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1. Introduction
Patterson (4) introduced the concept of a pseudo-ring and considered the

pseudo-ring of infinite matrices over a ring. In this paper we shall generalize
and improve the work of Patterson, using certain additions to the general theory
of pseudo-rings which have recently been introduced (1). We shall follow the
conventions and notations used in (1) and (4).

We shall consider a more general type of pseudo-ring of infinite matrices
over a pseudo-ring; we define such a pseudo-ring as follows.

Let S be an infinite set of cardinality c, let 31 = (A*, A) be a pseudo-ring
and let o and b be cardinal numbers such that b ^ a ^ Ko. For any subset
S' of S, we denote by K(S' ) the cardinality of <5'. Let M(A) be the set of
infinite matrices of type S over A; formally, M(A) is the set of mappings of
S x (5 into A. For each F e M(A) and each j e S , define

let <5(F) = (J S(F, s). Let M*(A*) be the set of row-finite matrices of type
scS

S over A*; formally,
M*(A*) = {F* e M(A*): K(S(F*, *))<«„ for all s e S}.

Define M(A, b) = {F e M(A): K(S(F))<b} and similarly define
M*(A*, a) = {F* eM*(A*): K(S(F*))<a}.

We note that if o>c, then M*(A*, a) = M*(A*) and M(A, b) = M(A); how-
ever, if a = No, then M*(A*, a) is the set of row-bounded infinite matrices of
type <5 over A*.

Under pointwise addition, M(A, b) is a group and M*(A*, a) is a sub-
group of M(A, b). For each F* e M*(A*, a) and each F e M(A, b) we define
F*F e M(A, b) by

(s, t)(r*F) = X ((s, «)r*(«, OF) for all (s, 0 e S x S.
ueS

Under this multiplication, (M*(A*, a), M(A, b)) is a pseudo-ring, which we
denote by 2R(9t, a, b).

We note that, if o>c and A* = A, then 2R(3I, a, b) is just the pseudo-ring
5DJO4*) as studied by Patterson (4); it was shown that, if J* is the Jacobson
radical of the ring A*, then the Jacobson radical of W(A*) is contained in
<m(J*).
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We shall extend this result of Patterson to the more general pseudo-rings of
the form 3R(% a, b); indeed we shall improve slightly the result of Patterson.
We shall show that the Jacobson radical of 9JI(2l, a, b) is contained in a normal
right ideal (5(21, o, b) of 501(21, a, b). If 5R = (R*, R) is the Jacobson radical
of % (5(91, a, b) is of the form (M*(R*, a), G) where G £ M(R, b). We shall
show by an example that the latter containment may be strict; this example
also shows that the Jacobson radical of 3R(A*) may be strictly contained in
m(J*).

Finally, we shall discuss the existence of analogues for pseudo-rings of
certain results of Patterson (2, 3). We shall show that the Jacobson radical of
2R(2l, No, b) is exactly (&(% Ko, b); this is, of course, the analogue of (2),
Theorem 2. However, we shall show that there exist rings A* with non-right-
vanishing Jacobson radical J*, such that the Jacobson radical of 9Ji(/4*) is
9K(/*); thus Theorem 5 of (2) has no strict analogue.

2. Preliminary Results
In this section we prove some results concerning the general theory of

pseudo-rings; these results will be used in the proofs of our main theorems.
The first of these is a result of ring theory, stated explicitly as a lemma.

Lemma 2.1. Let A* be a ring, B* an ideal of A*, and M* a right ideal of
B*, modular with respect to e* e B*. Let N* = {a* e A*: a*B* £ M*}; then
N* is a right ideal of A*, modular with respect to e*, and M* £ N*nB*. If in
addition, M* is maximal in B*, then M* = N*nB* and N* is maximal in A*.

Proof. Clearly N* is an additive subgroup of A*; also,
(N*A*)B* £ N*B* £ M*

so that N*A* £ N*. Thus N* is a right ideal of A*. Now,
((l-e*>4*)5* £ (l-e*)B* £ M*;

hence (1 — e*)A* £ N*. Thus, iV* is modular in A* with respect to <?*. Also,
since M*B* £ M*, M* £ N*nB*.

