PSEUDO-RINGS OF INFINITE MATRICES

by K. JUMP
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1. Introduction

Patterson (4) introduced the concept of a pseudo-ring and considered the
pseudo-ring of infinite matrices over a ring. In this paper we shall generalize
and improve the work of Patterson, using certain additions to the general theory
of pseudo-rings which have recently been introduced (1). We shall follow the
conventions and notations used in (1) and (4).

We shall consider a more general type of pseudo-ring of infinite matrices
over a pseudo-ring; we define such a pseudo-ring as follows.

Let © be an infinite set of cardinality ¢, let % = (4*, 4) be a pseudo-ring
and let a and b be cardinal numbers such that b =2 a = NX,. For any subset
&' of S, we denote by x(&’) the cardinality of &'. Let M(A) be the set of
infinite matrices of type S over 4; formally, M(A4) is the set of mappings of
©x G into 4. For each I' € M(A) and each s € S, define

ST, s) = {te G: (s, ) # 0};
let S(IN) = (J &(T,s). Let M*(4*) be the set of row-finite matrices of type
seS

S over A*; formally,
M*(A4*) = {T'* € M(4*): x(S(*, s))<N, for all s e S}.

Define M(A4, b) = {I" e M(4): x(&())<b} and similarly define
M*(A*, o) = {IT'* € M*(4*): x(S(T*))<a}.

We note that if a>¢, then M*(4*, a) = M*(4*) and M(A4, b) = M(A); how-
ever, if a = N, then M*(4*, a) is the set of row-bounded infinite matrices of
type © over A*.

Under pointwise addition, M(A, b) is a group and M*(4*, a) is a sub-
group .of M(A,b). For each I'* € M*(4*, a) and each I" € M(A4, b) we define
I'*I' e M(4, b) by

(s, H)(T*T) = 2@ ((s, W)[*(u, HT) for all (s, £) € G x G.

Under this multiplication, (M*(4*, a), M(4, b)) is a pseudo-ring, which we
denote by (U, a, b).

We note that, if a>c and 4* = A4, then PM(Y, a, b) is just the pseudo-ring
IM(A4*) as studied by Patterson (4); it was shown that, if J* is the Jacobson
radical of the ring A*, then the Jacobson radical of IM(A*) is contained in
I *).
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We shall extend this result of Patterson to the more general pseudo-rings of
the form M(YA, a, b); indeed we shall improve slightly the result of Patterson.
We shall show that the Jacobson radical of M(Y, q, b) is contained in a normal
right ideal G(, a, b) of M(2, a,b). If R = (R*, R) is the Jacobson radical
of A, &(Y, a, b) is of the form (M*(R*, a), G) where G < M(R, b). We shall
show by an example that the latter containment may be strict; this example
also shows that the Jacobson radical of MM(4*) may be strictly contained in
WM *).

Finally, we shall discuss the existence of analogues for pseudo-rings of
certain results of Patterson (2, 3). We shall show that the Jacobson radical of
(A, No, b) is exactly G(U, N,, b); this is, of course, the analogue of (2),
Theorem 2. However, we shall show that there exist rings 4* with non-right-
vanishing Jacobson radical J*, such that the Jacobson radical of IM(A4A*) is
IM(J*); thus Theorem 5 of (2) has no strict analogue.

2. Preliminary Results

In this section we prove some results concerning the general theory of
pseudo-rings; these results will be used in the proofs of our main theorems.
The first of these is a result of ring theory, stated explicitly as a lemma.

Lemma 2.1. Let A* be a ring, B* an ideal of A*, and M* a right ideal of
B*, modular with respect to e* € B*. Let N* = {a* € A*: a*B* < M*}; then
N* is a right ideal of A*, modular with respect to e*, and M* = N*nB*, If, in
addition, M* is maximal in B*, then M* = N*nB* and N* is maximal in A*.

