THE HYPERPLANES OF DW(5, q) WITH NO OVOIDAL QUAD

BART DE BRUYN*

Department of Pure Mathematics and Computer Algebra, Ghent University, Galglaan 2, B-9000 Gent, Belgium e-mail: bdb@cage.ugent.be

and HARM PRALLE

Institute Computational Mathematics, Technische Universität Braunschweig, Pockelsstr. 14, 38106 Braunschweig, Germany e-mail: H. Pralle@tu-bs.de

(Received 23 May, 2005; accepted 11 November, 2005)

Abstract. Let Δ be one of the dual polar spaces DW(5, q) or $DH(5, q^2)$. We consider a class of subspaces of Δ , each member of which carries the structure of a near hexagon, and classify all these subspaces. Using this classification, we determine all hyperplanes of DW(5, q) without ovoidal quads.

2000 Mathematics Subject Classification. 51A50, 51E12.

1. Introduction. Let Δ be a finite thick dual polar space of rank 3. It is the dual geometry of the singular subspaces of a non-degenerate finite polar space Π of rank 3 with at least 3 points on every line and at least 3 planes through every line. By Tits' classification of polar spaces ([12]), Π is either a symplectic polar space W(5, q), one of the orthogonal polar spaces Q(6, q) and $Q^-(7, q)$, or one of the hermitian polar spaces $H(5, q^2)$ or $H(6, q^2)$, for some prime power q. Accordingly, one denotes Δ by DW(5, q), DQ(6, q), $DQ^-(7, q)$, $DH(5, q^2)$ or $DH(6, q^2)$.

The elements of type 1, 2 and 3 of Δ are the planes, lines and points, respectively, of Π . The point-line residue of a type 3-element Q of Δ consists of the singular planes and lines of Π through the corresponding point Q of Π , whence they form a generalized quadrangle. Therefore, the elements of type 1, 2 and 3 of Δ are called *points*, *lines* and *quads*. We denote the collinearity of Δ by \bot . The dual polar space Δ is a near hexagon (Shult and Yanushka [11]) which means that for every point p and every line L, there exists a unique point on L nearest to p.

A hyperplane of Δ is a proper subspace meeting every line. If H is a hyperplane of Δ then, for every quad Q of Δ , either $Q \subset H$ or $Q \cap H$ is a hyperplane of Q. Hence, one of the following possibilities occurs (see Payne and Thas [6, 2.3.1]).

- $Q \subset H$: in this case Q is called a *deep quad*.
- $Q \cap H = p^{\perp} \cap Q$ for some point p of Q: in this case Q is called a *singular quad* with *deep point p*.
 - $Q \cap H$ is an ovoid: in this case Q is called an *ovoidal quad*.
- $Q \cap H$ is a proper subquadrangle of Q: in this case Q is called a *subquadrangular quad*.

^{*}Postdoctoral Fellow of the Research Foundation - Flanders.

If *H* is a hyperplane such that all quads not contained in *H* are of the same kind, then *H* is called *uniform*, otherwise *nonuniform*. A uniform hyperplane is called *locally singular*, *locally subquadrangular* or *locally ovoidal* if all its quads not contained in *H* are singular, subquadrangular or ovoidal, respectively.

The locally singular hyperplanes of dual polar spaces of rank 3 have been classified in Shult [10] in the finite case and Pralle [8] without the finiteness hypothesis. One class of locally singular hyperplanes are the split Cayley hexagons in the orthogonal dual polar space $DQ(6, \mathbb{F})$ for a field \mathbb{F} . The only other class of locally singular hyperplanes is the *singular hyperplane with deepest point p* consisting of the points of the dual polar space at non-maximal distance from p.

For finite dual polar spaces, the locally subquadrangular hyperplanes have been classified in Pasini and Shpectorov [5]. The locally ovoidal hyperplanes are precisely the ovoids. Ovoids do not exist in the dual polar spaces $DH(5, q^2)$, DQ(6, q) for q odd, and DH(6, 4), since their quads do not have ovoids. We refer to [6] for the nonexistence of ovoids in $Q^-(5, q)$ and W(q), q odd; Brouwer showed by computer that DH(4, 4) has no ovoid. The nonexistence of ovoids in DW(5, q), q even, readily follows from [6, 1.8.5], as has been noticed by Shult. See e.g. [5, Proposition 2.8]. The nonexistence of ovoids in DW(5, q), q odd, has been shown in Cooperstein and Pasini [2]. The existence of ovoids in the dual polar spaces $DH(6, q^2)$, $q \ge 3$, and $DQ^-(7, q)$ is still an open problem.

