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Abstract. Let � be one of the dual polar spaces DW (5, q) or DH(5, q2). We
consider a class of subspaces of �, each member of which carries the structure of a
near hexagon, and classify all these subspaces. Using this classification, we determine
all hyperplanes of DW (5, q) without ovoidal quads.
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1. Introduction. Let � be a finite thick dual polar space of rank 3. It is the dual
geometry of the singular subspaces of a non-degenerate finite polar space � of rank
3 with at least 3 points on every line and at least 3 planes through every line. By Tits’
classification of polar spaces ([12]), � is either a symplectic polar space W (5, q), one
of the orthogonal polar spaces Q(6, q) and Q−(7, q), or one of the hermitian polar
spaces H(5, q2) or H(6, q2), for some prime power q. Accordingly, one denotes � by
DW (5, q), DQ(6, q), DQ−(7, q), DH(5, q2) or DH(6, q2).

The elements of type 1, 2 and 3 of � are the planes, lines and points, respectively, of
�. The point-line residue of a type 3-element Q of � consists of the singular planes and
lines of � through the corresponding point Q of �, whence they form a generalized
quadrangle. Therefore, the elements of type 1, 2 and 3 of � are called points, lines and
quads. We denote the collinearity of � by ⊥. The dual polar space � is a near hexagon
(Shult and Yanushka [11]) which means that for every point p and every line L, there
exists a unique point on L nearest to p.

A hyperplane of � is a proper subspace meeting every line. If H is a hyperplane of
� then, for every quad Q of �, either Q ⊂ H or Q ∩ H is a hyperplane of Q. Hence,
one of the following possibilities occurs (see Payne and Thas [6, 2.3.1]).

� Q ⊂ H: in this case Q is called a deep quad.
� Q ∩ H = p⊥ ∩ Q for some point p of Q: in this case Q is called a singular quad

with deep point p.
� Q ∩ H is an ovoid: in this case Q is called an ovoidal quad.
� Q ∩ H is a proper subquadrangle of Q: in this case Q is called a subquadrangular

quad.
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If H is a hyperplane such that all quads not contained in H are of the same kind,
then H is called uniform, otherwise nonuniform. A uniform hyperplane is called locally
singular, locally subquadrangular or locally ovoidal if all its quads not contained in H
are singular, subquadrangular or ovoidal, respectively.

The locally singular hyperplanes of dual polar spaces of rank 3 have been classified
in Shult [10] in the finite case and Pralle [8] without the finiteness hypothesis. One class
of locally singular hyperplanes are the split Cayley hexagons in the orthogonal dual
polar space DQ(6, �) for a field �. The only other class of locally singular hyperplanes
is the singular hyperplane with deepest point p consisting of the points of the dual polar
space at non-maximal distance from p.

For finite dual polar spaces, the locally subquadrangular hyperplanes have been
classified in Pasini and Shpectorov [5]. The locally ovoidal hyperplanes are precisely
the ovoids. Ovoids do not exist in the dual polar spaces DH(5, q2), DQ(6, q) for q odd,
and DH(6, 4), since their quads do not have ovoids. We refer to [6] for the nonexistence
of ovoids in Q−(5, q) and W (q), q odd; Brouwer showed by computer that DH(4, 4)
has no ovoid. The nonexistence of ovoids in DW (5, q), q even, readily follows from
[6, 1.8.5], as has been noticed by Shult. See e.g. [5, Proposition 2.8]. The nonexistence
of ovoids in DW (5, q), q odd, has been shown in Cooperstein and Pasini [2]. The
existence of ovoids in the dual polar spaces DH(6, q2), q ≥ 3, and DQ−(7, q) is still an
open problem.

Pralle [7] showed that every nonuniform hyperplane of � must contain at least
one singular quad. All nonuniform hyperplanes without subquadrangular quads have
been determined in Pralle [8]. Among the finite thick dual polar spaces of rank 3
only the quads of DW (5, q) and DH(5, q2) have subquadrangles as hyperplanes. All
hyperplanes of DH(5, q2) have been classified in De Bruyn and Pralle [3] and [4].
In Proposition 4.2, we determine all nonuniform hyperplanes of DW (5, q) without
ovoidal quads. From [2], [5], [7], [8], [10] and Proposition 4.2 of the present paper, our
main result follows.