Proof. Clearly N* is an additive subgroup of 4*; also,
(N*A*)B* < N*B* ¢ M*
so that N*4* < N*, Thus N*is a right ideal of 4*. Now,
{(1—e*)A*)B* = (1—e*)B* = M*;

hence (1 —e*)A* = N*. Thus, N* is modular in 4* with respect to e*. Also,
since M*B* = M* M* < N¥*nB*,

We now suppose that M* is maximal in B*, Then, since N*nB* is a right
ideal of B*, either M* = N*\B* or B* = N*nB*. If B* = N*nB*, ¢* € N*
so that e*B* = M*; since (1 —e*)B* = M* it follows that M* = B*, which
contradicts the maximality of M*. Therefore M* = N*nB*. Finally we show
that N* is maximal in 4*. Clearly, since M* = N*nB* N* # A*. Suppose
that K* is a right ideal of A* such that N* < K*; then K*nB* is a right ideal
of B* such that K*nB* 2 M*. Thus K*nB* = M* or K*nB* = B* If
K*nB* = M*, K*B* < K*nB* = M* so that K* = N*. If K*nB* = B*,
e*e K*; but (1—e*)4A* = N* < K*, so that K* = 4*. Thus K* = N* or
K* = A*. The proof is now complete.
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Lemma 2.2. Let U = (A*, A) be a pseudo-ring, | = (N*, N) a maximal
modular normal right ideal of W, and B* a right ideal of the ring A* such that
N* D B*. Then for some e¢* € B*, R is modular with respect to e*.

Proof. Suppose that N is modular with respect to f* € 4¥. N* is a maximal
right ideal of A* and N*+ B*is a right ideal of 4* such that N* = N*+ B*, Thus
N*+B* = A*, so that there exist e* € B* and n* € N* satisfying n* +e* = f*.
It follows that (1—e*)4 = (1—f*)4+n*4 < N, as required.

Lemma 2.3. Let A = (A*, A) be a pseudo-ring, B = (B*, B) a normal ideal
of W, and N = (N*, N) a maximal modular normal right ideal of W such that
N* D B*, Then M = NNB is a maximal modular normal right ideal of B.

Proof. By Lemma 2.2, N is modular with respect to some e* € B*. Then
clearly I is a normal right ideal of B, modular with respect to e* € B*. Finally
we show that 9t is maximal in B; by (1), Theorem 2.5, it is sufficient to show
that M* is maximal in B*. Since N* D B* M* # B*. Suppose that K* is a
right ideal of B* such that K* = M*. Then K* 2 (1—e*)B*. Consider
L* = {a* e A*: a*B* < K*}; then, by Lemma 2.1, L* is a right ideal of A*
and K* € L*nB*. Now, since N*B* < N*nB* = M* < K*, N*c L* so
that L* = N* or L* = A*. If L* = N*, M* = N*nB* = L*nB* 2 K*
and hence K* = M*, 1If L* = A4* e¢* e L* so that ¢*B* = K*; since
K* o (1—e*)B*, K¥ = B*. Thus K* = M* or K* = B*. The proof is now
complete.

Lemma 2.4. Let N = (A4*, A) be a pseudo-ring, B = (B*, B) a normal ideal
of Usuchthat A = A*+ B, and M = (M*, M) a maximal quasi-accessible normal
right ideal of B. Let N* = {a* € A*; a*B* < M*} and N = N*+ M. Then
N = (N*, N) is a maximal quasi-accessible normal right ideal of W such that
DM = NNB.

Proof. By (1), Theorem 2.3(i), I is modular in B with respect to some
e* € B*. Then Lemma 2.1 shows that N* is a maximal right ideal of A4*,
modular with respect to e*, and M* = N*nB*. Now (l—e*)N* = N* so
that e*N* = N*nB* = M*; thus e*N*B < M*B < M. Since

' (1—e*)N*B c (1-e¥B = M,

it follows that N*B = M. Then N*4 = N*¥*A*+N*B < N*+ M = N, so that
N is a right ideal of A.
Since N* < A*, NnA* = N*+(MnA*) = N*+(MnB*) = N*+ M* = N*,
Since M € B, NnB = (N*nB)+ M = (N*nB*)+M = M*+M = M. Thus
N is normal in A, and NNB = M. Further,

(1—-e*)4d = (1—e®)A*+(1—e*)B= N*+M = N,
so that M is modular in A; thus, using Theorem 2.5 of (1), M is maximal in UA.
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Finally, M is quasi-accessible. Clearly N 2 N*+ N*4A+(1—e*)4. Now
N=N*+M =N*+ M*+ M*B+(1-¢*)B = N*+ N*A+(1—e*)A.

