INDEFINITE GREEN'S FUNCTIONS
AND ELEMENTARY SOLUTIONS

G. F.D. Duff and R. A. Ross

Linear differential equations both ordinary and partial
are often studied by means of Green's functions. One reason
for this is that linearity permits superposition of solutions.
A Green's function describes the 'effect' of a point source,
and the description of line, surface, or volume sources is
achieved by superposing, that is to say, integrating, this
function over the source distribution.

For equations with constant coefficients the use of integral
transforms permits the calculation of such source functions in
the form of integrals. Only in the simplest cases is explicit
evaluation by elementary functions possible, and this has
perforce led to the use of asymptotic estimates, which so
thoroughly pervade the domain of applied mathematics.

Our purpose in this note is to point out a basic general
property of point source solutions, which has apparently been
little noticed. This property is, that the exponents of decay
with time of the elementary solution are related by Hamiltonian
duality to the differential polynomial. To illustrate the
asymptotic behaviour so determined, in some simple cases,
we give examples of equations of wave motion, diffusion, and
dispersion, with one space variable.

To prepare for a separate treatment of the time variable,
we begin with a self-contained section on Green's functions for
ordinary differential equations with constant coefficients. It is

shown how any solution of such an equation can be expressed in
terms of one function of a single variable.
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1. Green's functions for ordinary differential equations.
Let t be the independent variable, and let §(t) denote the
Dirac delta-function, more strictly the measure which

represents a unit mass concentrated at the origin. Suppose
that an ordinary differential operator L, with constant
coefficients, is given, of the form

(n)+ay(n_1)+. .tay.

(1.1) Ly(t) =y 1 . n

and consider the nonhomogeneous equation
(1.2) Ly(t) = 5(t),
with auxiliary initial condition

y(t) = 0 t< 0.

We note first that our--unique--solution y(t) satisfies
Ly =0 for t# 0. For t negative it is identically zero,
while for t positive it is some linear combination of the n
A .t
exponential solutions e ! , where Ki ranges through the

roots of the characteristic equation

-1
(1.3) p(x)=xn+ai>\n +...+a =0.

Let us integrate the differential equation over an interval
containing the origin. On the right hand side we obtain the
Heaviside step function

1 t>0
H(t) =
0 t< 0
and so find
(n-1) (n-2) _
v +a1y +...+anfydt—H(t).

Now let us take the discontinuity of both sides around t=0.
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We find

(Y(n-“) =1:

here the parentheses indicate the difference of the two one-
sided limits.

Thus our solution satisfies the conditions

1) -
y(0) :y( )(0) = ... = y(n 2’(0) =0,

and

y(n-i)(0+ ) = 1.

The unique solution with these initial values, which has
continuous derivatives up to the order n - 2 and vanishes for
t< 0, is known as the indefinite Green' s function of the
operator L, and is denoted by G(t).

A discontinuity of the (n - 1)i order derivative is typical
of Green' s functions not only for initial value problems but also
for two-point boundary value problems. It is noteworthy that
the indefinite Green's function for an operator with constant
coefficients is a function of a single argument rather than a
kernel with two variables as is usual in boundary value problems.

A most useful property of G(t) is that any solution
whatever of Ly =f(t) can be expressed by means of it. Thus
it contains, in itself, the entire range of poss1b111t1es described
by the differential equation.

We first search for a particular integral, that is, for
some solution of the non-homogeneous equation. The essential
property of the delta-function on the right side of (1. 2) is that
for any function f£(t) whatever

© t+e
f(t) = [ f(n6(t-ndr = [ £(1)8(t-7)dr, £>0, t>0.
- 00 0

Combining this with the property
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LG(t-T1) = &(t-1) ,

and with the linearity of the equation, which permits the
superposition of solutions, we see that the finite convolution

tte t

y (1) =0f G(t-7 ) f(T)dT = Ofc(t-T)f(-r)dT

is, formally, a particular integral. It is easy to verify that
its initial data are

_ ) _ _(n-1) _
yo(O)-yo (0) = ... =y, (0) = 0.