THEOREM 1.1. If H is a hyperplane of DW (5, q), then precisely one of the following
holds.

� H is a singular hyperplane.
� There exist a quad Q and a subgrid G of Q such that H = ⋃

x∈G x⊥.
� There exist a quad Q and an ovoid O in Q such that H = ⋃

x∈O x⊥.
� The order q is even and the points and lines of H build a split Cayley hexagon.
� H is the (up to isomorphism) unique locally subquadrangular hyperplane of

DW (5, 2).
� There are a point p and a set O of points at distance 3 from p which meets every line

at distance 2 from p, such that H = p⊥ ∪ O.
� We have q = 2 and H is a hyperplane on 81 points mentioned in (e) of Propo-

sition 4.2.
� There exist a singular, a subquadrangular and an ovoidal quad.

In Section 2, we define a class C of subspaces of DW (5, q) and DH(5, q2). Each
member S of C satisfies the following properties: (i) S contains two disjoint quads,
(ii) S is the union of a certain family of quads, (iii) the points and lines in S define a
near hexagon. Section 3 is devoted to the classification of the subspaces of C and several
new examples of near hexagons are developed. Using this classification in Section 4,
we determine all hyperplanes of DW (5, q) without ovoidal quads.
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2. A class of subspaces in DW (5, q) and DH(5, q2) containing two disjoint quads.
The following lemma is straightforward. See Brouwer et al. [1, Lemma 3.1].

LEMMA 2.1. Let S be a subspace of a dual polar space � of rank 3 with the property
that, for every point x ∈ S, there exists a quad Qx ⊆ S through x. Then the points and
lines contained in S define a near polygon.

Several nice classes of near hexagons arise in the way described in Lemma 2.1.
See [1]. In the present paper, we determine all subspaces of DW (5, q) and DH(5, q2)
belonging to a certain class C of subspaces. All of them satisfy the conditions of
Lemma 2.1 and give rise to near hexagons.

If S is a subspace of a dual polar space � of rank 3 such that for every point
x ∈ S, there exists a quad Qx ⊆ S through x, then one of the following two possibilities
occurs.

� There exists a point in � that is contained in every quad Q ⊆ S.
� There exist two disjoint quads Q1 and Q2 contained in S.

The union of a number of quads through a given point is always a subspace.
Lemmas 2.2, 2.3 and Proposition 3.1 determine all subspaces of DW (5, q) containing
two disjoint quads. All of these subspaces belong to the afore-mentioned class C.

Let � be a polar space isomorphic to either W (5, q) or H(5, q2) embedded in a
5-dimensional projective space � and let � denote the corresponding dual polar space.
For every quad Q of � and every point x not in Q, let πQ(x) denote the unique point
of Q collinear with x. Let Q1 and Q2 denote two disjoint quads of �. The quad Qi,
i ∈ {1, 2}, corresponds with a point xi of the polar space �. Let x1, . . . , xq+1 denote
the q + 1 points of � on the line x1x2 of � and let Qi, i ∈ {3, . . . , q + 1}, denote the
quad of � corresponding with xi. Every line meeting Q1 and Q2 also meets every Qi,
i ∈ {3, . . . , q + 1}.

Let A denote the set of all quads meeting Q1 and Q2. It corresponds to the set of
points of � contained in (x1x2)ζ where ζ denotes the polarity defining �. If R ∈ A, then
R meets each Qi, i ∈ {1, . . . , q + 1}, in a line and R ∩ (Q1 ∪ · · · ∪ Qq+1) is a subgrid GR

of R. If x is a point of � not contained in Q1 ∪ · · · ∪ Qq+1, then x is contained in the
unique element of A that is the quad containing x and the line through πQ1 (x) meeting
Q2. We have seen that the quads of A partition the set of points of � not contained
in Q1 ∪ · · · ∪ Qq+1. Every element R of A corresponds with a point xR of � that is
contained in the three dimensional subspace �′ = (x1x2)ζ of �. Two quads R1 and R2

of A meet if and only if xR1 ∈ xζ
R2

. For a subset B of A, we define

SB := (Q1 ∪ Q2 ∪ · · · ∪ Qq+1) ∪
⋃

R∈B

R,

and XB denotes the set of all points xR, where R is an element of B.

