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THE PRIMITIVE IDEAL SPACE OF 
A C*-ALGEBRA 

JOHN DAUNS 

Introduction. The commutative Gelfand-Naimark Theorem says that any 
commutative C*-algebra A is isomorphic to the ring C0(M, C) of all continuous 
complex-valued functions tending to zero outside of compact sets of a locally 
compact Hausdorff space M. A very important part of this theorem is an 
intrinsic and also a complete characterization of M as exactly the primitive 
ideal space of A in the hull-kernel (or weak-star) topology. In the non-
commutative case, A = T0(M, E)—the ring of sections tending to zero out
side of compact subsets of a locally compact Hausdorff space M with values 
in the stalks or fibers E. Furthermore, this representation reduces to E = M X 
C and T0(M, M X C) ~ C0(M, C) if A is commutative (see [1]). However, 
in the non-commutative case it has not been possible to determine the topology 
of M precisely. Here, a partial answer is given to this very troublesome flaw 
in the general Gelfand-Naimark Theorem. 

Consider a C*-algebra A and its primitive ideal space B in the hull-kernel 
topology. Any topological space B has a complete regularization <j>:B —> M, 
where M is a completely regular topological space with the universal property 
that any continuous map of B into a completely regular topological space 
factors uniquely through </>. The points m G M can be identified with ideals of 
A by 

m = H \b G B\<f>(b) = m). 

Here the main interest will be in the case when A does not contain an identity, 
in which case in general neither B nor M need be compact. If J f is any family 
of compact subsets of M that is closed under finite unions and with U J^ = M, 
then a Hausdorff one point compactification of M is obtained by taking 
{M\K\K G J ^ } as a neighborhood basis of the point of infinity. The finest 
one point compactification of M is obtained by taking j f as all compact sub
sets of M. However, let 

J f = {{m e M| | | a + w | l è X}|a G A;\ > 0}. 

Then by the non-commutative Gelfand-Naimark Theorem (see [4, p. 119, 
8.13]), there is a fiber-bundle or sheaf-like structure 

i r : £ s U ( - | » G M} -> M m ' } 

â:M-+Era(m) = a + m G ir-l{m) a G A, M G M. 
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Let T0(M, E) denote all continuous cross sections a\M~^E (with w o a = 
identity) vanishing at infinity on this particular one point compactification of 
M given by the above Jf'. The non-commutative Gelfand-Naimark theorem 
(see [1, p. 119, 8.13]) asserts that Â = T0(M, E). The objective of this note 
is to show that the J^-compactification is the finest one, provided each primi
tive ideal of A does not contain the center of A. The general case still remains 
an open question. 

1. Spaces of ideals. Some of the facts from [5] and [6] are used without 
proof. It will be convenient to take equivalent, but slightly different definitions 
than were used previously in [5] and [6] for some of the basic invariants 
associated with a C*-algebra. 

1.1 Notation. For any C*-algebra A whatever with or without an identity, 
consider its primitive ideal space Prim A == B, its centroid R, and the maximal 
ideal space F of the centroid (see [5] and [6]). There is a map F:B —> F, 
F(b) = \r G R\rA C b}. For each p G F, define an ideal m(p) of A by 

m(p) = n{be B\F(b) =p} = n F-1(\P))-

Let M be the set of ideals M = {m(p)\p G F(B)}. Now define a map 
4>'-B —> M by <t>{b) = m(F(b)). (This is the complete regularization map used 
in the introduction.) (For various properties of R, F, F, and M, see [6].) Let 
Z = center A. If 1 £ A, then R — Z and the map 0 simply becomes <j>(b) = 
Pl{^ G ^ | g P \ Z = b C\ Z}. There is a one-to-one correspondence JP(-S) —> ikT 
given by p-^m(p). Consequently, let us simply transfer the topology from 
F(B) to M by means of this identification. 