Pralle [7] showed that every nonuniform hyperplane of Δ must contain at least one singular quad. All nonuniform hyperplanes without subquadrangular quads have been determined in Pralle [8]. Among the finite thick dual polar spaces of rank 3 only the quads of DW(5,q) and $DH(5,q^2)$ have subquadrangles as hyperplanes. All hyperplanes of $DH(5,q^2)$ have been classified in De Bruyn and Pralle [3] and [4]. In Proposition 4.2, we determine all nonuniform hyperplanes of DW(5,q) without ovoidal quads. From [2], [5], [7], [8], [10] and Proposition 4.2 of the present paper, our main result follows.

THEOREM 1.1. If H is a hyperplane of DW(5, q), then precisely one of the following holds.

- *H* is a singular hyperplane.
- There exist a quad Q and a subgrid G of Q such that $H = \bigcup_{x \in G} x^{\perp}$.
- There exist a quad Q and an ovoid O in Q such that $H = \bigcup_{x \in O} x^{\perp}$.
- The order q is even and the points and lines of H build a split Cayley hexagon.
- H is the (up to isomorphism) unique locally subquadrangular hyperplane of DW(5,2).
- There are a point p and a set O of points at distance 3 from p which meets every line at distance 2 from p, such that $H = p^{\perp} \cup O$.
- We have q = 2 and H is a hyperplane on 81 points mentioned in (e) of Proposition 4.2.
 - There exist a singular, a subquadrangular and an ovoidal quad.

In Section 2, we define a class \mathcal{C} of subspaces of DW(5,q) and $DH(5,q^2)$. Each member S of \mathcal{C} satisfies the following properties: (i) S contains two disjoint quads, (ii) S is the union of a certain family of quads, (iii) the points and lines in S define a near hexagon. Section 3 is devoted to the classification of the subspaces of \mathcal{C} and several new examples of near hexagons are developed. Using this classification in Section 4, we determine all hyperplanes of DW(5,q) without ovoidal quads.

2. A class of subspaces in DW(5, q) and $DH(5, q^2)$ containing two disjoint quads. The following lemma is straightforward. See Brouwer et al. [1, Lemma 3.1].

LEMMA 2.1. Let S be a subspace of a dual polar space Δ of rank 3 with the property that, for every point $x \in S$, there exists a quad $Q_x \subseteq S$ through x. Then the points and lines contained in S define a near polygon.

Several nice classes of near hexagons arise in the way described in Lemma 2.1. See [1]. In the present paper, we determine all subspaces of DW(5, q) and $DH(5, q^2)$ belonging to a certain class C of subspaces. All of them satisfy the conditions of Lemma 2.1 and give rise to near hexagons.

If S is a subspace of a dual polar space Δ of rank 3 such that for every point $x \in S$, there exists a quad $Q_x \subseteq S$ through x, then one of the following two possibilities occurs.

- There exists a point in Δ that is contained in every quad $Q \subseteq S$.
- There exist two disjoint quads Q_1 and Q_2 contained in S.

The union of a number of quads through a given point is always a subspace. Lemmas 2.2, 2.3 and Proposition 3.1 determine all subspaces of DW(5, q) containing two disjoint quads. All of these subspaces belong to the afore-mentioned class C.

Let Π be a polar space isomorphic to either W(5,q) or $H(5,q^2)$ embedded in a 5-dimensional projective space $\mathbb P$ and let Δ denote the corresponding dual polar space. For every quad Q of Δ and every point x not in Q, let $\pi_Q(x)$ denote the unique point of Q collinear with x. Let Q_1 and Q_2 denote two disjoint quads of Δ . The quad Q_i , $i \in \{1, 2\}$, corresponds with a point x_i of the polar space Π . Let x_1, \ldots, x_{q+1} denote the q+1 points of Π on the line x_1x_2 of $\mathbb P$ and let Q_i , $i \in \{3, \ldots, q+1\}$, denote the quad of Δ corresponding with x_i . Every line meeting Q_1 and Q_2 also meets every Q_i , $i \in \{3, \ldots, q+1\}$.