We remark that this convolution integral is just the
solution to which the method of variation of parameters would
lead for this equation. To complemeant this solution with
solutions of the homogeneous equation, we first note that the
particular integral has initial value zero together with its first
n - 1 derivatives. The Green's function itself satisfies

(h) _ .n-1
G (0+4) = éh

-1
where 61;1 denotes the Kronecker delta symbol, unity if

h=n-1, zero otherwise. To find solutions of the homo-
geneous equation, which span its n-dimensional vector space,
we rewrite the equation (1.2) as follows:

(G(k) + aiG(k-“ .1 akG)(n_k)

(1.2")
gkt

= -Gy

. +a G)+ &{t) .
n

Thus the jump of

(k)+ (k-1)+ ... ta G)(n_k_“

(G a G

1

across the origin, is unity. We note that derivatives of the
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combination within the parentheses, of lower order than
n- k-1, are continuous. Since G(t) =0 for negative t,
we see that the relation

(h)
k k-1 -1-k
G()+aG( )+...+aG = 6"
1 k h
0+
certainly holds for h<n-k-1. For n-k<h<-1, the
remaining values of interest, the same formula is a consequence
of (1.2'). Since the delta-function and its derivatives are zero
for all non-zero values of t, the limit as t tends to zero from
above is zero. Differentiating h - n - k times on both sides

of (1.2'), we verify the result.

The explicit solution of the initial value problem

Ly = 1(t)
Y(h)(0+)=ch h=0,1, ... n-1
now is given by
t
y(t) = [ G(t-7)f(r )dr
0

n-1 n-h-1 (n-i-1)
+ ZCh >z  a.G(t) , a =1.
h=0 i=0 !

For example, the differential equation of harmonic

vibrations of frequency w, ;f + 0l

function

y =0, has the Green's

G(t) = sin wt .

€ |~

The solution of the initial value problem

. 2
ytwy = {t), t>0
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with y(0) = co, y(i)(O) = c1 is

sin w (t-7) P

t
t dr
y(t) = f = (r)
0
sin wt
+ ¢ coswt+c, —
o 1 w

An explicit formula for G(t) is available, if the roots

>\1, ..., X of the characteristic equation (1. 3) are known.
n

Assuming for simplicity that these roots are distinct, we

choose a representation

)\kt

G(t) = = gke ‘
k

The initial conditions for G(t) as t = 0 + yield

h

s h =20,1, ..., - 1.
n-1 n

h
Zg N =6
kkk

The solution of these n equations for the 8, leads to

Vandermonde determinants, and to the formula

_ 1 !
& T 1 (A ) " 3p
jtk RN NN
Tk
Hence
)\kt
e
G(t =Z———-———-, t>0
© T o
jt k

For large values of t, only the root or roots )\k with
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maximal real part will be significant. If there is only one such
root X\ then
max

Amaxt
N
Glt) ™ 55
o\
A=A
max

2. Elementary solutions of partial differential equations.
For simplicity let us consider equations in one dimension of
space, that is, in two independent variables x and t. An
elementary solution of such an equation will satisfy, by
definition, '

(2.1) L(%,a—i u = 6(x)6(t) ,

and so represents an initial disturbance concentrated at a single
point, the origin. If n is the order of the highest time-
derivative which occurs, the initial values zero for the solution
and its first n - 2 time derivatives are prescribed. From the
differential equation we may again deduce that the n - 15t order
initial time derivative is the distribution ©&§(x).

We shall assume, as in §1, that the coefficient of the
highest time derivative is 1; this now excludes space derivation
from the leading term.

Let us take the bilateral Laplace transform of (2.1):
if we write

00
(2.2) Ut,y) = [ e Vu(t, x)dx
-0
then we obtain
2.3 I_.—a U =
( * ) (at 9Y)u - 6(t) H

an ordinary differential equation for ul(t,y).
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We denote by G(t,y) the Green's function for this
equation. If we denote by pk(y) the n roots of the auxiliary
equation in p

(2. 4) L(p,y) = 0,

and if we suppose they are all distinct, then

n Pk(y)t
(2.5) G(t,y) = Z oL
k=1 —
9p
P:Pk

The unique elementary solution of the partial differential
equation is now found by the inverse Laplace transform:

1 ct+ioo
k(t,x) = P f G(t,y)exydy
c-ico
1 ct+ico xy+py(y)t
= = dy ,
2mi . oL
c-io k —

Here c may be any sufficiently large positive number.