LEMMA 2.2. If � ∼= DW (5, q), then SB is a subspace of � if and only if x1x2 ⊆ XB,
for all x1, x2 ∈ XB with x1 �∈ xζ

2 . Let � ∼= DH(5, q2). Then SB is a subspace of � if and
only if x1x2 ∩ H(5, q2) ⊆ XB, for all x1, x2 ∈ XB with x1 �∈ xζ

2 .

Proof. Let L denote an arbitrary line of �. There are four possibilities.
� L is contained in Q1 ∪ · · · ∪ Qq+1 and so in SB.
� L intersects Q1 ∪ · · · ∪ Qq+1 in a unique point x, and there exists a unique quad

R of A containing L. If R is contained in B, then L ⊂ SB. If R is not contained in B,
then L ∩ SB = {x}.
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� L is disjoint from Q1 ∪ · · · ∪ Qq+1 and contained in a certain quad R of A. This
case can only occur if � ∼= DH(5, q2). If R is contained in B, then L ⊆ SB. If R is not
contained in B, then L is disjoint from SB.

� L is disjoint from Q1 ∪ · · · ∪ Qq+1 and not contained in any quad of A. Then the
points of L are contained in mutually disjoint elements of A that correspond with a
hyperbolic line of �′. Conversely, every hyperbolic line of �′ corresponds with a set of
q + 1 mutually disjoint quads of A and there always exists a line outside Q1 ∪ · · · ∪ Qq+1

meeting these quads.
Thus SB is a subspace if and only if every hyperbolic line of �′ has either 0, 1 or

q + 1 points in common with XB. This proves the lemma. �
DEFINITION. Let C denote the set of all subspaces of the form SB, where B is a

subset of A.

LEMMA 2.3. Suppose that � ∼= DW (5, q). If S is a subspace of � containing the
disjoint quads Q1 and Q2, then S belongs to C.

Proof. Let R denote an arbitrary element of A. The subgrid GR of R is contained
in S and R ∩ S is a subspace of R. If R \ GR contains a point of S, then R is contained
in S, and S is of the form SB, for some subset B of A. �

In the following section, we determine all subspaces of C, or equivalently, all sets
XB satisfying the conditions of Lemma 2.2.

REMARK. If S is a subspace of � ∼= DH(5, q2) containing the disjoint quads Q1

and Q2, then the set XB with B the set of all quads that are contained in S and intersect
Q1 and Q2 in lines, still satisfies the conditions of Lemma 2.2.

3. The classification of the subspaces of C. The classification follows from
Lemma 2.2 and Propositions 3.1 and 3.2.

PROPOSITION 3.1. Let ζ denote a symplectic polarity of PG(3, q) and let X be a set
of points of PG(3, q) with the property that x1x2 ⊆ X (∗) for every two points x1 and x2

of X with x1 �∈ xζ

2 . Then one of the following cases occurs:
(a) X ⊆ L, for some totally isotropic line L;
(b) X = L, for some hyperbolic line L;
(c) X = L ∪ {x}, for some hyperbolic line L and some point x ∈ Lζ ;
(d) X = L ∪ Lζ , for some hyperbolic line L;
(e) X = pζ \ {p}, for some point p of PG(3, q);
(f) X = pζ , for some point p of PG(3, q);
(g) X = PG(3, q);
(h) q = 2 and X is the complement of an ovoid of the generalized quadrangle Qζ

∼=
W (2) associated with ζ .

Proof. If x1 ∈ xζ

2, for all points x1 and x2 of X , then X is as in (a). Suppose that
there exist points x1, x2 ∈ X such that x1 �∈ xζ

2, and let L denote the line through x1

and x2. If X has no points outside L ∪ Lζ , then one of the cases (b), (c) or (d) occurs.
If there exists a point x3 ∈ X not contained in L ∪ Lζ , then let p be the point of

PG(3, q) such that pζ = 〈x1, x2, x3〉. Property (∗) implies that every point of pζ \ {p} is
contained in X . If all points of X are contained in pζ , then either case (e) or (f) occurs.
Now, suppose that there exists a point x4 in X not contained in pζ . If p ∈ X , then
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every point of PG(3, q) \ xζ