Let A denote the set of all quads meeting Q_1 and Q_2 . It corresponds to the set of points of Π contained in $(x_1x_2)^\zeta$ where ζ denotes the polarity defining Π . If $R \in A$, then R meets each Q_i , $i \in \{1, \ldots, q+1\}$, in a line and $R \cap (Q_1 \cup \cdots \cup Q_{q+1})$ is a subgrid G_R of R. If x is a point of Δ not contained in $Q_1 \cup \cdots \cup Q_{q+1}$, then x is contained in the unique element of A that is the quad containing x and the line through $\pi_{Q_1}(x)$ meeting Q_2 . We have seen that the quads of A partition the set of points of Δ not contained in $Q_1 \cup \cdots \cup Q_{q+1}$. Every element R of A corresponds with a point x_R of Π that is contained in the three dimensional subspace $\mathbb{P}' = (x_1x_2)^\zeta$ of \mathbb{P} . Two quads R_1 and R_2 of A meet if and only if $x_{R_1} \in x_{R_2}^\zeta$. For a subset B of A, we define

$$S_B := (Q_1 \cup Q_2 \cup \cdots \cup Q_{q+1}) \cup \bigcup_{R \in B} R,$$

and X_B denotes the set of all points x_R , where R is an element of B.

LEMMA 2.2. If $\Delta \cong DW(5, q)$, then S_B is a subspace of Δ if and only if $x_1x_2 \subseteq X_B$, for all $x_1, x_2 \in X_B$ with $x_1 \notin x_2^{\zeta}$. Let $\Delta \cong DH(5, q^2)$. Then S_B is a subspace of Δ if and only if $x_1x_2 \cap H(5, q^2) \subseteq X_B$, for all $x_1, x_2 \in X_B$ with $x_1 \notin x_2^{\zeta}$.

Proof. Let L denote an arbitrary line of Δ . There are four possibilities.

- *L* is contained in $Q_1 \cup \cdots \cup Q_{q+1}$ and so in S_B .
- L intersects $Q_1 \cup \cdots \cup Q_{q+1}$ in a unique point x, and there exists a unique quad R of A containing L. If R is contained in B, then $L \subset S_B$. If R is not contained in B, then $L \cap S_B = \{x\}$.

- L is disjoint from $Q_1 \cup \cdots \cup Q_{q+1}$ and contained in a certain quad R of A. This case can only occur if $\Delta \cong DH(5, q^2)$. If R is contained in B, then $L \subseteq S_B$. If R is not contained in B, then L is disjoint from S_B .
- L is disjoint from $Q_1 \cup \cdots \cup Q_{q+1}$ and not contained in any quad of A. Then the points of L are contained in mutually disjoint elements of A that correspond with a hyperbolic line of \mathbb{P}' . Conversely, every hyperbolic line of \mathbb{P}' corresponds with a set of q+1 mutually disjoint quads of A and there always exists a line outside $Q_1 \cup \cdots \cup Q_{q+1}$ meeting these quads.

Thus S_B is a subspace if and only if every hyperbolic line of \mathbb{P}' has either 0, 1 or q+1 points in common with X_B . This proves the lemma.

DEFINITION. Let C denote the set of all subspaces of the form S_B , where B is a subset of A.

LEMMA 2.3. Suppose that $\Delta \cong DW(5, q)$. If S is a subspace of Δ containing the disjoint quads Q_1 and Q_2 , then S belongs to C.

Proof. Let R denote an arbitrary element of A. The subgrid G_R of R is contained in S and $R \cap S$ is a subspace of R. If $R \setminus G_R$ contains a point of S, then R is contained in S, and S is of the form S_B , for some subset B of A.

In the following section, we determine all subspaces of C, or equivalently, all sets X_B satisfying the conditions of Lemma 2.2.

REMARK. If S is a subspace of $\Delta \cong DH(5, q^2)$ containing the disjoint quads Q_1 and Q_2 , then the set X_B with B the set of all quads that are contained in S and intersect Q_1 and Q_2 in lines, still satisfies the conditions of Lemma 2.2.