We now suppose that M* is maximal in B*. Then, since N*nB* is a right
ideal of B*, either M* = N*nB* or B* = N*nB*. If B* = N*nB*, e* e N*
so that e*B* £ M*; since (1 -e*)B* £ M* it follows that M* = B*, which
contradicts the maximality of M*. Therefore M* = N*nB*. Finally we show
that N* is maximal in A*. Clearly, since M* = N*nB*, N* # A*. Suppose
that K* is a right ideal of A* such that N* £ K*; then K*nB* is a right ideal
of B* such that K*nB* 2 M*. Thus K*nB* = M* or K*nB* = B*. If
K*nB* = M*, K*B* £ K*r>B* = M* so that K* = N*. If K*nB* = B*,
e*eK*; but (l-e*)A* £ TV* £ K*, so that K* = A*. Thus K* = N* or
K* — A*. The proof is now complete.
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Lemma 2.2. Let 91 = {A*, A) be a pseudo-ring, 9i = (N*, N) a maximal
modular normal right ideal of 91, and B* a right ideal of the ring A* such that
N* $ B*. Then for some e* e B*, 9t is modular with respect to e*.

Proof. Suppose that 91 is modular with respect to /* e A*. N* is a maximal
right ideal of A* and N*+B* is a right ideal of A* such that N* <=N*+B*. Thus
N*+B* = A*, so that there exist e* eB* and n* eN* satisfying n*+e* = / * .
It follows that (1 -e*)A £ (1 -f*)A+n*A £ N, as required.

Lemma 2.3. Let 91 = {A*, A) be a pseudo-ring, 93 = (B*, B) a normal ideal
of 91, and 9t = (N*, N) a maximal modular normal right ideal of 91 such that
N* $ B*. Then 9Jt = 9tn93 is a maximal modular normal right ideal of$>.

Proof. By Lemma 2.2, 91 is modular with respect to some e* e B*. Then
clearly 9Jt is a normal right ideal of 93, modular with respect to e* e B*. Finally
we show that 9JI is maximal in 93; by (1), Theorem 2.5, it is sufficient to show
that M* is maximal in B*. Since N* $ B*, M* # B*. Suppose that K* is a
right ideal of B* such that K* 2 M*. Then K* 2 (l-e*)B*. Consider
L* = {a* e A*: a*B* £ K*}; then, by Lemma 2.1, L* is a right ideal of A*
and K* s L*nB*. Now, since #*5* £ N*nB* = M* £ #*, iV* £ L* so
that L* = N* or Z* = A*. If Z* = #*, M* = N*nB* = L*n£* 2 K*
and hence AT* = M*. If L* = ^*, e* e L* so that e*B* £ #*; since
#* 2 (1 -e*)B*, K* = B*. Thus K* = M* or K* = 5*. The proof is now
complete.

Lemma 2.4. Let 91 = (/4*, A) be a pseudo-ring, 93 = (B*, B) a normal ideal
of%suchthatA ~ A*+B,andyR = (M*, M) a maximal quasi-accessible normal
right ideal of 93. Let N* = {a* e A*; a*B* £ M*} and N = N* + M. Then
91 = (N*, N) is a maximal quasi-accessible normal right ideal of 91 such that
9J1 = 5Rn93.

Proof. By (1), Theorem 2.3(i), 9Ji is modular in 93 with respect to some
e*eB*. Then Lemma 2.1 shows that N* is a maximal right ideal of A*,
modular with respect to e*, and M* = N*nB*. Now (1 — e*)N* £ N* so
that e*N* £ N*r\B* = M*\ thus e*N*B £ M*5 £ M. Since

(1 -e*)N*B £ (1 ~e*)B £ M,

it follows that N*B £ M. Then N*A £ N*A*+N*B ^ N* + M = N,so that
91 is a right ideal of 91.
Since N* £ ^*, A^n^* = N* + (MnA*) = N* + (Mr\B*) = N*+M* = N*.
Since M £ B, NnB = (Ar*n5)+M = (N*nB*)+M = M* + M = M. Thus
91 is normal in 91, and 9in93 = 9Jt. Further,

( l - e*M = (l-e*)A*+(l-e*)B £ A^*+M = W,

so that 91 is modular in 91; thus, using Theorem 2.5 of (1), 91 is maximal in 91.
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Finally, SR is quasi-accessible. Clearly N 2 N*+N*A + (\ — e*)A. Now
N = N* + M = N* + M*+M*B+(l-e*)B s N*+N*A+(l-e*)A.

Therefore N = iV*+iV*y4 + ( l - e * ) ^ so that 5R is quasi-accessible. Thus 91
is a maximal quasi-accessible normal right ideal of 31 such that 931 = SRn23,
as required.