4 belongs to X by property (∗). Also every point of xζ

4 is
contained in X by property (∗), since through every point y ∈ xζ

4 there exists a line not
contained in xζ

4 ∪ yζ . Hence, if p ∈ X , then X = PG(3, q). Suppose therefore that p �∈ X
and consider the complement XC := PG(3, q) \ X of X . By property (∗), every point
of XC is contained in either the line x4p or the plane xζ

4. Now, let K be a line through p
different from x4p and not contained in pζ . Then K contains at most two points of XC

(namely p and K ∩ xζ

4). By property (∗), it then follows that (i) q + 1 ≤ 3 or q = 2, and
(ii) K ∩ xζ

4 ∈ XC . One easily verifies that XC = (xζ

4 \ ((xζ

4 ∩ pζ ) ∪ {x4})) ∪ (px4 \ {x4})
and that the set XC is an ovoid of Qζ

∼= W (2). �
PROPOSITION 3.2. Let H denote a hermitian variety in PG(3, q2) and let ζ denote the

hermitian polarity of PG(3, q2) associated with H. Let X be a set of points of H with
the property that x1x2 ∩ H ⊆ X (∗), for every two points x1 and x2 of X with x1 �∈ xζ

2 .
The lines and points lying in H(3, q2) define a generalized quadrangle Q(5, q) and X
corresponds with a set X ′ of lines of Q(5, q). One of the following cases occurs.

(a) X is a (possibly empty) set of points on a line of H. X ′ is a (possibly empty) set of
lines through a given point of Q(5, q).

(b) X = L ∩ H for some secant line L (i.e. |L ∩ H| = q + 1). X ′ is a regulus of
Q(5, q).

(c) X = (L ∩ H) ∪ {x}, for some secant line L and some point x ∈ Lζ ∩ H. X ′ consists
of a regulus of Q(5, q) together with a line of its opposite regulus.

(d) X = (L ∪ Lζ ) ∩ H, for some secant line L. X ′ consists of the lines contained in a
subgrid of order (q, 1) of Q(5, q).

(e) X = α ∩ H, for some nontangent plane α. X ′ is a regular spread of Q(5, q).
(f) X = α ∩ H, for some tangent plane α. X ′ is the set of lines of Q(5, q) having

nonempty intersection with a given line of Q(5, q).
(g) X = (pζ ∩ H) \ {p}, for some point p of H. X ′ is the set of lines of Q(5, q)

intersecting a given line in a unique point.
(h) X = B where B is a Baer-subplane which is contained in pζ ∩ H, for some point

p of B. There exists a subquadrangle Q ∼= Q(4, q) in Q(5, q), and X ′ consists of all lines
of Q having nonempty intersection with a given line of Q.

(i) X = B \ {p} with p a point of H and B a Baer-subplane of pζ through p completely
contained in H. There exists a subquadrangle Q ∼= Q(4, q) in Q(5, q) and X ′ consists of
all lines of Q intersecting a given line of Q in a unique point.

(j) X is a 3-dimensional Baer-subspace of PG(3, q2) contained in H. X ′ consists of
all lines contained in a subquadrangle Q ∼= Q(4, q) of Q(5, q).

(k) X = H. X ′ is the whole set of lines of Q(5, q).
(l) q = 2 and X ′ consists of all 18 lines which are contained in three mutually disjoint

grids of Q(5, 2).
(m) q = 2 and there exist a subquadrangle Q ∼= Q(4, 2) of Q(5, 2) and a spread S in

Q such that X ′ consists of all lines of Q that are not contained in S.

In the remainder of this section, we prove Proposition 3.2.

LEMMA 3.3. If α is a nontangent plane such that α ∩ H contains three noncollinear
points of X, then α ∩ H is completely contained in X.

Proof. This follows from property (∗) and the fact that every subspace of a Steiner
system S(2, q + 1, q3 + 1) is a point, a line or the whole Steiner system. For, if U is a
proper subspace of S(2, q + 1, q3 + 1) containing a line L and a point not contained in
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L, then |U| ≥ 1 + q · |L| = 1 + q + q2, and if there is a point not belonging to U , then
q3 + 1 ≥ 1 + q · |U|, a contradiction. �

LEMMA 3.4. If α is a tangent plane such that α ∩ X = α ∩ H, then X is of type (f)
or (k).