Therefore N = N*+N*4+(1—e*)4 so that N is quasi-accessible. Thus N

is a maximal quasi-accessible normal right ideal of U such that I = NNB,
as required.

3. The Main Theorems

We are now ready to prove our main results concerning the Jacobson radical
of a pseudo-ring of infinite matrices as defined in §1. We shall adopt the follow-
ing notation.

Let (Y, a, b) be a pseudo-ring of infinite matrices. Let U, be the extension
of A as in (1), Lemma 2.8; we recall that, as additive groups, 4 = A*@Z*
and A, = A®Z*, where Z* is the group of integers. Let

Ml(Al’ qa, b) = M(A’ b)+M*(AT’ a);
then, under matrix multiplication, (M*(A%, 0), M'(4,, a, b)) is a pseudo-ring,
which we denote by V' (U, a, b). We note that (Y, a, b) is a normal ideal
of M'(4,, a, b) which satisfies the condition of Lemma 2.4.

Let a, € A, and let (s,2) € ©x &; then we denote by [q,, s, ¢] the element
of M'(A,,a,b) such that (s, )[a,, s, ] = a, and (, v)[a,, s, t] = 0 for all
(u, v) # (s,¢). We note that if a e 4, [a, s, t] € M(4,b); if af € A%,

[a%, s, t] € M*(4%, a); and if a*e 4%, [a*, 5, t] € M*(4*, q).

Iet B = (B*, B) be any maximal quasi-accessible normal right ideal of %;
then B is modular with respect to some e* € A*. Let se€ ©. Then we define
H*(B*, a,5) = {T'* € M*(4*, a): (s, ) * e B* for all 1 € G}, and

H(B, b, s) = H*(B*, a, s)+ H*(B*, a, s)M(4, b)+(1—[e*, 5, s])M(4, b).
We note that H(B, b, s) is independent of the choice of e*; for, if f* is another
such element of 4*, then Lemma 2.2 of (1) shows that ¢*—f* € B* and hence
[e*, s, s1—[f*, s, 5] € H*(B*, a, s). Then (H*(B*, a, s), H(B, b, 5)) is a pseudo-
ring, which we denote by H(B, a, b, s).

Theorem 3.1. Let U = (4%, A) be a pseudo-ring and B = (B*, B) a maximal
quasi-accessible normal right ideal of U; let a and b be cardinals such that
b=a=Ng and let se S. Then H(B,a, b, s) is a maximal quasi-accessible
normal right ideal of (Y, a, b).

Proof. Clearly $(B,a,b,s) is a right ideal of (A, a,b). Suppose
I'* e H(B, b, s)nM*(A*, a); then, forallze &,
(s, )I'* € A*N\(B*+B*A+ (1 —e*)4) = A*nB = B*,

so that I'* € H*(B*, a,s). Thus H(B, a, b, s) is a quasi-accessible normal right
ideal of TN, a,b). It remains to show that $H(B, a, bs) is maximal in
P(YA, a, b); by Theorem 2.5 of (1), it is sufficient to show that H*(B*, q, s) is
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maximal in M*(4*, a). Suppose that N* is a right ideal of M*(4*, a) such that
H*(B*, a,s)cN*. For all te S, define C*(s, t) = {c* € A*: [c*, 5, 1] e N*}.
For any a* € 4*, and any c* € C*(s, t), [c*a*, s, t] = [c*, s, t][a*, t, t] € N*,
so that C*(s, t) is a right ideal of A*; clearly B* < C*(s,¢)forall te ©. Now,
there exists ['* € N* such that ['* ¢ H*(B* a,s); then, for some t, €S,
(s, t,)0* = d* ¢ B*. Since (1—[e*, s, s)[* € H*(B*, a,5)=N*,[e*,s,s][* € N*;
also, since (1—e*)d* € B*, e*d* ¢ B*. Now, B* = {a* € A*: a*A* < B*} by
Lemma 2.1; thus there exists a* € A* such that e*d*a* ¢ B*. Then
[e*d*a*, s, t,] = [e*, s, s]T*[a*, t,, t,] € N*M*(4*, a) = N*.