3. The Main Theorems
We are now ready to prove our main results concerning the Jacobson radical

of a pseudo-ring of infinite matrices as defined in §1. We shall adopt the follow-
ing notation.

Let 9Ji(3I, a, b) be a pseudo-ring of infinite matrices. Let <Hl be the extension
of 31 as in (1), Lemma 2.8; we recall that, as additive groups, A* = A*QZ*
and Av = A@Z*, where Z* is the group of integers. Let

M\AU a, b) = M(A, b)+M\A*, a);
then, under matrix multiplication, (M*(A*, a), M'{AX, a, b)) is a pseudo-ring,
which we denote by 9W'( î» a» &)• We note that 9ft(3I, a, b) is a normal ideal
of 3Df'(<<4i> a> &) which satisfies the condition of Lemma 2.4.

Let ax e Ax and let ( j , ( ) e S x 6 ; then we denote by [alt s, *] the element
of M'(Au a, b) such that (s, t)[alt s, ?] = at and (u, v)[au s, t"] = 0 for all
(w, u) ^ (J, /). We note that iCaeA, [a, s, t] e M(A, b); if at e A\,

\a\, s, i] e M*(A\, a); and if a* e ^*, [a*, j , *] e M*(A*, a).
Let SB = (B*, B) be any maximal quasi-accessible normal right ideal of 31;

then SB is modular with respect to some e* e A*. Let J S S . Then we define
H*(B*, a, s) = {r* e M*(A*, a): (s, t)T* e B* for all / e S}, and

H(B, b, 5) = ^*(5*, a, s)+H*(B*, a, j ) W , b)+(l - [c*. *, ^])M(^, b).

We note that //(Z?, b, j) is independent of the choice of e*; for, if/* is another
such element of A*, then Lemma 2.2 of (1) shows that e*—f* e B* and hence
0*, J, s]-[/*, s, J ] e //*(£*, a, s). Then (H*(B*, a, s), H(B, b, s)) is a pseudo-
ring, which we denote by $(23, a, b, s).

Theorem 3.1. Let 31 = (A*, A) be a pseudo-ring andSB = (B*, B) a maximal
quasi-accessible normal right ideal of 21; /e/ a and b 6e cardinals such that
b ^ a ^ Xo anrf fe? se Q. Then §(23, a, b, s) is a maximal quasi-accessible
normal right ideal ofW(% a, b).

Proof. Clearly $(23, o, b, s) is a right ideal of 9K(3I, a, b). Suppose
T* £ H(B, b, s)nM*(A*, a); then, for all t e S,

(s, t)T*eA*n(B*+B*A-h(l -e*)A) = A*nB = 5*,

so that F* e H*(B*, a, s). Thus §(23, a, b, s) is a quasi-accessible normal right
ideal of 9K(3I, a, b). It remains to show that §(23, a, b s) is maximal in
2R(3I, o, b); by Theorem 2.5 of (1), it is sufficient to show that H*(B*, a, s) is

https://doi.org/10.1017/S0013091500009603 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500009603


PSEUDO-RINGS OF INFINITE MATRICES 329

maximal in M*(A*, a). Suppose that N* is a right ideal of M*(A*, a) such that
H*(B*, a, s)<=N*. For all / e G, define C*(s, t) = {c* e A*: [c*, s, t~] e N*}.
For any a* e A*, and any c* e C*(s, t), [c*a*, s, /] = \c*, s, tja*, t, t] e N*,
so that C*(s, t) is a right ideal of A*; clearly B* c c*(s, t) for all t e S. Now,
there exists f * e N* such that f * $H*(B*, a, s); then, for some / , e S ,
(s, ti)t* = d*$B*. Since (1 ~[e*, s, s])f *eH*(B*, a, s)<=N*, [e*, s, s]f * 6N*;
also, since (1 -e*)d* e B*, e*d* $ B*. Now, B* = {a* e 4*: aM* s fi*} by
Lemma 2.1; thus there exists a* e A* such that e*d*a* $ B*. Then

\e*d*a*, s, t{] = [e*, J, ^]f *|>*, tu ti] e iV*Af *(/!*, a) c AT*.

Thus e*rf*a* e C*(s, r,) but e*rf*a* ^ B*; since 5* is maximal, C*(s, t^ = A*.