It will be convenient to view A as an ideal and R as a subalgebra of M (A), 
the multiplier (or double centralizer) of A (see [6]). Then A Q R + A C 
M (A). (In a C*-algebra such as M (A), the sum of a closed ideal and a closed 
subalgebra can be shown to be closed [10, p. 18, 1.8.3]). Let Ax = R + A. 
The above objects B, M, <t>, and F are defined for any C*-algebra whatever 
with or without identity. For the C*-algebra Ai they will be denoted by 
Bi, Mi, 0i, and Fi. Since center A\ = R, the centroid of A\ is also R (so that 
Rx = R9 Y1 = F). Let F1:B1 -> F. Since 1 G 4 i , Fi(5i) = F. 

1.2. Since M is indexed by the subset F(B) C F and Ifi by all of F, there is 
a natural injection defined by 

i:M-+Mi,i(in(p)) = mx(p) p G F(B) 

where mi(p) = Pi \bi G 2?i|ôi H i? = p). Since the topologies on M and Mi 
were transferred from F{B) C Fi(Bi), the map i is a homeomorphism onto 
its image. 

1.3. For b G B, define 5 = {a G ̂ 4i|a4 C b] and set JB = {b\b G -S}. Then 
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it can be shown directly or it follows from [6] t ha t b = {a G 4̂i|<x<4 + Aa Ç b} 
and tha t B = {/ G Bx|^4 g / } . Now define a function 

j:B->Buj(b) =b b G B. 

T h e symbol " <l" will denote ideals. Since A <\ A uj is a homeomorphism of 5 
onto the open subset B of ^ i . Fur thermore , b C\ A = b. 

In the next paragraph some of the relations between the objects <t>, F, M, B 
defined for A and <£i, F\, Mi, Bx and A\ are explained. 

1.4. Since center Ax = R, for any / G Bly Fi{J) = J C\ R. In part icular , 
for b G 5 and 5 = j ( 6 ) , b C\ R = Fx{b). Bu t by definition of 5 and F(6) , 
5 n i ? = f rG i ? M C 6} = F (6). T h u s F i j = F. I t follows from the defini
tion of mi(p) t ha t nti(p) 2 ^ and t ha t mx{p) C\ R = p. 

1.5. Some facts about the hull-kernel topology, the primitive ideals, and the 
norm of an arbi t rary C*-algebra A (with or wi thout an ident i ty) have to be 
recalled. 

(a) For b G B, and a + b G A/by \\a + &|| is the quot ient norm ||a + b\\ = 
inf \\\a + c|| \c G b}. T h e sets 

{5 G 5 | | | a + b\\> \\ 0 < X, a G 4 

form a basis for the hull-kernel open sets [11, p . 257, 4.9.15]. 
(b) Each subset of the form {b ^ B\ \\a + b\\ ^ \} is compact [11, p . 258, 

4.9.19]. (All these lat ter sets are also closed if and only if B is Hausdorff [11, 
p . 258, 4.9.19].) 

(c) For any closed subset A C B and any a G A, sup {|\a + b\\ \b G A} exists 
[11, p . 256, Theorem 4.9.14]. If m <\ A is any closed ideal, then Pr im A/m = 
{b/m\b G A}, where A C B is the closed set A = {b G B\b 3 m), i.e., the hull 
of m. For any C*-algebra Â, and any à G Â, 

\\â\\ = sup{\\d + J\\ \J G Prim Â}. 

Take Â = A/m and â = a + m. T h e last two facts imply t h a t | |a + m\\ = 
sup {||a + 6|| \m ç 6 G ^ } . 

(d) In (c) above, actually there exists an ideal q G B with | |a | | = \\a + q\\. 
Similarly, for an ideal m C A} \\a + m\\ = \\a + q\\ for some m Ç q G 23. 
Both of these assertions follow from [11, p . 256, 4.9.14]. 

T h e next proposition is s ta ted in slightly greater generali ty than actually 
later used in order to emphasize t h a t it involves no topological considerations. 
I t also should be noted tha t any closed ideal in a C*-algebra is the intersection 
of all the primitive ideals containing it; thus in later applications m = O cf>~l(m) 
below. 

1.6. P R O P O S I T I O N . Suppose that A is any C*-algebra (with or wi thou t ident i ty ) , 
that B = Pr im A, that M is any set of closed ideals of A, and that <j>\B -^ M is 
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any surjective function whatever subject only to the restriction that 

<t>(b) = m <^m Ç b b G B,m G M. 