Thus e*d*a* € C*(s, t,) but e*d*a* ¢ B*; since B* is maximal, C*(s, t;) = A*.
Now Le*, s, s] = [(1 —e*)e*, s, s]+[e*%, s, 5]

=(1—[e* s, sP[eFs, s]+[e* s, 1;][e* 1, s]-
Since (1—[e*, s, sP[e*, s, s] € H*(B*, a, s)cN* and [e*, s, t,] € N*, it follows
that [e*, s, s] e N*. Then, for all I['* € M*(4*, a),
I'* = (1—[e*, s, sPIr* +[e*, s, s]T*
so that N* = M*(A4*, a). Therefore H*(B*, a, s) is maximal in M*(A4*, a).
Theorem 3.2. Let A = (A*, A) be a pseudo-ring and let a and b be cardinals

such that b = a = Ny; let & = (K*, K) be a maximal quasi-accessible normal
right ideal of (U, a, b) such that K* D M*(A*,N,). Then

22 () $(B, a,b, ),

seSo

where S, is a finite non-empty subset of S, and where, for all s€ S, B, is a
maximal quasi-accessible normal right ideal of U.

Proof. LetL* = {I'* e M*(4%, a): T*M*(4*, o)< K*}andletL = L*+K.
Then, by Lemma 2.4, = (L*, L) is a maximal quasi-accessible normal right
ideal of $M'(A,, a, b) such that & = LAWY, a, b). Let

C(s,t) = {ce A,: [c,s,t] € L} and let C*(s, t) = ATNC(s, 1).
Let (4, v) € Sx S and let 1* be the multiplicative identity in A}; then, under
matrix multiplication, [1*, u, v] is a right multiplier in M'(2,, a, b) in the sense
of (1), §4. Thus, for all c € C(s, t) and all ve S, we have
[e,s,v] =[c, s, t][1*, t,v] e L[1*,¢,v] = L
by (1), Theorem 4.2. It follows that C(s, t) and C*(s, t) are independent of ¢.
Also, for all c*e C*(s, 5) and all @, € 4, [c*, 5, s]e LAM*(A%, a) = L* so that
[c*ay, s, 5] = [c*, s, s][ay, s, s] € L*M'(Ay, a,b) = L;

therefore c*a, € C(s, s.) It follows that, for all se S, (C*(s, 1), C(s, t)) is a normal
right ideal of 2,, modular with respect to 1*, and independent of .

Now M*(4*, N,) is a right ideal of M*(A}, a); since K* D M*(4* N,),
clearly L* $ M*(A4*,N,). Thus, by Lemma 2.2, there exists I'f € M*(4*, N,)
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such that £ is modular with respect to I'§. Then x(S(I'g))<N,. Let I' be any
element of M’(A,, a, b) such that (u, v)I" = O for all u e S(I'}); then

F=(1-THrelL.

Let G, = {u e S: C*u,u) # A%};} clearly G, € S(I'§) so that k(Sp)<N,.
Also G, # . Suppose, to the contrary, S, = ¢F; then C*(u, u) = A% for all
ue S. Now any element I'* of M*(A¥, a) may be written I'* = I'f +T'%, where
G, OI¥F=0if se ST and (s, N3 =0 if s ¢ S(T'}). As above, I'f € L, while

It= Y Y [(s,0T%st]eL. Then
seG(Iy) teG(r*,s)

M*(A%, a) = LaM*(4%, a) = L*}

Next, if s € G4, C*(s, 5) is maximal in A*, For, suppose there exists a right
ideal N* of A} such that C*(s,s)cN*. There exists n* e N* such that
n* ¢ C*(s,s); then [n*,s, s]¢ L*. Now, L* is maximal in M*(4}, a); thus
M*(A%, a) = L*+[n*, s5,s]M*(4}, a). In particular,

[1* s,s] =Dt +[n*, s, s]0%
where ['* ¢ I* and '} € M*(4%, a). Now, since '} = [1*, s, s]—[n*, s, s]T%,
clearly (u, s)I'* = 0 for all u # 5. Now, ['™*[1*, 5} 5] e L* so that
(s, $)I'F € C*(s, ).
It follows that 1* = (s, s)[¥ + n*(s, s)I'% € C*(s, s) + N*AT = N*. Since1*e N*,
N* = A%; therefore C*(s, s) is maximal in A%.