Now [e*, s, s] = [(1 - c*)e*, s, s] + [e*2, s, s]

= (1 - [e*. s, s])|>rs, s] + [e*. s, /,][«*, /^ s].
Since (1 -[>*, j , 5])[e*, 5, s] e ^*(5*, a, 5)<=Â * and [e*, 5, f j e N*, it follows
that [e*, s, s] e N*. Then, for all T* e M*(A*, a),

r* = (i -[e*, s, j])r*+[e*, 3, j ]r*

so that #* = M*(A*, a). Therefore H*(B*, a, 5) is maximal in M*(A*, a).

Theorem 3.2. Let % = (A*, A) be a pseudo-ring and let a and b be cardinals
such that b ^ a ^ Ko; let SI = (K*, K) be a maximal quasi-accessible normal
right ideal of3Jt(% a, b) such that K* $ M*(A*, Ko). Then

A=> f) S(23S, a, b, s),
seSo

vvAere S o w a finite non-empty subset of S, and where, for all s e <50, 33S is a
maximal quasi-accessible normal right ideal of $1.

Proof. Let L* = {r* e M\A\, a): T*M*{A*, a) c K*} and letL = L*+K.
Then, by Lemma 2.4, £ = (£*, L) is a maximal quasi-accessible normal right
ideal of W(%u a, b) such that ft = £n2K(2I, a, b). Let

C(s, t) = {ceAl: \c, s, t] e L} and let C*(s, t) = AfnCis, i).

Let ( U , » ) E S X S and let 1* be the multiplicative identity in A*; then, under
matrix multiplication, [1*, u, v] is a right multiplier in 9M'(^n <*> b) in the sense
of (1), §4. Thus, for all c e C(s, t) and all v e S, we have

[c, j , B] = [c, 5, r][l*, r, »] e L[l*, /,»] = £
by (1), Theorem 4.2. It follows that Cfo 0 and C*(s, t) are independent of /.
Also, for all c*eC*(s, s) and all ax sAu [c*, s, s]eLnM*(A\, a) = L* so that

[c*fl!, s, s~\ = [c*, j , sjat, s, s] e L*M'(AU a,b) ^ L;
therefore c*at e C(s, s.) It follows that, for all s e S, (C*(.s, t), C(s, t)) is a normal
right ideal of <&l, modular with respect to 1*, and independent of t.

Now M*(A*, Xo) is a right ideal of M*(A*U a); since K* $ M*(A*, Ko),
clearly L* $ M*{A*, Ko). Thus, by Lemma 2.2, there exists T$ e M*(/!*, Ko)
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such that £ is modular with respect to Fj . Then K(S(FS)) < Xo. Let F be any
element of M'(Au a, b) such that (u, v)T = 0 for all u e <S(T*0); then

r = (i-r*)reL.
Let S o = {« e S : C*(u, u) ¥= A\};\ clearly S o £ S(rJ) so that K ( S 0 ) < K 0 .

Also <50 ¥= 0. Suppose, to the contrary, S o = 0', then C*(u, u) = A* for all
M E S . Now any element F* of M*(A*U a) may be written F* = Ff + Fl, where
(s, Or? = 0 if 5 e S(rS) and (s, t)T$ =0 if s ̂  S(rJ). As above, F? e L, while
rj= I I [(s.Or*,*,^!, Then

J»f*04t» a) = LnAfOt!, a) =
Next, if s e S o , C*(J , 5) is maximal in A*. For, suppose there exists a right

ideal N* of ,4? such that C*(s, s)c:N*. There exists n* e N* such that
«* £ C*(s, s); then [«*, 5, J ] $L*. Now, L* is maximal in M*(A*, a); thus
M*(/lt» a) = L* + [n*, s, s]M*(/4t. ")• !n particular,

[ l*,S,s]=ft + [«*,s,S]f|
where f * e L* and f * e M*{A*, a). Now, since f * = [1*, s, s] - [«*, s, s]f J,
clearly («, s)f J = 0 for all u ¥= s. Now, f *[1*, s? s] e L* so that

(s, s)f * e C*(s, s).

It follows that 1* = (5, s)f? + «*(s, s)f; e C*(s, s) + N*^? £ N*. Since l*eiV*,
N* = ^4t; therefore C*(s, s) is maximal in A*.

Then, by (1), Theorem 2.5, (C*(s, s), C(s, s)) is a maximal modular normal
right ideal of 2^ for every se So- Also, if s e So, ^* $ C*(s, s). Suppose, to
the contrary, A* £ C*(J, 5); then it follows that

[1*, s, s]M*(A*, a) £ L*nM*(A*, a) = K*.