Then for each real X > 0 and a G A, 

(i) 0({6 G 51 ||a + 6|| ^ X}) = \me M\ \\a + m\\ è X}; 
(ii) 0({6 G B | ||a + 6|| > X}) = \m G M\ \\a + m\\ > X}. 

Proof, (i) For 6 G 5 with | |a + 6|| ^ X, it follows from 0(6) Ç Ô t h a t 
\\a + 0(6) | | ^ \\a + 6|| ^ X. Hence 

<t>({b\ \\a + b\\ ^ X}) Ç {m| ||a + w| | è X}. 

Conversely, if \\a + ra|| ^ X for some m G M, then 1.5(d) shows tha t there 
exists a g G B with m Q q and ||a + g|| = ||a + m|| . Consequently, also 

\m\ | |a + m|| ^ X} C 0({6| ||a + 6|| ^ X}). 

(ii) If ||a + 6 | | > X , then 0(6) C 6 and ||a + * (6 ) | | ^ ||a + 6|| > X. 
Whereas if m G M with ||a + m\\ > X, then 1.5 (c) shows tha t \\a + m\\ ^ 
||a + 6|| > X for some m C 6 G f>. Thus 

0({6| ||a + 6|| > X)) = \m e M\ \\a + m\\ > X}. 

Although not needed for later purposes, the previous proof actually proves 
the next corollary. I t is stated with possible later generalizations to more 
general than C*-algebras in mind. 

1.7. COROLLARY. Assume that A is a Banach algebra with 4>\B —> M as in 1.6 
and assume that 1.5 (c) holds. Then 

(i) \m G M\ \\a + m\\ > X} ç 0({6 G B\ \\a + 6|| è X}) Q 
{m G M\ \\a + m\\ ^ X}; 

(ii) 0(16 G B\ \\a + b\\ > X}) = {m G M\ \\a + w| | > X}. 

1.8. Remark. If in the previous corollary \\a + m\\ = X, it may be impossible 
to find a 6 G ^ with 6 ^5 0(6) = m and ||« + 6|| = X. 

1.9. COROLLARY. In addition assume that 4>:B —» i f w the complete regulariza-
tion map of the primitive ideal space B of a C*-algebra and that B has the hull-
kernel topology while M has the topology defined in 1.2. Then \m\ \\a + m\\ ^ X} 
is a compact subset of M. If 0 is an open map then \m G M\a + m|| > X} is 
open in M. 

Proof. By 1.5 (b) and the fact tha t 0 is continuous, the set 

\m G M\ \\a + m\\ ^ X} 

is compact . (Note tha t it is closed because M is Hausdorff since F(B) is.) 
By 1.5 (a), {6| \\a + 6|| > Xj is open in B. Bu t then 1.6 (ii) shows t ha t so is 
\m\ \\a + m\\ > X} provided 0 is open. 
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2. The main theorem. For the remainder assume that A does not contain 
an identity. Then B is locally compact while P i is compact. 

2.1. LEMMA. In the notation of the previous section there is a commutative 
diagram 

J 

Proof. For b £ B, and the corresponding b = {a £ -4i|<x4 Q b}, we have 
b P P = {r £ R\rA Q b} = p, where F(b) = p. But by the definition of <j> 
and m (or 0i and mi) we have 

0i(5) = tm(p) = n {/ |/G Bujr\R = bC\R = p). 

Since, <j>(b) = m(p), i(m(p)) = m1(p)1 it follows that <f>\j(b) = i<j>(b). Thus 
0ij = i<l> a n d the diagram commutes. 

2.2. LEMMA. Le/ cewter A = Z. rfcew P i \ P = { i ? + i | ^ É F , Z Ç ^ ) . 

Proo/. If Z £ p, then £ + Z = P , and p + A = R + A. If Z C £, then 

P + ,4 P - = * = C 

Thus ^ + ^ G P i \ P if Z ç p. Conversely, since B = {J G PiM 2 ^ } , if 

7 G P i \ P , then A £ I C P + A. Thus J = P H 7 + 4 with (P + 4 ) / / = 
R/R P 7. Thus the latter is G and £ = P Pi 7 G F. Hence 7 = £ + A. 