Then, by (1), Theorem 2.5, (C*(s, 5), C(s, 5)) is a maximal modular normal
right ideal of %A, for every se G,. Also, if se G,, A* & C*(s, s). Suppose, to
the contrary, A* = C*(s, s); then it follows that

[1*, s, s]M*(4*, a) € L*nM*(4*, a) = K*.

Then [1%*s,s]e€ L* since L* = {I"*e M*(4}, a): T*M*(4*, a) < K*}; thus
1* € C*(s, s) so that C*(s, s) = A%. Since s € S, this is a contradiction.

By Lemma 2.2, there exists ¢* € A* such that (C*(s, 5), C(s, 5)) is modular
with respect to e¥; by (1), Lemma 2.2, 1*—e¥ € C*(s, 5). Let B = A*nC*(s, 5)
and let B, = B¥+ B¥A+(1 —e¥)A < AnC(s, s). By Lemma 2.3, (B¥, AnC(s, s))
is a maximal modular normal right ideal of 9. Then Theorem 2.6 of (1) shows
that B, = (B?, B,) is a maximal quasi-accessible normal right ideal of 2.

We are now ready toshow that R 2 () $(B,, a,b,s). Let

seSo
IT'e () H(B b, s).
seGo
We decompose I' as follows. Define I'y € M(4,b) by (w, v)I"; = (v, v)[ if
ug S(Iy); w,)[[ = 0if ue S(IF). Then

[, =(1-THT, e LAM(A4, b) = K.

Define I', € M(A4,b) by (v, 0)[, = (u,v)I’ if ue S(I'y) and u¢ Sy, and
u, ), = 0if u ¢ STy orif ue S,.
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Now, if u € G(I'§) and u ¢ S,, C*(u, u) = A} so that [1* u, u] € L*. Since
&(I'y) is finite,
r* = > [1* u,u] e L*,

ue6(r;), u ¢So,
and thus T, = "I, e L*M(4, b) = LnM(A4,b) = K.
For all se &,, define I'; € M(A, b) by (s, )T, = (s, ) for all te S, and
(u, I, =0ifu #s. Now (s, t)(C'—T,) =0 for all t € S so that
r_rs = (1 - [e:s S, s])(r_rs) € H(Bs’ b, S),
therefore
T,e H(B,, b, s) = H*(B}, a, s)+ H*(B}, a, s)M(4, b)+ (1 —[e, s, s]yM(4, b).
Thus

ks .
rs = I"fo, 5) + Zl l":',, s)l"(,, 3) +(1 - [es*, S, S])F(o’ s)

where, for r =0, 1,2, ..., k,, T, ;, € H*(BY, a,5) and T, ; € M(4, b).
For r=0,1,2, ..., k,, define I, , € H*(BY, a, s) by (s, )T, 5 = (5, DTG, ) for
all te G, and (u, )¢ ;) =0 if u#s. Similarly, define f‘(o,s) € M(A4,b) by
(5, O 0,5y = (5, Ol (0,5 for all t € &, and (u, t)f(o',) =0ifu #s. Then
ke
I, =1%o+ Zl B8 oo, 9+ —[ef, 5, Do, -
Now, forr =0, 1,2, ..., k,, (s, )¢, , € BY for all te G; thus
to= Y [0FE o s t]e LAM*(A4*, o) = K*,

rea(t,
(1—[8:, S, s])f(o,s) = [Il*_e:a S, s]F(O,s) € L*M(A, b) c K.

Therefore I'y € K*+K*M(A,b)+ K =K for all se &.
Now, ' =T;+T,+ Y T,eK. Therefore K2 (| H(B,b,s) so that
seSo seSo
K2 () 9(B,, a,b,s), as required.
se€Gp

Let € be the set of maximal quasi-accessible normal right ideals of .
Define G(, a,b) = ()} () 9(B, a, b, 5).

BeCs5eS
Let 3 be the set of maximal quasi-accessible normal right ideals & = (K*, K)

of M(Y, a, b) such that K* 2 M*(4*, N,). Define (U, a,b) = ﬂ ],
KeI

Then G(Y, a, b) and F(Y, a, b) are clearly normal right ideals of IM(Y, a, b).
The next theorem gives a characterisation of the Jacobson radical of M(, a, b)
in terms of these right ideals.

