(Vd) where d = 105 = (5)(3)(7). Let /C = *(VS) = Q(V5, V^l). Let

A:, = Q(V^) (/ = 1,2) with d, = 5 and d2 = 21. Then

£ = £0 = 41 + 4V105, Ateo = l,

1 + V5
£1 =—-—•, Nei = -1,

5 + V^T ., ,
£2 = — , Ne2 = l.

Moreover £ + e' + 2 = 84 = (22)(21). Thus S(e) = 21 e /C2.

REMARK. In these two examples, C*i2 is cyclic and thus since ker/ is elementary, we
see independently that |ker/| = 2.
2. |ker;| = 8.

(a) Let it = Q(Vd) with d = 77285 = (5)(13)(29)(41). Let K = A:(V205) = Q(V(5)(41),
V(13)(29)). Let k,=Q(Vd,)(i = 1,2) with rf, =205 = (5)(41) and d2 = 377 = (13)(29).
Then

£ = £0 = 278 + V77285, N £ 0 = - l ,

43 + 3V205
£1= j ' #£, = 1,

£2 = 233 + 12V377, Ns2 = 1.

(b) Let A: = Q(Vrf), with d = 23205 = (3)(7)(5)(13)(17). Let A: = A:(VlO5) =
Q(V(3)(7)(5), V(13)(17)). Let Jt,- = Q ( V ^ ) (i = l,2), with d, = 105 = (3)(7)(5) and
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d2 = 221 = (13)(17). Then

457 + 3V23205
e = £0 = , M-0 = l,

£, = 41+4VlO5, NEI = 1,

15 + V221
e2 = , Ne2 = l.

Moreover

e + e' + 2 = 459 = (32)(3)(17), implying 80 = 8(e) = (3)(17),

£, + e[ + 2 = 84 = (22)(3)(7), implying 5, = S(e.) = (3)(7),

£2 + £2 + 2 = 17, implying 82 = 8(e2) = 17.

Notice that 50, 8O8U 8O82, 505,52 g K2.
3. |kery| = 4.

(i) Let k = Q(Vd), with d = 77285 = (5)(13)(29)(41) (as in 2.a). Let K = A:(Vl885) =
Q(V(5)(13)(29), V41). Let k, = Q(VS )̂ (i = 1,2), with d, = 1885 = (5)(13)(29) and d2 =
41. Then

£ = £,, = 278 + V77285, N e o = - 1 ,

£, = 521 + 12V1885, Ne, = l,

£2 = 32 + 5V41, Ne2=-1.

By Proposition 2, |ker;| = 4.
(ii) Let )t = Q(V3), with d = 4641 = (3)(7)(13)(17). Let /C = fc(V21) = Q(V(3)(7),

V(13)(17)). Let A:, = Q{Vd) (i = 1,2), with d, = 21 and d2 = 221 = (13)(17). Then

£ = £0 = 545 + 8V4641, Neo = l,

15 + V521
e 2 - 2 £ 2 - •

Moreover e + e' + 2 = 1092 = (22)(3)(7)(13), implying 80 = 8(e) = (3)(7)(13),

e, + e[ + 2 = 7, implying 8l = S(e.) = 7,

£2 + £2 + 2 = 17, implying 82 = 8(e2) = 17.

Since 5()52 e K2, Proposition 3 shows |ker/| = 4.
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