The convergence of this integral is dependent upon the
behaviour of the roots pk(y) as y - 1 % and we therefore

restrict attention to those equations which satisfy a suitable
regularity condition. The simplest such condition is that

(2.7) Rpk(y)<-6, &> 0,
for [y] = © in sectors
largy t 3] < e,

and we shall refer to such equations as regular. Diffusion,

and dispersion are physical processes which ordinarily lead to
regular equations.
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We now consider the general initial value problem
(2.8) Lu = f(t,x) = [ [fv,£)6(t-7)6(x-£)dr dt ,

with initial conditions
(h)
. 09 X = 3 =V, 3 e e ey - .
(2.9) u(t) ( ) ch(x) h=0, 1 n-1

Let us apply the bilateral Laplace transform in x to the
unknown function u(t, x):

o0

(2.10) at,y) = f e Yt x)dx

-00

and to the data of the problem:

00
flt,y) = f e-xyf(t,x)dx,
-0
0
Eh(y) = f e-xych(x)dx.

We find the ordinary differential equation
L7 yu = £(t.y)

with initial conditions

~(h)

) (0,y) = ch(y) .

From §1 we see that the solution is

t ~
“Ut,y) = [ Glt-,y) KT, y)dr
5
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n-1 n-h-1 (n-i-1)
+ Z Ch(y) > a ( )G(t) (t,y) .
n=0 i=0

Here the Green's function G(t,y) depends on the transformed

variable y, and the coefficients ai(y) of the transformed

differential equation are polynomials in vy.
The inverse transform

c+ico
1

u(t, x) = 5 f eXYTJ.(t,y)dy
c-1i00

leads back to the solution of the general initial problem. To
carry out this inversion we must evaluate the inverse transform
of the product of G(t-7,y) with certain other functions of vy.
But the transform of a product is the convolution of the trans-
forms. We therefore find bilateral convolutions of the
elementary solution with the data functions, in the form

o t
(2.11)  u(t,x) = [ [ K(t-T,x-£)f(7 £ )dEdT

-0 0

- 0 -1 n-i-1
Z - .
+ J et 1(a§)< k(t, x-£)dE
h:o -0
The differentiations with respect to £ indicated in the sum on
the right-hand side can equally well be transferred to the initial

data ch(g). This formula shows how the elementary solution

of the partial differential equation leads by superposition and
differentiation to the most general solution of an initial value
problem.

3. The normal curve. The algebraic curve

(3.1) L(p,y) = 0

associated with the differential operator is known as the normal
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curve. It is the graph of an algebraic function p implicitly
defined by (3.1). This function [or its graph] has n branches

P=Pk(Y) k=1, ..., n.

We shall consider only the case in which the branches
are“a\xll totally real; that is, for each real y there are n real
(distinct) values of p. This class of operators includes many
hyperbolic and parabolic types of physical significance.

A number of examples of these are discussed in later sections.

4. The method of steepest descent. Explicit evaluation
of the elementary solutions is possible only in a few especially
simple cases such as the equation of the string and of heat flow.
In more complicated examples, a clear description of the
behaviour of the elementary solution can be achieved by
asymptotic estimates. We shall be particularly concerned
with estimates wherein x and t become large with the ratio

(4.1) @ =t5

remaining fixed.

With the substitution x = at the elementary solution
becomes a sum of integrals

ctico tay + pyly))
—z | ° d
ami 5L Vo
C=-100 8——

(4.2) k(t,x) =

and these are of the type adapted to the steepest descent method
as t—>o .