Theorem 3.3. Let U be a pseudo-ring and let a and b be cardinals such that
b = a =W, LetJ be the Jacobson radical of (N, a,b). Then

S = G(Y, a, )NF(Y, a, b).
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Proof. By Theorem 3.1, (¥, a, b) is an intersection of maximal quasi-
accessible normal right ideals of M(Y, a, b); by definition, F(NU, a, b), also, is
such an intersection. It follows that § = G(¥, a, B)nF(Y, a, b).

Conversely, let & = (K*, K) be a maximal quasi-accessible normal right
ideal of M(UA, a, b). Either Re Jor K ¢ 3. If K € J then clearly

] 2 FW, a,b) 2 G, a, )NF(Y, a, b).
If & ¢ 3 then, by Theorem 3.2, K2 () $(B,, a, b, 5), where S, is a finite

seGp

non-empty subset of &S and where, for all s € G, B, € € Therefore, if R ¢ J,
] 2 6(Y, a,b) 2 G(U a, DHNF(Y, q, b).

Then by (1), Theorem 2.7, J 2 G(U, a, ))nF(A, a, b). This completes the
proof.

Corollary 3.4. Let U be a pseuc'z’o-ring and let b be a cardinal such that
b = No. Then the Jacobson radical of YA, Ny, b) is G(A, Ny, b).

Proof. If & is a maximal quasi-accessible normal right ideal of M(A, N, b),
then K*  M*(A4*, N,). Thus I = ¢, so that F(U, Ny, b) = W(Y, N, b).

Thus, in general, the Jacobson radical of (Y, a, b) is contained in G(NA, a, b)
and, in particular, the Jacobson radical of IM(A, N,, b) is exactly G(, Ko, b).

It is an open question whether the Jacobson radical of (Y, a, b) is G(, a, b)
for cardinal numbers a >,.

In our next theorem we obtain a more useful characterisation of G(%, a, b).

Let B € € and let e* be any element of A* such that (1—e*)4 < B. Define
I'*(B) e M*(4*) by (s, s)(T*(B)) =e* for all se S and (s, )IT*B)) =0 if
s#t. By (1), Lemma 2.2, M*(B*, b)+ M*(B*)M(4, b)+ (1 —T*(B))M(4, b) is
independent of the choice of e* used to define I'*(B).

Theorem 3.5. Let U =(A* A) be a pseudo-ring with Jacobson radical
R =(R* R); let a and b be cardinals such that b = a = N,, and let

G(, a, b) = (G*, G).
Then G* = M*(R*, a) and

G= mﬂe (M*(B*, b) + M*(B*)M(4, b) +(1 - T*(B))M(4, b)).

Proof. Clearly, since &(, a, b) = ﬂ () (B, a,b, s), it follows that
€Cses

Be

G*= ), () H*B" a,9) = (\ M*B* ) = M*(R", a).

BeEseB Be
Let G' = () (M*(B*, b)+M*(B*)M(4, b)+(1-T*(B))M(4, b)). Suppose
Be €
TeG; let BeC€and let se S. Then

k
I =T§+ Y I, +(1-T*B)I,
r=1
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where T* e M¥(B*) for r=1,2, ..., k, T§ €e M*(B* b) and T, € M(4,b)
for r=0,1,2, ..,k Forr=0,1,2, ..,k define I'{ , € H*(B*, a, s) by
(5, 0TG5y =(s, O for all te G and (u, I ;) =0 if u # 5.

Let e* be the element of A* used to define I'*(B). Now,

1—[e* s, sPT*-TL ) =T*-T¢ ,forr=0,1,2,...,k;
(r,s) (r, s)
also,

(1—-[e*, s, sP([e*, 5, s]—-T*(B)) = [e*, 5, s]-T*(B).
Therefore

k
= r(t). ot r; . r(t. ol +(1— [e*, s, sD(To+([e*, 5, s1-T*(B)I,)

k
+(1-[e* s, s]) ((I“S—l"("i,, NES 21 (rr-T¢, lr))I",).
Hence
T e H*(B*, a, s)+ H*(B*, a, s)M(A, b)+(1—[e*, s, s])M(4, b) = H(B, b, 5)
for all B e € and all s € S; therefore I € G.
Conversely, suppose I' € G; let B = (B*, B) be any element of €. For all
se &, define T, € M(A, b) by (s, )Ty = (s, )I" for all te &, and (u, )", =0 if
u#s. NowI € H(B,b,s); also, if e* is the element of A* used to define I'*(B),