Then [ l * , j , j ] e l * since L* = {r* e M*(A*U a): T*M*(A*, a) £ K*}; thus
1* e C*(s, s) so that C*(x, s) = /4*. Since J 6 So, this is a contradiction.

By Lemma 2.2, there exists e* e A* such that (C*(J, j), C(J, 51)) is modular
with respect to e*; by (1), Lemma 2.2,1* - e* e C*(s, s). Let 5f = A*nC*(s, s)
and let Bs = B*+B*A+(1 -e*)A £ inC(s, s). By Lemma 2.3, (fls*, AnC(s, s))
is a maximal modular normal right ideal of 31. Then Theorem 2.6 of (1) shows
that 33S = (B*, Bs) is a maximal quasi-accessible normal right ideal of 21.

We are now ready to show that R 3 f] §(S8S, a, b, s). Let
seSo

r e n #(Bs,b,s).
SESO

We decompose F as follows. Define F t e M(A, b) by (w, ̂ Fi = (u, v)F if
u i S(F*); (1/, ^F i = 0 if « e S(F*). Then

T t = (1 - r S ) r i e LnM(A, b) = K.
Define F 2 e M ( ^ , b ) by (M, V)T2 = (M, I;)F if u e S(Fj) and w#S0, and
(w, u)F2 = 0 if H ̂  <5(rj) or if u e So.
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Now, if u e S(rj) and u $ So, C*(u, u) = A\ so that [1*, u, u] e L*. Since
S) is finite,

f*= £ [l*,u,tt]eL*.

and thus T2 = f *r2 6 L*M(/1, b) <= LnM(/4, b) = K.
For all s e So, define Fs e M(X, b) by (s, ()rs = (s, t)r for all f e S, and

(u, Or, = 0 if « # s. Now (s, t ) ( r - r s ) = o for all t e S so that

T - r s = (l-[e5*, s, 5])(T-r.) e H(BB b, s);
therefore

Ts e H(BS, b, s) = H*(B,*, o, s) + H*(Bt, a, s)M(A, b) + (l - [«,*, s, s])M(i4, b).

Thus

r5 = r(*0, „ + £ r{*, s)r(r> „ + ( i - [«,*, s, s])r(Oi „,
r = t

where, for r = 0, 1, 2, ..., /cs, r(*r5) e H*(BS*, o, s) and r(r>5) e M(A, b).

For r = 0, 1, 2, ..., fcf, define f *>s) e H*(6*, a, s) by (s, Qf*..) = (s, OFj.., for
all t e S, and (u, Of *,s) = 0 if u / s. Similarly, define f(Os) e M(A, b) by
(s» Of(0,s) = (s, 0r(O,S) for all ( e S, and (w, 0f(o.») = 0 if u # s. Then

r s = f(*o.,) + I f(*,s)r(r>,,+(i - [cs*, 5, s])f(Oi „.
r = 1

Now, for r = 0, 1, 2, ..., A;s, (s, Of?r,») e 5 ? f o r all t e S; thus

K..) = I K*. Of J.,), «, 0 e LnM*(A*, a) = X*,

(1 - [e,*, s, s])f (0, „ = [1* - es*, 5, s]f (0, „ e L*M(A, b) s X.

Therefore Fs eK*+K*M(A, b)+K = K for all s e S.
Now,r = r 1 + r 2 + ^ rs^K. Therefore K 2 f) W(BS, b, s) so that

S 6 2>0 5 6 S o

ft 2 (] §(S8S, a, b, s), as required.
se&o

Let (£ be the set of maximal quasi-accessible normal right ideals of 21.
Define ©(31, a, b) = f] fl §(58, a, b, s).

SeffiseS

Let 3 be the set of maximal quasi-accessible normal right ideals ft = (K*, K)
of 9K(5T, a, b) such that K* 2 M*(A*, No). Define 5(31, o, b) = fl ft.

Then (5(31, a, b) and 5(31, a, b) are clearly normal right ideals of 9K(3I, o, b).
The next theorem gives a characterisation of the Jacobson radical of 2R(3I, a, b)
in terms of these right ideals.