Let us set
g (y) = ay + P, (y) -

Then the steepest descent estimate is found by first locating a
saddle-point, or col, of the exponential factor. This is a
stationary point of the real part of gk(y). By the Cauchy-
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Riemann equations, such a point y is stationary for the
o

imaginary part as well and thus
! =0.
g (v,)
The lines of steepest decrease of exp gk(y) are the level lines

of Im gk(y), and we are required to deform the path of

integration into a steepest line through a saddle-point. If this
is done, the asymptotic estimate is

tgk(Yo)
/ 2m e 1

3
Py

Y=,

assuming that gk” does not vanish at the saddle-point Yo

We shall be interested chiefly in the exponents gk(yo)
which depend upon « since y =y (a). At great distances
o o

or time intervals, this exponent will provide the most
significant information on the magnitude of the solution.

In particular, that integral of the sum for which this exponent
is largest will dominate all the others. The two assumptions
of regularity and total reality, which we have made, will
ensure that there are real saddle-points, leading to real
exponential decrease towards infinity.

The saddle-points are located by solving

gk'(y) = a+pk'(y) =0,

that is to say,
(4. 4) -pk‘ (y) = «

for y =yo(a). The exponent = is then the compounded

function gk(yo(a)). Now this process is just the Legendre
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transformation in which gk(yo(a)) is the dual of —pk(y). In

gk(yo(a)) is the p-intercept of the tangent

with slope -@ to the kth branch of the normal curve, the point

of contact being yo(a). In the language of mechanics, gk(y (a))
o

geometrical terms

is the Hamiltonian corresponding to the Lagrangian -pk(y).

We commented in the introduction on the basic nature of this
duality, which is so well known in mechanics, continuum
mechanics, and wave motion, and which is equally significant
for our elementary solutions.

In the following example explicit formulae are possible.

The heat equation for a one-dimensional medium travelling
with velocity c is

To the Lagrangian

2
P =-cyty
there corresponds the Hamiltonian

¢t o?

and the exact elementary solution

2
1 (x-ct)
kt.x) = oz exp -

To justify the deformation of contours necessary for the
steepest descent calculation two types of singularities in the
complex plane must be considered. These are the poles and
branch points of the integrands of (4.2). The denominators
0L/0p are algebraic functions of the form

n (p,(y) - p.ly)
itk © J
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and they will vanish only when two or more roots pk(y)

coincide. Thus poles are automatically branch points.

The only possible real branch point, under our
assumptions, is the origin.

At a branch point certain of the roots pk(y) are

permuted among themselves by any small circuit enclosing
the branch point. Thus if the contours of all of the integrals
referring to these roots are carried over the branch point,
the integrals will be permuted among themselves without
change in their sum. Thus if all of the steepest descent
contours lie either to the right or all lie to the left of the
branch point, there will be no contribution from that branch
point. We shall say, in this case, that the contours are
consistent relative to the branch point. As yet no example
of an inconsistent set of contours has been found. It would
be interesting to determine explicitly the class of equations
for which this consistency holds.

5. Subcharacteristics. Equations of the type we are
studying represent some combination of wave motion and

diffusion or dispersion. Typical of such processes is the
splitting of a point source effect into a number of travelling
waves which diffuse or disperse as time goes on. The paths
in space-time of these waves are indicated by local maximuam
values of the dual exponents gk(yo(a)) as functions of space

time directions «. Such directions are known as sub-
characteristics, and we now show how they can be found
from the series expansions of the roots pk(y) about the
origin.
Let us suppose
pk(y) =a taytayt..., y—=0,
and that a, # 0. (In all physical examples known to us a_ is

positive.) Then

=a 4+ (a+a,)y+ta 2+
g =2 Y 5
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while the steepest descent leads asymptotically to

0 =g' =a+a +2a2y+...

1
so that
a+ a.1
Yy ~o- ) a ™ - a )
2
a2 1
and in turn
(o + ai)
Y - N~ o
g ao 2 s a a1 .
2
Evidently g has a maximum at « = - a, and the contribution
to the elementary solution is a Gaussian wave
2
(x + ait)
(5.1) Tt B T T s ody)
' ta, 8L € %2 £
d
Py

The subcharacteristic line is x + ait =0 . We note that

0 L/apk is a polynomial of degreen - 1 in a =x/t, which
does not vanish in a neighbourhood of « = -a,-

We have seen how the initial terms of the power series
about the origin for the characteristic roots pk(y) determine

the position and nature of the subcharacteristics. Now the
expansions for large y lead in a similar fashion to asymptotic
estimates for large values of |a|, thatis, when t is small
compared with |x|. Such estimates indicate physically the
onset at a field point of disturbances generated elsewhere.
Though we shall not include details there is one circumstance
of particular interest to which we shall refer.
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The operator L 1is hyperbolic provided that the highest
x-derivative is also of order n. It is regularly hyperbolic
provided that no multiple roots appear for y # 0 ; this implies
that for large vy

k k 1
pk(y) = a1y + ao + O(Y) .