Proof. If all points of X are contained in α, then X is of type (f). Suppose that
there exists a point x ∈ X not contained in α. Let x′ denote an arbitrary point of H
not contained in xζ and let x′′ denote the unique point of α on the line xx′. If x′′ ∈ H,
then by property (∗), also x′ ∈ H. Suppose x′′ �∈ H. There are at least q2 − q − 1 ≥ 1
nontangent planes through xx′ not containing the point αζ . If γ is such a plane, then
every point of γ ∩ H is contained in X , by Lemma 3.3. In particular, also x′ belongs to
X , and every point of H outside xζ belongs to X . Now, let y denote an arbitrary point
of xζ ∩ H. There exists a line through y not contained in xζ ∪ yζ and, by property (∗),
it follows that y ∈ X . Hence X = H. �

LEMMA 3.5. If α is a tangent plane such that α ∩ X = (α ∩ H) \ {αζ }, then X is of
type (g).

Proof. Suppose the contrary. Then there exists a point x ∈ X not contained in α.
The same argument, as in the proof of Lemma 3.4, shows that every point of H not
contained in xαζ ∪ xζ is contained in X . Let L denote a line through αζ not contained
in α such that L ∩ xζ �∈ H. The line L is a secant line and property (∗) implies that
αζ ∈ X , a contradiction. �

LEMMA 3.6. Suppose that q = 2. If α is a nontangent plane such that α ∩ H = α ∩ X,
then X is of type (e), (k) or (l).

Proof. The points of α ∩ H correspond with a regular spread S of Q(5, 2). The
lines and reguli of S define an affine plane of order 3. If X ′ = S, then X is of type (e).
Suppose now that there exists a line L in X ′ \ S. Then there exists a unique partition
{G1, G2, G3} of Q(5, 2) in three subgrids such that each line of S ∪ {L} is contained in
some grid of the partition. Let T denote the set of 18 lines contained in one of the
grids of the partition. By property (∗) it follows that T ⊆ X ′. If X ′ = T , then X is of
type (l). If T is a proper subset of X ′, then property (∗) implies that X ′ is the whole set
of lines of Q(5, 2). In this case X is of type (k). �

LEMMA 3.7. Suppose that q �= 2. If α is a nontangent plane such that α ∩ H = α ∩ X,
then X is of type (e) or (k).

Proof. If all points of X are contained in α, then X is of type (e). Now, suppose
that there exists a point x ∈ X not contained in α. Let x′ denote an arbitrary point
of H not contained in xζ and let x′′ denote the unique point of α on the line xx′. If
x′′ ∈ H then, by property (∗), also x′ ∈ H. Suppose that x′′ �∈ H. There are at least
q2 + 1 − 2(q + 1) ≥ 1 nontangent planes through xx′ that intersect α in a secant line.
If γ is such a plane, then every point of γ ∩ H is contained in X , by Lemma 3.3. In
particular, also x′ belongs to X , so that every point of H outside xζ is contained in X .
A similar argument as in Lemma 3.4 shows that also every point of xζ ∩ H belongs
to X . Hence X is of type (k). �

In the sequel, we suppose that X is not of type (a), (b), (c), (d), (e), (f), (g), (k)
or (l). Then there exist three points x1, x2 and x3 such that x2 �∈ xζ

1, x3 �∈ x1x2 and
x3 �∈ (x1x2)ζ . By Lemmas 3.3, 3.6 and 3.7, the plane 〈x1, x2, x3〉 must be a tangent
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plane pζ . The plane pζ has a unique Baer-subplane B through p, x3 and x1x2 ∩ H, and
B is completely contained in H. By property (∗), every point of B \ {p} is contained in
X . The set B \ {p} corresponds with a set Y ′ of lines of a subquadrangle Q ∼= Q(4, q) of
Q(5, q) intersecting a given line L of Q in a unique point. If all lines of X ′ are contained
in Q, then X is of type (h), (i), (j) or (m) corresponding with the respective cases (f),
(e), (g) and (h) of Proposition 3.1. Suppose therefore that X ′ contains a line L′ not
contained in Q. If L′ meets L, then property (∗) implies that every point of pζ \ {p}
belongs to X (use e.g. similar countings as in the proof of Lemma 3.3), contradicting
Lemmas 3.4 and 3.5. If L′ intersects Q in a unique point not contained in L, then
we can choose disjoint lines M and N in Y ′ such that L′ is disjoint from any line of
{M, N}⊥⊥. Since there is no line in Q(5, q) meeting L′, M and N, they correspond
with a set of three points on H(3, q2) generating a nontangent plane. This contradicts
Lemmas 3.3, 3.6 and 3.7 and we have proved Proposition 3.2.