I'-T, = (1—[e* s, s)T~T,) e H(B, b, s).
Thus

T,e H(B, b, s) = H*(B*, a, s)+ H*(B*, a, )M(A4, b)+ (1 —[e*, s, s])M(A4, b).
Then

ks
L=T{%, o+ 21 I ol 9+ —[e* s, 5P, 5
-

where for r=0,1,2, ..., k, T € H*B*a,s) and T, ;€ M(4,b). For
r=1,2, .., k, we define I'¥ ,, € H¥B*, q, s) and T, , € M(4, b) by
(5 O o = (s, )8 forall te S, (, DIE ;= 0if u # 5,

(u, ), 5 = (u, DT, 5 if te &I), and (u, NF, ;, = 0 if 1 ¢ S(T).
Define £, ;) € H*(B*, a, s) and [, ,, € M(4, b) by
(s, D%, 5 = (5, Do,  if 1€ &), (u, NI, ;) =0if u % 5 or if 1 ¢ S(I),
(s, 0,5 = (5, D0, 5y if t € S, (u, Lo,y =0 if u 5 s or if ¢ ¢ S(I).
By definition of Ty, &(T,) € &(T') so that

ks

=1%o+ 21 B8 ol 9+ (1=[e* s, sDF o, -

r=

Define '3 € M*(B*) by (s, )T = (5, )%, ) for all (s, ) € Sx S. Then,
('3 = Qs S, ) € &)
so that ' e M* (B*, b).
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Define Ty € M(4) by (s, )y = (s, )f* o, for all (s,1) e ©x &. Then similarly,
() = &(I) so that 'y € M(4, b). Also
(s, DA =T*BNF,) = (5, (1 —[e*, 5, sDE o0, 57)

forall(s,2) e Sx G.
Next, we consider the set &’ of triples of the form (s, ¢, n), where se S, nis a
natural number such that 1 < n < k,, and re (I}, ,)). Since k, is finite for
a given s, and since S(I', ,,) is a finite subset of & for all s and all n such that
1 £ n £ kg, it follows that the cardinality of &’ is exactly ¢. Then there exists
a one to one mapping # from &' into S. We now define elements [* and
I* of M(4) by

(s, w)I* = (5, 00 o
if there exist e S and ne N such that (s,7,n)e & and u = 5(s, t, n);
(s, w)['* = 0 otherwise;

(u’ v)f' = (t, v)r(n, s)
if there exist se S, te S and n e N such that (s, #,n) e &' and u = n(s, t, n);
(u, v)I' = 0 otherwise.

We first remark that, because 7 is one to one, [* and " are well defined.
Now, for all (s, u) e Sx S, (s, u)[* € B*; also, for a fixed se &, there are
only a finite number of elements of &’ of the form (s, ¢, n) where te G and
neN, so that k(S([*, 5))<N, for all se S. Therefore [™* e M*(B*). If
v¢ STy, (t,0)f,, ,, =0forallte G,allse Sandallne Nsuchthat1 < n < k;
thus (u, v)[* = 0 for all u e & so that S(I') ¢ S(I). Thus ['e M(4, b). Then,
for all (5,) e &x S, (s, v)(T*) = Z((s, )[*(w, v)I"), the summation being
taken over all u of the form u = #(s, ¢, n) where (s, ¢, n) € ©'. Therefore

&A@ = 3 (T O8G0 O, o)

ks
= (S’ U) < ;l F(:, S)F(ﬂ, s))s

where " denotes summation over te S(['(;, ). It follows that, for all
‘ (5,0)eEx G,

ks

(S, v)F = (S, U)Fs = (S, U) <ff0, s)+ Zl le. s)r(n, s)+(1 _[e*: S, S])P(o.s)>

= (s, )[CE+ T+ -T*BH,),
and so

=034+ 4+ 1 -T*®B), e M*(B*, b)
+M*(B¥)M(A, b)+(1—-T*(B))M(4, b).