Theorem 3.3. Let "ft. be a pseudo-ring and let a and b be cardinals such that
b ^ o p 0 . Let 3 be the Jacobson radical of$R(% a, b). Then

3 = (5(91, a, b)ng(2t, a, b).
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Proof. By Theorem 3.1, (5(21, a, b) is an intersection of maximal quasi-
accessible normal right ideals of 9M(2I, a, b); by definition, 8f(2I, a, b), also, is
such an intersection. It follows that 3 £ (5(21, a, b)ng(2I, a, b).

Conversely, let ft = (K*, K) be a maximal quasi-accessible normal right
ideal of m(% a, b). Either ft e 3 or ft £ 3 . If ft e 3 then clearly

R 2 g(2I, a, b) 2 (5(21, a, b)ng(2T, a, b).

If ft $ 3 then, by Theorem 3.2, ft 2 f) S(®s>
 a> &> s)> w h e r e s o is a finite

non-empty subset of S and where, for all s e So, SBS e (E. Therefore, if ft £ 3,
ft 2 (5(21, a, b) 2 (5(21, a, b)n5(2I, a, b).

Then by (1), Theorem 2.7, 3 2 (5(21, a, b)ng(2r, a, b). This completes the
proof.

Corollary 3.4. Let 91 be a pseudo-ring and let b be a cardinal such that
b ^ Ko- Then the Jacobson radical o/2R(2l, Ko, b) w (5(21, Ko, b).

Proof. If ft is a maximal quasi-accessible normal right ideal of 9JJ(2T, Ko, b),
then K* $ M*(A*, Ko). Thus 3 = 0 , so that 5(21, Ko, b) = 9B(2t, «0, b).

Thus, in general, the Jacobson radical of 9W(2I, o, b) is contained in (5(21, a, b)
and, in particular, the Jacobson radical of 9K(2I, Ko, b) is exactly (5(21, Ko, b).
It is an open question whether the Jacobson radical of 2R(2l, a, b) is (5(21, a, b)
for cardinal numbers a >K0.

In our next theorem we obtain a more useful characterisation of (5(21, a, b).
Let SB e (£ and let e* be any element of A* such that (1 — e*)A £ 5. Define

r*(93) e Jlf %4*) by (s, s)(T*(J8)) = e* for all s e S and (s, O(T*(95)) = 0 if
s * f. By (1), Lemma 2.2, M*(B*. b) + M*(B*)M(A, b) + (1 - r*(SB))M(^, b) is
independent of the choice of e* used to define F*(58).

Theorem 3.5. Let 21 = (4*, A) be a pseudo-ring with Jacobson radical
31 = (R*, R); let a and b be cardinals such that b ^ o ^ Ko, and let

®(2T,a,b) = (G*,G).
Then G* = M*(R*, a) and

G= f) (M*(5*5b)+M*(5*)M(^,b)+(l-r*(£B))M(^,b)).

Proof. Clearly, since (5(21, a, b) = f) f) £(23, o, b, s), it follows that

n ^*(«*, a, s) = n M*(B*> ° )= M *( R *> «>•
S ! B ( E

n
!BE(E

L e t G ' = f) (M*(£*, b) + M*(B*)M04,b)+(l-r*(23))M04,b)). Suppose

e G'; let SB e © and let s e S. Then

r=rs+ t r*rP+(i-r*(iB))r0
r = 1
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where T* e M*{B*) for r = 1, 2, ..., k, T* e M*(B*, b) and Tr e M(A, b)
for r = 0, 1, 2, ..., k. For r = 0, 1, 2, ..., /c, define r(*>s) e H*(B*, a, s) by
(s, r)r(*.„ = (s, 01? for all r e S and («, Qr(*tl) = 0 if u # s.

Let e* be the element of A* used to define r*(53). Now,

( i - [e*, s, s])(rr*-r(*,s)) = rr*-r*.,f) for r = o, 1,2,.... fc:

also,
(1 - [e*, s, s])([e*, s, s] - r* (») ) = [e*, s, s] - r * ( » ) .