3. The classification of the subspaces of C. The classification follows from Lemma 2.2 and Propositions 3.1 and 3.2.

PROPOSITION 3.1. Let ζ denote a symplectic polarity of PG(3, q) and let X be a set of points of PG(3, q) with the property that $x_1x_2 \subseteq X$ (*) for every two points x_1 and x_2 of X with $x_1 \notin x_2^{\zeta}$. Then one of the following cases occurs:

- (a) $X \subseteq L$, for some totally isotropic line L;
- (b) X = L, for some hyperbolic line L;
- (c) $X = L \cup \{x\}$, for some hyperbolic line L and some point $x \in L^{\zeta}$;
- (d) $X = L \cup L^{\zeta}$, for some hyperbolic line L;
- (e) $X = p^{\zeta} \setminus \{p\}$, for some point p of PG(3, q);
- (f) $X = p^{\zeta}$, for some point p of PG(3, q);
- (g) X = PG(3, q);
- (h) q = 2 and X is the complement of an ovoid of the generalized quadrangle $Q_{\zeta} \cong W(2)$ associated with ζ .

Proof. If $x_1 \in x_2^{\zeta}$, for all points x_1 and x_2 of X, then X is as in (a). Suppose that there exist points $x_1, x_2 \in X$ such that $x_1 \notin x_2^{\zeta}$, and let L denote the line through x_1 and x_2 . If X has no points outside $L \cup L^{\zeta}$, then one of the cases (b), (c) or (d) occurs.

If there exists a point $x_3 \in X$ not contained in $L \cup L^{\zeta}$, then let p be the point of PG(3, q) such that $p^{\zeta} = \langle x_1, x_2, x_3 \rangle$. Property (*) implies that every point of $p^{\zeta} \setminus \{p\}$ is contained in X. If all points of X are contained in p^{ζ} , then either case (e) or (f) occurs. Now, suppose that there exists a point x_4 in X not contained in p^{ζ} . If $p \in X$, then

every point of PG(3, q) \ x_4^{ζ} belongs to X by property (*). Also every point of x_4^{ζ} is contained in X by property (*), since through every point $y \in x_4^{\zeta}$ there exists a line not contained in $x_4^{\zeta} \cup y^{\zeta}$. Hence, if $p \in X$, then X = PG(3, q). Suppose therefore that $p \notin X$ and consider the complement $X^C := PG(3, q) \setminus X$ of X. By property (*), every point of X^C is contained in either the line x_4p or the plane x_4^{ζ} . Now, let K be a line through p different from x_4p and not contained in p^{ζ} . Then K contains at most two points of X^C (namely p and $K \cap x_4^{\zeta}$). By property (*), it then follows that (i) $q + 1 \le 3$ or q = 2, and (ii) $K \cap x_4^{\zeta} \in X^C$. One easily verifies that $X^C = (x_4^{\zeta} \setminus ((x_4^{\zeta} \cap p^{\zeta}) \cup \{x_4\})) \cup (px_4 \setminus \{x_4\})$ and that the set X^C is an ovoid of $Q_{\zeta} \cong W(2)$.

PROPOSITION 3.2. Let H denote a hermitian variety in PG(3, q^2) and let ζ denote the hermitian polarity of PG(3, q^2) associated with H. Let X be a set of points of H with the property that $x_1x_2 \cap H \subseteq X$ (*), for every two points x_1 and x_2 of X with $x_1 \notin x_2^{\zeta}$. The lines and points lying in $H(3, q^2)$ define a generalized quadrangle Q(5, q) and X corresponds with a set X' of lines of Q(5, q). One of the following cases occurs.