4. Application to hyperplanes of dual polar spaces.

PROPOSITION 4.1. If H is a hyperplane of DW (5, q) containing two disjoint deep
quads, then one of the following cases occurs.

(a) There exists a quad Q and a subgrid G of order (q, 1) in Q such that H = ⋃
x∈G x⊥.

(b) q = 2 and H is a locally subquadrangular hyperplane of DW (5, 2).
(c) q = 2 and H is a hyperplane of DW (5, 2) with 81 points corresponding with

possibility (d) of Proposition 3.1.

Proof. We use the same notations as in Section 2. Let Q1 and Q2 denote two disjoint
quads contained in H. Since H is a subspace, it is of the form SB, for some subset
B of S; see Lemma 2.3. The set XB must correspond with one of the 8 possibilities
mentioned in Proposition 3.1. But there exist additional restrictions on the set XB.
Since H is a hyperplane, each line of � meets H, which implies that every hyperbolic
line of PG(3, q) meets XB. (See the proof of Lemma 2.2.) Possibility (f) of Proposition
3.1 gives rise to a hyperplane of type (a). Possibility (h) of Proposition 3.1 gives rise to a
hyperplane of type (b). See also Pasini and Shpectorov [5]. Possibility (d) of Proposition
3.1 gives rise to a hyperplane only when q is equal to 2. All the remaining possibilities
do not give rise to hyperplanes. �

REMARK. The example mentioned in (c) of Proposition 4.1 is Example 6 of [9].

PROPOSITION 4.2. If H is a hyperplane of DW (5, q) not containing ovoidal quads,
then one of the following cases occurs.

(a) H is a singular hyperplane.
(b) There exist a quad Q and a subgrid G of order (q, 1) in Q such that H = ⋃

x∈G x⊥.
(c) q is even and the points and lines contained in H define a split Cayley hexagon.
(d) q = 2 and H is a locally subquadrangular hyperplane of DW (5, 2).
(e) q = 2 and H is a hyperplane of DW (5, 2) with 81 points corresponding with

possibility (d) in Proposition 3.1.

Proof. If there exists no subquadrangular quad, then each quad is either deep
or singular and either case (a) or (c) occurs by Shult [10]. If there exist two disjoint
deep quads, then either case (b), (d) or (e) occurs by Proposition 4.1. Now, suppose
that there exists a subquadrangular quad Q and that any two deep quads meet. Let G
denote the subquadrangle Q ∩ H. For every point x of G, let Ax denote the number

https://doi.org/10.1017/S0017089505002880 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089505002880


82 BART DE BRUYN AND HARM PRALLE

of lines through x that are contained in H but not in Q. For every point x of G, we
choose a line Lx ⊂ Q through x not contained in G. There are q (nonovoidal) quads
through Lx different from Q in each of which there exists a line through x contained in
H. Hence Ax ≥ q, for every point x of G. Now, consider two disjoint lines K1 and K2 in
G. It is impossible that there exist deep quads through both K1 and K2, for otherwise
we should have two disjoint deep quads. Without loss of generality, we may suppose
that there exist no deep quads through K1. Now, consider the number N = ∑

x∈K1
Ax

which is at least equal to q(q + 1). A quad through K1 different from Q contributes
q to N if it is singular and q + 1 if it is subquadrangular. Since there are precisely q
quads through K1 different from Q, it follows that Ax ≤ q(q + 1), and we conclude the
following statements.

� Every quad through K1 is subquadrangular.
� Every quad through Lx, where x ∈ K1, that is different from Q is singular.

Now, let Q′ denote an arbitrary subquadrangular quad through K1 different from Q.
Let x1 and x2 denote two different points of K1 and let K ′

i , i ∈ {1, 2}, denote the unique
line of Q′ ∩ H through xi different from K1. As before there exists an i ∈ {1, 2} such
that every quad through K ′

i is subquadrangular. But this is impossible since the quad
〈Lxi , K ′

i 〉 is singular. �
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