Therefore

r(*,s)rr+(i - [e*, s, s])(ro+([e*5 s, s] -r*(S))r0)
* \'* F * 1-1. V (r* F * '\r 10 — l (0, s)) + L, U r " 1 (r, s)M r I-

Hence
F e H*(B*, o, s)+//*(B*, a, s)M(X, b) + (l - [e*, s, s])M(A, b) = H(B, b, s)

for all SB e (£ and all s 6 S; therefore TeG.
Conversely, suppose TeG; let 58 = (B*, B) be any element of (£. For all

s 6 S, define Ts e M(A, b) by (s, f)rs = (s, <)r for all f e S, and (u, t)Ts = 0 if
u / s . Now T e H(B, b, s); also, if e* is the element of A* used to define r*(SB),

r - r 5 = (i -[>*, s, j ] ) ( r - r s ) e /f(B, b, s).
Thus
Ts e H(B, b, s) = ^*(B*, o, s) + H*(B*, a, s)M(A, b) + (l -[>*, J, 5])M(^, b).
Then

r s = r(*Oi s) + X r(*. S)r(r, s)+(i - [e*, s, s])r(0> g),
r = 1

where for r = 0, 1, 2, ..., ks, r(*_s) e H*(B*, a, s) and r(r>s) eM(4, b). For
r = 1, 2, ..., ks, we define f^,, e H*(B*, a, s) and f(r>s) e M(A, b) by
(s, Off,..) = (s, 0r(*,s) for all * e S , («, Of*,.,) = 0 if « # J , '
(«, Of (,..) = (K, 0r{r. „ if / e <5(r), and (M, Of (r.,, = 0 if t $ S(r).

Define f (*Os) e H*(B*, a, s) and f (Os) e M(A, b) by

(5, Of ?<>..) = (s, 0r(*0.,, if t e <S(T), («, Of ?o..) = 0 if « # s or if t * S(D,

(s. Of (o,.) = (s, 0r(0>.) if t e S(r), (M, Of (o..) = 0 if " * s or if t* S(T).

By definition of Ts, <5(TS) £ S(r) so that

T5 = f (*0, ,) + I f *r. .)f (,. 5) + (1 - l>*, S, S])f (0, .)•
r = 1

Define f • e M*(B*) by (s, Of * = («. Of ?o.S) for all (s, ! ) e S x S . Then,

sothatfJeM*(B*,b).
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Define f 0 e M(A) by (s, O^o = O> 0f\o ») f o r a11 (J> 0 e S x S. Then similarly,
S(f o) £ S(r) so that f 0 e M(A, b). Also

(s, 0(d - r * ( » ) ) f 0) = (s, 0(d - 0*, 5, s])f (0.f))
for all (5, O e S x S .
Next, we consider the set <5' of triples of the form (s, t, «), where s e S, n is a
natural number such that 1 ̂  « ^ ks, and f e S(f (*>s)). Since ks is finite for
a given .s, and since S(f(*iS)) is a finite subset of S for all s and all « such that
1 ^ « ^ ks, it follows that the cardinality of S' is exactly c. Then there exists
a one to one mapping t\ from S' into S. We now define elements f * and
f of M(A) by

(S,!*)f*=(M)f(*..)
if there exist ( e S and n e N such that (s, t, n) e <5' and u = ^(J, /, n);
(s, u)T* = 0 otherwise;

(u,v)t = (t,v)tin,s)

if there exist j e S , t e S and n e iV such that (s, t, n) e S' and « = t]{s, t, n);
(u, v)T = 0 otherwise.

We first remark that, because r\ is one to one, f* and f are well defined.
Now, for all (s, u ) e 8 x S , (s, u)T* e £*; also, for a fixed j e S , there are
only a finite number of elements of S' of the form (s, t, n) where te<3 and
neiV, so that K(S(f*,s))<K0 for all s e S . Therefore f*eM%8*). If
u 4 S(rs), (f, u)f (B> s) = 0 for all t e <5, all s e S and all n e JV such that 1 ̂ n^ ks;
thus (M, V)T = 0 for all u e S so that S(f) £ G(T). Thus f e M(/4, b). Then,
for all (s, v)eQxQ, (s, v)(t*f) = S((j, w)f*(M, u)f), the summation being
taken over all u of the form u = t\(s, t, n) where (s, t, n) e S'. Therefore

n = 1

Vi = i

where £ denotes summation over t e S(f *n>s)). It follows that, for all

(j, t)eSxS,

(5,»)r = (s,«)rs = (s,»)ff*OiI)+ | f(*n,s)f(n,s)+(i-[e*,s,5])f(0(!
\ n = 1

and so
r = f*+f*f+(l-r*(»))f0 eM*(B*, b)

+ M*(B*)M(A, b) + (l-r*(SB))MG4, b).