1 k .
The corresponding characteristic lines a = - a1 determine the

region of influence of the disturbance—that is, the region
outside of which it is zero identically. This can be shown for
our integrals by completing the contour with a semicircle to
the right and establishing that the contribution is zero for

k . .
t < ]xl/ 'al ] Thus the outermost characteristic on each side

is the boundary of the region of disturbance.

6. Examples of elementary solutions and their asymptotic

estimates.

Example 1. The Klein-Gordon equation

(6.1) u., = u 4+ czu
tt XX
has the normal curve
2 2 2
(6.2) P =y +tc ,

a rectangular hyperbola, with two branches both totally real.
(See figure 1.) Let us take as branch 1

2 2
(6. 3) p1(y) = + y +c¢c ,
and as branch 2

2 2
(6. 4) ply) = -\ v +¢c

In the y =u + iv plane we set up a two-sheeted Riemann
surface, with branch points at y =1 ic, and assign branch 1
to the upper sheet, branch 2 to the lower sheet.
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FIGURE 1

The Normal Curve of the Klein-Gordon Equation
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The elementary solution is

. 2 2
c+ico et(ozy+ y +¢ )

1
(6. 5) Ktx) = 5= [ \/2 = dy
c-ieo 2\|y +c

ctio  t(a 2+ 2
1 Hay \/Y c )

- — a
2mi f \/2 Z Y
c-100 2\|ly +¢c

where the first integral is on the upper sheet of the Riemann
surface, the second integral on the lower sheet. In this

simple example the elementary solution can be expressed in
terms of a Bessel function. There are two cases to discuss.

Casel. a>1 or |x|>t
In this case we can prove u=0. Since, for |y| large
gi(y) ~ y(a 4+ 1) in right half plane

g1(y) ~ y(a - 1) in left half plane

(6.6)
g,(y) ™ yla-1) in right half plane

g,{y) ™ yla+1) inleft half plane

we can deform both integrals into left semicircles at infinity,
each of which gives zero. Since, for both integrals the branch
points are passed over in the deformation, these cancel, and
the elementary solution is zero. This exemplifies the fact

that the region of influence for a hyperbolic equation is bounded
by the characteristics.

Case II. a<1 or lx| <t
In this case the second integral gives zero, since it can

be deformed into a right semicircle at infinity, and the branch
points are not passed over in the deformation.
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The first integral gives [3, p.248]

Thus the elementary solution is

Io(ctv 1 - azz) H(t - x)
Io(c\/ tz - xZ) H(t - x)

Now using the result in [2] p. 86, #5

N -

(6.7) k(x, t)

1
N

we obtain

(6.8) k(t, x) = 1 H(t - x) .

2=
2 V2met (1 - 2 )4
This same result may be obtained using the asymptotic
procedure outlined in §4, the curve dual to the rectangular
hyperbola being a circle.

Example 2. The heat equation

(6.9) u = u -hu
t XX

has the normal curve

(6.10) p=y -h,
a parabola, with one branch, and totally real.

The elementary solution is given by

89

https://doi.org/10.4153/CMB-1963-011-7 Published online by Cambridge University Press


file:///T2ttx
https://doi.org/10.4153/CMB-1963-011-7

c+ico

: 2
(6. 11) Kt x) = Z:i f et(ay+y —h)dy

_ c-io0
5

%f
The c;symptotic formula for this integral turns out to be
exact. From [4], #710.0.; we find

(6.12) k(t, x) = —

Example 3. Stokes' equation. This equation, which
governs the propagation of sound waves in a viscous medium,-
is

(6.13) u =u +u ,
and it has the normal curve

2 2 2
(6.14) y -p +yp=20.