- (a) X is a (possibly empty) set of points on a line of H. X' is a (possibly empty) set of lines through a given point of Q(5, q).
- (b) $X = L \cap H$ for some secant line L (i.e. $|L \cap H| = q + 1$). X' is a regulus of Q(5, q).
- (c) $X = (L \cap H) \cup \{x\}$, for some secant line L and some point $x \in L^{\zeta} \cap H$. X' consists of a regulus of Q(5, q) together with a line of its opposite regulus.
- (d) $X = (L \cup L^{\zeta}) \cap H$, for some secant line L. X' consists of the lines contained in a subgrid of order (q, 1) of Q(5, q).
 - (e) $X = \alpha \cap H$, for some nontangent plane α . X' is a regular spread of Q(5, q).
- (f) $X = \alpha \cap H$, for some tangent plane α . X' is the set of lines of Q(5, q) having nonempty intersection with a given line of Q(5, q).
- (g) $X = (p^{\zeta} \cap H) \setminus \{p\}$, for some point p of H. X' is the set of lines of Q(5,q) intersecting a given line in a unique point.
- (h) X = B where B is a Baer-subplane which is contained in $p^{\zeta} \cap H$, for some point p of B. There exists a subquadrangle $Q \cong Q(4, q)$ in Q(5, q), and X' consists of all lines of Q having nonempty intersection with a given line of Q.
- (i) $X = B \setminus \{p\}$ with p a point of H and B a Baer-subplane of p^{ζ} through p completely contained in H. There exists a subquadrangle $Q \cong Q(4, q)$ in Q(5, q) and X' consists of all lines of Q intersecting a given line of Q in a unique point.
- (j) X is a 3-dimensional Baer-subspace of $PG(3, q^2)$ contained in H. X' consists of all lines contained in a subquadrangle $Q \cong Q(4, q)$ of Q(5, q).
 - (k) X = H. X' is the whole set of lines of Q(5, q).
- (1) q = 2 and X' consists of all 18 lines which are contained in three mutually disjoint grids of Q(5, 2).
- (m) q = 2 and there exist a subquadrangle $Q \cong Q(4, 2)$ of Q(5, 2) and a spread S in Q such that X' consists of all lines of Q that are not contained in S.

In the remainder of this section, we prove Proposition 3.2.

LEMMA 3.3. If α is a nontangent plane such that $\alpha \cap H$ contains three noncollinear points of X, then $\alpha \cap H$ is completely contained in X.

Proof. This follows from property (*) and the fact that every subspace of a Steiner system $S(2, q + 1, q^3 + 1)$ is a point, a line or the whole Steiner system. For, if U is a proper subspace of $S(2, q + 1, q^3 + 1)$ containing a line L and a point not contained in

L, then $|U| \ge 1 + q \cdot |L| = 1 + q + q^2$, and if there is a point not belonging to U, then $q^3 + 1 \ge 1 + q \cdot |U|$, a contradiction.

LEMMA 3.4. If α is a tangent plane such that $\alpha \cap X = \alpha \cap H$, then X is of type (f) or (k).

Proof. If all points of X are contained in α , then X is of type (f). Suppose that there exists a point $x \in X$ not contained in α . Let x' denote an arbitrary point of H not contained in x^{ζ} and let x'' denote the unique point of α on the line xx'. If $x'' \in H$, then by property (*), also $x' \in H$. Suppose $x'' \notin H$. There are at least $q^2 - q - 1 \ge 1$ nontangent planes through xx' not containing the point α^{ζ} . If γ is such a plane, then every point of $\gamma \cap H$ is contained in X, by Lemma 3.3. In particular, also x' belongs to X, and every point of H outside x^{ζ} belongs to X. Now, let Y denote an arbitrary point of X not contained in X not contained in X denote an arbitrary point of X not contained in X not contained in X not X and the X not contained in X not contained in X not Y denote an arbitrary point of X not contained in X not contained in X not contained in X not contained in X not X

LEMMA 3.5. If α is a tangent plane such that $\alpha \cap X = (\alpha \cap H) \setminus \{\alpha^{\zeta}\}$, then X is of type (g).

Proof. Suppose the contrary. Then there exists a point $x \in X$ not contained in α . The same argument, as in the proof of Lemma 3.4, shows that every point of H not contained in $x\alpha^{\zeta} \cup x^{\zeta}$ is contained in X. Let L denote a line through α^{ζ} not contained in α such that $L \cap x^{\zeta} \notin H$. The line L is a secant line and property (*) implies that $\alpha^{\zeta} \in X$, a contradiction.

LEMMA 3.6. Suppose that q = 2. If α is a nontangent plane such that $\alpha \cap H = \alpha \cap X$, then X is of type (e), (k) or (l).