But fB was chosen at random from £; thus T e G'. Then

G = G'= f| (M*(B* * * *
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Thus if the maximal quasi-accessible normal right ideals of a pseudo-ring 31
are known, then by using Theorem 3.5 we may determine the normal right
ideal (5(91, a, b) of 9K(2T, a, b).

It is clear from the result of Theorem 3.5 that G £ f] M(B, b) = M(R, b).
93e<E

We now give an example of a pseudo-ring such that this containment is strict;
this example is particularly interesting because the pseudo-ring is equivalent to
a ring, so that the conclusion applies equally well to the pseudo-rings of infinite
matrices over a ring defined by Patterson (4).

Example 1. Consider the pseudo-ring 31 = (A*, A*), where A* is the ring
defined as follows. Let E* and R* be additive groups of order 2, generated by
e* and r* respectively, Let A* = E*(BR*, with multiplication defined by
e*e* = e*, e*r* = r* and r*e* = r*r* = 0.

It is not difficult to show that R* is the only maximal right ideal of A*;
R* is modular with respect to e*. Then 5R = (R*, R*) is the only maximal
quasi-accessible normal right ideal of 31. It follows that the Jacobson radical
of the ring A* is R*, and the Jacobson radical of 31 is 5R.

Now let o and b be cardinals such that b ^ a ^ Ko. We note that, since
R*A* = 0, M*(R*)M(A*, b) = 0; also, we may use e* to define T*(5R), so
that (1 -r*(5R))M(/**, b) = 0. Then Theorem 3.5 shows that

(5(31, o, b) = {M*(R*, a), M*(R*, b)).

Clearly if b>K0, M*(R*, b)<=M(R*, b). Two cases are of special interest.
Choosing a = Ko, we see from Corollary 3.4 that the Jacobson radical of
9Jt(3I, Ko, b) is exactly (M*(R*, Ko), M*(R*, b)). If, however, we choose a>c,
then the Jacobson radical of yjl(A*), as defined by Patterson (4), is contained in
(M*(i?*), M*(R*)); further, since R* is right-vanishing, the results of Patterson
(2, 3) show that every element of M*(R*) is right quasi-regular. Thus, by
Theorem 5 of (4), the Jacobson radical of WliA*) is exactly (M*(R*), M*(R*)).

Finally, suppose A* is a ring with Jacobson radical J*, and consider the
pseudo-ring 9ft(.4*). Then Theorem 7 of Patterson (4) shows that the Jacobson
radical of Tl(A*) is contained in 9W(7*).

Now Theorem 5 of Patterson (2) states that, if the Jacobson radical of
M*{A*) is exactly M*(/*), then J* is right-vanishing. The following example
shows that there exist rings A* such that /* is not right-vanishing and such that
the Jacobson radical of 2R(/1*) is exactly 2R(7*). Thus Theorem 5 of (2) has
no strict analogue for pseudo-rings.

Example 2. Let p be a prime integer, and let P be the /?-adic completion of
the ring of integers; then P is a ring with Jacobson radical pP. Also, P is
complete with respect to the topology {x+p"P: xe P,ne N}. Then M(P) is
complete with respect to the topology {r+M(p"P): TeM(P),neN}. We
first note that every element T* of M*(pP) is right quasi-regular in 9Jl(P). For
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n

all n eN, define Tn = - £ (r*)fc; then {Fn}neN is a Cauchy sequence with
* = 1

respect to the topology on M(P), so that {rn}neJV has a limit T e MCP). Thus
there exists an increasing sequence {k(ri)}neN such that, for each neN,
r-rkeM(p"P) for all k k kn. Consider r* + r - r * T ; for each neN, let
m(n) = max («, £(«)). Then r*+Tm(n) - T*TmW = (r*)m(n>+x e M ^ P ) and
r - r m ( n ) eM(p"P)so tha t

r*+r-r*r = (r*+rm(n)-r*rra(n))+(r-rm(B))-r*(r-rm(B))
T h u s r * + r - r * F e f] M(pnP) = 0, so that T* is right quasi-regular. Apply-

n e w

ing Theorem 5 of Patterson (4) and using the fact that the Jacobson radical of
2R(P) is a right ideal of $R(P), we see that the Jacobson radical of 9Jt(P) is
exactly t?0l(pP); however pP is not right-vanishing.

The major portion of this work formed part of the author's Ph.D. thesis,
submitted to the University of Dundee. The author's course of postgraduate
research was supervised by Dr. A. D. Sands and financed by the University of
Dundee.
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