The normal curve has two branches both totally real. We
define branch 1 by

[ 2
(6.15) pi(y) —%[y- y +4 1],

and branch 2 by

2
(6.16) p,ly) = %[Y +\V vy +4] .

(See figure 2.)

In the y =u + iv plane there are branch points at
=% 2i. We shall set up a two-sheeted Riemann surface,
one sheet for each of the two branches.

The expression for the elementary solution is
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P=-~1
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The Normal Curve of Stokes! Equation
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ctio tgy(y) | ctio tealy)
(6.17)  k(t,x) ==— [ dy + = —dy ,
2wi L oo Q1(Y), 2wi Qz(y)
where g1(y) ay + P,l(Y)
g,ly) = ay + p,(y)
2
Qi(y) =y Ay +4
2

QZ(Y)V = -y Y

The first integral lies on the upper sheet and the second
integral on the lower.

The saddle point y is the value of y for which
o

g'ly) = a+p'(y) =0

and we see that branch 1 has a real saddle point for all «.

As the slope of branch 1 at the origin is 1, the saddle point of
branch 1 lies to the right ot the origin if o < 1, and to the left
of the origin if o> 1. We deform the first integral into a
steepest line through the saddle point, that is, into the curve

lmgi(y) = £mg1(yo) =0,

since gi(yo) is real.

For [yl large, we have

gi(Y) ~oay -1 in right half plane
2
gi(y) ~ ay+y + 1 in left half plane
(6.18)
g,ly) ™ ey -1 in left half plane
2
gz(y) ~ ay+y + 1 in right half plane.
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Thus the family of steepest lines {m gi(y) =k, ~0o<k<oo,

far out from the origin on the right are the straight lines

R |

and far out from the origin on the left are the rectangular
hyperbolas

k
a+ 2u’

The steepest line through the saddle point, corresponding
to k=0, is shown in figure 3, for a typical value of a. Itis
seen that for all values of @, when we deform the original
path of integration into the path fm gi(y) =0, we pass over

the branch points. We can now obtain an asymptotic estimate
of the first integral using 4. 3.

The second integral is more easily disposed of. From
(6.18) we see that the second integral can be deformed into the
left semicircle at infinity which will give zero. Since the
branch points are passed over, these contribute, but cancel
with the branch point contribution of the first integral. In
other words the deformed contours are consistent relative
to the branch points. The poles at the origin for each branch
make no contribution. This is easily shown by combining the
two integrals into a single integral, and it is found that the
resulting integrand has no pole at the origin.

" Using 4. 3 we find

) > tg1(Yo)
~ Ll =
(6.19) k(t, x) 2 tglil(yo) Q (YO)

1

To find the saddle point and the exponent we have to solve the
cubic

o

3 2
(6.20) vV ot3y +4y+2(a-%)=0.
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VY plane

o | saddle point

FIGURE 3

Stokes' Equation. The Steepest Line
Through the Saddle Point for a
Typical Value of a.
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By Cardan's method, we obtain

1 1
3 3
e, (_g,,ié) ] 3+~£4.)
Yo T 7% 2t 2 2" T2
where
2
A a 31a 112 4
X 27 " a2’
_ o 4 2
108 3 a '
and
: 2 2
3ay + 2y (a -1)
(y (@) = ———2
gyo 2(y + a)
o
In addition
3
y_ + 6y
" _ o )
gy ) =1 -—"S>"3/2
170
(y0+4)

Even this asymptotic formula is so complicated as to
require further approximation for special values of o.

Case'I: a ™ 0. .In this case

Na ~

Qv

1/3
2
Yo.N (;)
2/3

' ~ 13
g,y () ~ -1+3()
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a4/3
gy ~ G

5 2/3
Q,ly) ~ &)
and we find

2/3

(6.21) k(t,x) = exp [- t+ 3t (;—t) 1.