Proof. The points of $\alpha \cap H$ correspond with a regular spread S of Q(5,2). The lines and reguli of S define an affine plane of order 3. If X' = S, then X is of type (e). Suppose now that there exists a line L in $X' \setminus S$. Then there exists a unique partition $\{G_1, G_2, G_3\}$ of Q(5, 2) in three subgrids such that each line of $S \cup \{L\}$ is contained in some grid of the partition. Let T denote the set of 18 lines contained in one of the grids of the partition. By property (*) it follows that $T \subseteq X'$. If X' = T, then X is of type (l). If T is a proper subset of X', then property (*) implies that X' is the whole set of lines of Q(5, 2). In this case X is of type (k).

LEMMA 3.7. Suppose that $q \neq 2$. If α is a nontangent plane such that $\alpha \cap H = \alpha \cap X$, then X is of type (e) or (k).

Proof. If all points of X are contained in α , then X is of type (e). Now, suppose that there exists a point $x \in X$ not contained in α . Let x' denote an arbitrary point of H not contained in x^{ζ} and let x'' denote the unique point of α on the line xx'. If $x'' \in H$ then, by property (*), also $x' \in H$. Suppose that $x'' \notin H$. There are at least $q^2 + 1 - 2(q+1) \ge 1$ nontangent planes through xx' that intersect α in a secant line. If γ is such a plane, then every point of $\gamma \cap H$ is contained in X, by Lemma 3.3. In particular, also x' belongs to X, so that every point of H outside X^{ζ} is contained in X. A similar argument as in Lemma 3.4 shows that also every point of $X^{\zeta} \cap H$ belongs to X. Hence X is of type (k).

In the sequel, we suppose that X is not of type (a), (b), (c), (d), (e), (f), (g), (k) or (l). Then there exist three points x_1 , x_2 and x_3 such that $x_2 \notin x_1^{\zeta}$, $x_3 \notin x_1x_2$ and $x_3 \notin (x_1x_2)^{\zeta}$. By Lemmas 3.3, 3.6 and 3.7, the plane $\langle x_1, x_2, x_3 \rangle$ must be a tangent

plane p^{ζ} . The plane p^{ζ} has a unique Baer-subplane B through p, x_3 and $x_1x_2 \cap H$, and B is completely contained in H. By property (*), every point of $B \setminus \{p\}$ is contained in X. The set $B \setminus \{p\}$ corresponds with a set Y' of lines of a subquadrangle $Q \cong Q(4, q)$ of Q(5, q) intersecting a given line L of Q in a unique point. If all lines of X' are contained in Q, then X is of type (h), (i), (j) or (m) corresponding with the respective cases (f), (e), (g) and (h) of Proposition 3.1. Suppose therefore that X' contains a line L' not contained in Q. If L' meets L, then property (*) implies that every point of $p^{\zeta} \setminus \{p\}$ belongs to X (use e.g. similar countings as in the proof of Lemma 3.3), contradicting Lemmas 3.4 and 3.5. If L' intersects Q in a unique point not contained in L, then we can choose disjoint lines M and N in Y' such that L' is disjoint from any line of $\{M, N\}^{\perp \perp}$. Since there is no line in Q(5, q) meeting L', M and N, they correspond with a set of three points on $H(3, q^2)$ generating a nontangent plane. This contradicts Lemmas 3.3, 3.6 and 3.7 and we have proved Proposition 3.2.

4. Application to hyperplanes of dual polar spaces.

PROPOSITION 4.1. If H is a hyperplane of DW(5, q) containing two disjoint deep quads, then one of the following cases occurs.

- (a) There exists a quad Q and a subgrid G of order (q, 1) in Q such that $H = \bigcup_{x \in G} x^{\perp}$.
- (b) q = 2 and H is a locally subquadrangular hyperplane of DW(5, 2).
- (c) q = 2 and H is a hyperplane of DW(5, 2) with 81 points corresponding with possibility (d) of Proposition 3.1.

Proof. We use the same notations as in Section 2. Let Q_1 and Q_2 denote two disjoint quads contained in H. Since H is a subspace, it is of the form S_B , for some subset B of S; see Lemma 2.3. The set X_B must correspond with one of the 8 possibilities mentioned in Proposition 3.1. But there exist additional restrictions on the set X_B . Since H is a hyperplane, each line of Δ meets H, which implies that every hyperbolic line of PG(3, q) meets X_B . (See the proof of Lemma 2.2.) Possibility (f) of Proposition 3.1 gives rise to a hyperplane of type (a). Possibility (h) of Proposition 3.1 gives rise to a hyperplane only when Q is equal to 2. All the remaining possibilities do not give rise to hyperplanes.