The first three conclusions of the next proposition would immediately follow 
from the commutativity of the diagram in 2.1 in case </> was one-to-one. 

2.3. PROPOSITION. For an arbitrary C*-algebra, the following hold: 

(ii) For any I £ <j>rl{i(M))\B, there exists a b £ B with 0(7) = <f>(b). 
(iii) Furthermore, If^R = br^R£ F, and 
(iv) Z Ç J . 

Proof, (i) The commutativity of the diagram in 2.1, i.e., 20 = 4>ij, implies 
that0r1(*W)) 2 5. 

(ii) By 2.2, 7 = p + 4 for some p £ F with Z ÇZ p. Since 
7 G 0 r 1 ( i ( M ) ) , 0i (7) = i(w) for some m £ M. Since il7 = 0(P) , there exists 
a 6 G P with w = 0(e). Thus 0i(7) = *0(fr) = 0ij(6) = 4>i(b). 
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(iii) For any I G Bu <h(J) P R = I P R G F. Set £ = ^ ( J ) Pi R. Thus 
/> = ^ ( 5 ) H i ? = bC\R = F(b). 

(iv) Suppose Z (£ b. Then s G Z\& implies that zA ÇË b and hence z Q b. 
Thus Z ^b C\ R = p, a. contradiction. Thus Z Q b. 

Some additional information about >̂, b, and / is contained in the next 
corollary. 

2.4. COROLLARY. Under the assumptions and with the notation of the previous 
proposition for p = I P R = b P R as in (iii), the following hold 

(v) b is non-modular => b = b + >̂; 
(vi) 1 = e + b G A/b for some e G ̂ 4 => 5 = R(l — e) + b; 
(vii) I = A + p; b C / . 

Proof, (v) It will be shown that 5 = & + p. Suppose r — c (z b = 
{a G A^aA C 5} with r £ R, c £ A. Then for x, y G 4̂ 

rx;y = xr;y = cxy = xc;y modulo (6). 

Thus (ex — xc)A Ç fr. But & = {a G -4|a.4 C è}. Hence ex — xc £ b for any 
x G A. Thus c + 6 G center ^4/6. At this point our additional hypothesis that 
b is non-modular has to be invoked. Thus center A/b = 0 and c G b. But then 
0 - c)A C & if and only if r^ C 6, or r G F(6) = p. Thus 5 = 6 + p C 
4̂ + p = I, and conclusion (v) follows. 

(vi) Clearly, [R(l - e) + b]A C b, hence 

i?(l - e) + b Ç {a G ̂ i M C 6} = 5. 

Conversely, if r — c G 5, then r — c = r (1 — e) + (re — ce) + (ce — c), 
where the last two terms are in b. Thus b = R(l — e) + b. 

(vii) By 2.2, I = A + p. By (v) and (vi), b C / . Alternatively, since 
J C / = K i i M i C / } , also b CI. 

2.5. THEOREM. Consider a C*-algebra A with center Z, primitive ideal space B 
in the hull-kernel topology, and <f>'.B —> M its complete regularization. Assume 
that Z £ b for every primitive ideal b of A. Then an arbitrary compact subset 
K C M is contained in a compact subset of M of the form 

K C \m G M\ \\a + m\\ ^ X} 

for some positive real X > 0. 

Proof. Since i is continuous (in fact, a homeomorphism) and K compact, 
also i(K) is compact in Mi. Since Mi is Hausdorff, i(K) is closed. Since <t>\ 
is continuous, <j>i-l(i(K)) is also closed. But Bi is compact and hence (j>i~x(i(K)) 
is compact. As a consequence of 2.3 (iv) and the assumption that Z £ b for 
all b G B, it follows that <t>rl(i(K)) C 5 . However, for any b £ B, A Çtb 
because 5 H i = Z>. Let j * be the corestriction j*'.B —> B oî j to its image B. 
Since j * is a homeomorphism, j*~l(B P 0i_1(^'(^))) C 5 is compact. If #i* is 
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the restriction of fatoB, then <t>*-l(i(K)) = B C\ <}>*-l(i(K)) and the following 
diagram commutes: 