But B was chosen at random from €; thus '€ G’. Then
G=G = () (M*(B* b)+M*(B*)M(4, b)+(1-T*(B))M(4, b)).
Be €
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Thus if the maximal quasi-accessible normal right ideals of a pseudo-ring A
are known, then by using Theorem 3.5 we may determine the normal right
ideal G(¥, a, b) of M(Y, a, b).

It is clear from the result of Theorem 3.5 that G = ﬂe M(B, b) = M(R, b).

Be

We now give an example of a pseudo-ring such that this containment is strict;
this example is particularly interesting because the pseudo-ring is equivalent to
a ring, so that the conclusion applies equally well to the pseudo-rings of infinite
matrices over a ring defined by Patterson (4).

Example 1. Consider the pseudo-ring U = (4*, A*), where A* is the ring
defined as follows. Let E* and R* be additive groups of order 2, generated by
e* and r* respectively, Let A* = E*@R*, with multiplication defined by
e*e* = e*, e*r* = r¥ and r¥e* = r*r* = (.

It is not difficult to show that R* is the only maximal right ideal of A*;
R* is modular with respect to e*. Then R = (R*, R*) is the only maximal
quasi-accessible normal right ideal of . It follows that the Jacobson radical
of the ring A* is R*, and the Jacobson radical of U is R.

Now let a and b be cardinals such that b = a = N,. We note that, since
R*A* = 0, M*(R*)M(A*,b) = 0; also, we may use e* to define I'*(R), so
that (1-T*(R)M(4*,b) = 0. Then Theorem 3.5 shows that

G, a, b) = (M*(R*, a), M*(R*, b)).

Clearly if b>N,, M*(R*, b)c M(R*, b). Two cases are of special interest.
Choosing a = ¥,, we see from Corollary 3.4 that the Jacobson radical of
IM(A, No, b) is exactly (M*(R*, Ny), M*(R*, b)). If, however, we choose a>¢,
then the Jacobson radical of M(A*), as defined by Patterson (4), is contained in
(M*(R*), M*(R*)); further, since R* is right-vanishing, the results of Patterson
(2, 3) show that every element of M*(R*) is right quasi-regular. Thus, by
Theorem 5 of (4), the Jacobson radical of M(A4*) is exactly (M *(R*), M*(R*)).

Finally, suppose A* is a ring with Jacobson radical J*, and consider the
pseudo-ring M(4*). Then Theorem 7 of Patterson (4) shows that the Jacobson
radical of MM(4*) is contained in (T *).

Now Theorem 5 of Patterson (2) states that, if the Jacobson radical of
M*(A4*) is exactly M*(J*), then J* is right-vanishing. The following example
shows that there exist rings 4* such that J* is not right-vanishing and such that
the Jacobson radical of MM(A4*) is exactly TM(J*). Thus Theorem 5 of (2) has
no strict analogue for pseudo-rings.

Example 2. Let p be a prime integer, and let P be the p-adic completion of
the ring of integers; then P is a ring with Jacobson radical pP. Also, P is
complete with respect to the topology {x+p"P: x€ P,ne N}. Then M(P) is
complete with respect to the topology {['+M(p"P): I'e M(P),ne N}. We
first note that every element T'* of M*(pP) is right quasi-regular in (P). For
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all ne N, define I, = — Z (T'*y*; then {I',},.y is a Cauchy sequence with
k=

respect to the topology on M(P) so that {I',},.» has a limit I" € M(P). Thus
there exists an increasing sequence {k(n)},.y such that, for each ne N,
I'-T',e M(p"P) for all k = k,. Consider I'*4-I'—I"*I"; for each ne N, let
m(n) = max (n, k(m)). Then I'*+T,,,—T*T,, =(T*""*'eM(p"P) and
I'— T,y € M(p"P) so that

r* + r"" F*r = (F* + Fm(") - F*Fm(,,))-i-(r— rm(")) - r*(r—' rm(,,)) € M(p"P).
Thus T*+I'—T*T'e () M(p"P)=0, so that I'* is right quasi-regular. Apply-

neN
ing Theorem 5 of Patterson (4) and using the fact that the Jacobson radical of

P(P) is a right ideal of M(P), we see that the Jacobson radical of M(P) is
exactly R(pP); however pP is not right-vanishing.

The major portion of this work formed part of the author’s Ph.D. thesis,
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