REMARK. The example mentioned in (c) of Proposition 4.1 is Example 6 of [9].

PROPOSITION 4.2. If H is a hyperplane of DW(5, q) not containing ovoidal quads, then one of the following cases occurs.

- (a) *H* is a singular hyperplane.
- (b) There exist a quad Q and a subgrid G of order (q, 1) in Q such that $H = \bigcup_{x \in G} x^{\perp}$.
- (c) q is even and the points and lines contained in H define a split Cayley hexagon.
- (d) q = 2 and H is a locally subquadrangular hyperplane of DW(5, 2).
- (e) q = 2 and H is a hyperplane of DW(5, 2) with 81 points corresponding with possibility (d) in Proposition 3.1.

Proof. If there exists no subquadrangular quad, then each quad is either deep or singular and either case (a) or (c) occurs by Shult [10]. If there exist two disjoint deep quads, then either case (b), (d) or (e) occurs by Proposition 4.1. Now, suppose that there exists a subquadrangular quad Q and that any two deep quads meet. Let G denote the subquadrangle $Q \cap H$. For every point X of G, let A_X denote the number

of lines through x that are contained in H but not in Q. For every point x of G, we choose a line $L_x \subset Q$ through x not contained in G. There are g (nonovoidal) quads through L_x different from Q in each of which there exists a line through x contained in G. Hence $A_x \geq g$, for every point x of G. Now, consider two disjoint lines G and G in G. It is impossible that there exist deep quads through both G and G for otherwise we should have two disjoint deep quads. Without loss of generality, we may suppose that there exist no deep quads through G have the number G contributes G which is at least equal to G for G quad through G different from G contributes G to G if it is singular and G have the follows that G different from G conclude the following statements.

- Every quad through K_1 is subquadrangular.
- Every quad through L_x , where $x \in K_1$, that is different from Q is singular.

Now, let Q' denote an arbitrary subquadrangular quad through K_1 different from Q. Let x_1 and x_2 denote two different points of K_1 and let K'_i , $i \in \{1, 2\}$, denote the unique line of $Q' \cap H$ through x_i different from K_1 . As before there exists an $i \in \{1, 2\}$ such that every quad through K'_i is subquadrangular. But this is impossible since the quad $\langle L_{x_i}, K'_i \rangle$ is singular.

REFERENCES

- 1. A. E. Brouwer, A. M. Cohen, J. I. Hall and H. A. Wilbrink, Near polygons and Fischer spaces, *Geom. Dedicata* 49 (1994), 349–368.
- **2.** B. Cooperstein and A. Pasini, The non-existence of ovoids in the dual polar space DW(5, q), J. Combin. Theory Ser. A **104** (2003), 351–364.
 - **3.** B. De Bruyn and H. Pralle, The hyperplanes of $DH(5, q^2)$. Submitted.
 - **4.** B. De Bruyn and H. Pralle, The exceptional hyperplanes of DH(5, 4). Submitted.
- **5.** A. Pasini and S. Shpectorov, Uniform hyperplanes of finite dual polar spaces of rank 3, *J. Combin. Theory Ser. A* **94** (2001), 276–288.
 - 6. S. Payne and J. Thas, Finite generalized quadrangles (Pitman, Boston, 1984).
- 7. H. Pralle, A remark on non-uniform hyperplanes of finite thick dual polar spaces, *European J. Combin.* 22 (2001), 1003–1007.
- **8.** H. Pralle, Non-uniform hyperplanes of dual polar spaces of rank 3 with no subquadrangular quad, *Adv. Geom.* **2** (2002), 107–122.
 - **9.** H. Pralle, The hyperplanes of *DW*(5, 2), *Exp. Math.* **14**, No. 3 (2005), 373–384.
- **10.** E. E. Shult, Generalized hexagons as geometric hyperplanes of near hexagons, in *Groups, combinatorics and geometry* (Cambridge University Press, 1992), 229–239.
- 11. E. E. Shult and A. Yanushka, Near *n*-gons and line systems, *Geom. Dedicata* 9 (1980), 1–72.
 - 12. J. Tits, Spherical buildings and finite BN-pairs (Springer-Verlag, 1974).