2 N3t

Case II: a ™~ ». Here

2
e %
Na ™ 35
3
Y
E 108

<
+
Q
2
N R

gi(Yo(a)) ~ -t 1

96
" ~ 218
gy(v) 2
a
012
N
Qi(yo). "
and we find
1 x2
(6.22) k(t,x) = '2—'—'\1_3—?—1? exp [t - vy
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Case III: o™~ 1. We find

3k - 4k

— (- 12 < - 579(a - 1)°

(6.23) g(yo(a)) ~

13704 - 363V21 _

13254 -909

where k =

Using the information from the three cases we can sketch
g(yo(a)) (figure 4).

Finally, we exhibit the solution of the initial value
problem in its full generality, as an example of the general
formula 2. 11 of section 2. Let

u -u -u = f(x,t) t>0
tt XX xxt

and let

u(0, x) = co(x) , ut(O,x) = c1(x).

Then

t o
[ [ Kt-T, x- £)(r,¢£)dTdg

u(t, x) =

O =00
%) 5 a2. '

t o e (8) (a—t-a—gz)k(t,x-g)dg
- 00
0

+ [ c, (€) K(t, x-£)dE .
- 00
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8(Vola)
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Example 4. The hydromagnetic boundary layer equation.
This equation is

2 4 2
(6.24) u -2a u +(a -¢ )u - czu =0
tt txx XXXX XX
and it has the normal curve
2 2 2 4 2 4 2 2
(6.25) p -2apy +t(a -¢ )y -cy =0

This consists of two approximately parabolic branches,
both totally real, crossing at the origin (figure 5).

We define branch 1 by

N~

2 2 2
(6.26) p,(v) =y [ay+(e vy + CZ) ]

and branch 2 by

1
2

2 22 2
(6.27) p,(y) ylay-(ey +c)].

1]

c
In the y-plane there are branch points at y =t i=, and we
€

set up a two-sheeted Riemann surface, one sheet for each of
the two branches. The elementary solution is given by (6.17),
where, in this case

gi(y) ay + P1(Y)

gz(y) = ay + PZ(Y)

2 2
2(p1-ay)

Qi(y)

2 2
_ay)

2
Q,(y) (p,
Since the slope of branch 2 at the origin is -c, the saddle point
for branch 2 lies to the right of the origin for 0 < < c, and
to the left of the origin for ¢ < @ < @ . The saddle point for

branch 1 lies to the left of the origin for all «.
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FIGURE 5

The Normal Curve for the Hydromagnetic Boundary Layer Equation
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We deform the first integral into the path Im gi(y) =0,
and the second integral into the path Im gz(y) =0 . These

- steepest paths both lie to the left of the branch points for all «
somewhat as in figure 3. Thus there is cancellation of the
branch point contributions. Just as in example 3, the pole

at the origin does not contribute. An examination of figure 5
shows that the exponent for branch 1, for o> 0, is greater

in magnitude than the exponent for branch 2, and they are both
negative. Thus the branch 2 integral in the elementary solution
will dominate the branch 1 integral, which may therefore be
neglected. The behaviour of both exponents as functions of «
is illustrated in figure 6. Since the explicit calculation of this
dual curve is complicated, we shall consider only approximations.

Case I:a ™~ o

If « is large then y is large and we find,
o

2
g,ly) ™ oay+ (a2 - € )y2 -g—s— ,
and
Yo T 20‘
2(a - ¢€)
Hence
~ ozz c2
g,y (@) -—;;2_-: ey
g,"ly ) ~ 2a’-¢)
~ saz CZ
R CUE R
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7 g, (Y.en) <. (V)
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FIGURE 6

The Dual Curve for the Hydromagnetic Boundary Layer Equation
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and

N w
| w

2 2 2 2
t(a -¢) ct x

(6.28) k(x,t) = - >
N7 ox

4t(a2 -¢c)

Case II: a ™ c. It may be seen from figure 5 that if o ™ c,
then v, ~ 0. Thus

L 2
pz(y) avy-cy

2
gz(y) Y(a-c)ytay

~ o - C
Yo b 2a2

(a-c)®

(6.29) gz(yo(a)) ~o- >
4a

Figure 6 is obtained from the information in these two cases.
By an easy calculation it is found that the double point of this
curve is

below the origin. This gives the time rate of attenuation at
the source point.
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