Consequently, ^(K) = j*-l<j)i*-l(i(K)) is a compact subset of B. By 1.5 (a), 
there is a p > 0 and a finite subset ^ C A such that 

<t>-l(K) ç U | H B\ \\c + b\\ > p, c e J H -

Set a = Y<{c*c\c G^H- In any C*-algebra A, if 0 < x < y ê A, then also 
0 < ||*|| < |H | . Thus ||(c* + b)(c + b)\\ = ||c*c + 6|| ^ ||a + i | | . Thus 
if ||c + 6|| < p, then 

P2 ^ lk + ô||2 = lk*c + 6|| ^ ||a + 6|| 
and 0 - U ^ ) ^ \b £ B\ \\a + i | | ^ X} with X = p2. For \\a + b\\ ^ X, set 
m = ct>(b). Then b 3 m and ||a + m|| ^ ||a + 6||. Thus 

X = cf>($-l(K)) £ l*(6)| Ik + b\\ è X} 
CI {m| ||a + ra|| ^ X}. 

The next result is stated only for the sake of completeness. 

2.6. COROLLARY. If A is any C*-algebra with 4>:B —> Man open map, then any 
compact subset K C M is contained in one of the form 

K C {m £ M\ \\a + m\\ ^ X} 
for some real X > 0. 

Proof. Since <f> is open, by 1.5(a), sets of the form \m\ \\c + m\\ > p} = 
<t>\b\ \\c + 6|| > p} with varying c £ A and fixed real p > 0 provide an open 
cover of K in M. The rest of the proof is as before. 

The next proposition isolates the obstruction to proving the main Theorem 
2.5 in general. 

2.7. PROPOSITION. Consider an arbitrary C*-algebra A with centroid R, and 
4>:B —> M as previously. Any compact subset K C M is of the form 

K C {m G M\ \\a + m\\ ^ X} X > 0 

provided Bi = Prim (R + A) D B (see 1.3) satisfy the following condition: 

for all I £ ^ i \ 5 awd all r £ R with \\r + 7|| ^ X, //zere exis/s 

û f i such that for all b Ç B, \\r + b\\ ^ \\a + 5||. 
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Proof. Throughout, let X > 0 be any fixed real number. For a Ç Ax, let 
@(a, X) Q Bx be the open set Û (a, X) = {J Ç Bx\ \\a + 7|| > X}. For a Ç A 
and b 6 B it follows from b = A C\b that 4 / 6 ^ (4 + ï ) / ï C ^ / ï and 
hence that ||a + b\\ = \\a + b\\. Since A £ b for all b £ B, 4>rl{i(K)) C\ B is 
covered by open sets of the form © (a, X) for varying a 6 A. For / £ 0 i - 1 (i (M) )\B, 
by 2.3, / = <t>i(b) = A + p with b £ B, IDb and p = I C\ R = b C^ R £ Y. 
Thus 0i_1(i(-A^))\-S is covered by sets of the form û(r; X) for various r Ç R. 
Thus since it follows from the proof of Theorem 2.5 that <t>\~l(i(K)) C Bi is 
compact, there are finite subsets J S C -R, ^"2 C 4̂ such that 

<t>i~l(i(K)) Ç U {^(r,X)|r G#"i} U U {û(a,\)\a £ J S } . 

For each r £ ^~i , let a = a(r) be the element given by the hypothesis. Then for 
any I £ û(r,\), there exists a b £ B with b Q I, with </>i(5) = 0i(7), and 
$(7?) = m £ K. Furthermore, 

| | a ( r ) + w | | ^ | | a ( r )+f t | | = ||a(r) + 5|| 

^ ||a(r) + J|| ^ ||r + J|| > X. 

On the other hand, any element I 6 B (~\ <j>c^{i{K)) is of the form I = q 
with q € B. Hence if q Ç <^(a, X), then 

lk + *(g)|| ^ lk + <zll = ||a + g|| > x. 
Consequently 

X C [m G Af| ||a + m\\ ^ X, a G J S or 

a = a(r) with r Ç ^~ i} , 

and the rest of the proof is as before. 
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