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Abstract

What we call here the "construction principle" is a principle on the ground of which some
functional can be defined; the domain and the range of such a functional consist of some
"computable" functionals of various finite types. The principle above is considered here as the basis
of the functional interpretation of transfinite induction up to en. It is concretely repesented as the
"term-forms", where every term-form is shown to be "computable" in some sense.

1980 Mathematics subject classification (Amer. Math. Soc.): 02 D 99, 02 E 99.

It is well-known that the accessibility of the ordered structure which is a
canonical representation of the ordinals below eQ (the first e-number) cannot be
proved in elementary number theory (see Gentzen (1943)), while it is provable if
an analytic method is employed, namely, it is provable in first order arithmetic
augmented by the IlJ-induction (see Gentzen (1943)). The full power of the
ITj-induction is not necessary, however, and attempts have been made to
establish the accessibility along more concrete lines, for example in Gentzen
(1936) and Takeuti (1975).

In this article we are to propose a theory of "construction principle", a
principle on the ground of which some functionals can be defined; the domain
and the range of such a functional consist of some "computable" functionals of
various finite types. The principle above is considered here as the basis of the
functional interpretation of transfinite induction up to e0.

The article begins with a glossary of the terminology and symbolism (Section
1). Section 2 consists in the interpretation of transfinite induction up to % in an
arithmetic with infinite reasoning. Although the local technicalities used in this
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[21 Construction principle and transfinite induction 25

section are borrowed from Section 2 of Gentzen (1943), our scheme is a
"uniform version" of the provability demonstration, so to speak, thus reaching
up to EQ. The reason why we devote one section to this endeavor is to facilitate
our ultimate objective, namely, the functional interpretation of transfinite induc-
tion up to e0, an informal account of which is given in Section 3.

Our construction principle, the principle behind the functional interpretation
of Section 3, is formulated and developed in Section 4. It is concretely repre-
sented as the "term-forms", where every term-form is shown to be "computable"
in some sense. Section 5 concludes the functional interpretation; the functional
construction given in Section 3 can be interpreted in the theory of the term-
forms.

We have developed the theory of "construction principle" just to interpret e0.
Mathematical relationships of this theory to other theories as well as further
developments and applications in this line are left open as a problem to be
worked on in the future.

Some theories of generalization over Godel's computable functionals have
appeared, a few of which are listed as references; they were developed for their
respective purposes.

The idea of "construction principle" was first presented at the workshop on
proof-theory which was taken place in May, 1979, at the Research Institute for
Mathematical Sciences in Kyoto. The author is grateful to the participants for
their valuable comments and discussions.

1. Preliminary definitions

DEFINITION 1.1. The canonical well-ordering system (E, -<) whose order-type
is known to be EQ is defined as usual; 0 is the basic element and w" and
a, + • • • +am are compound elements, where ax, . . . ,am are monomials. ua

will also be written as exp(u>, a). The equality relation = and the order -< are
defind as usual for the elements of E, and we assume that the components
(monomials) of an element of E are arranged in the non-increasing order.

The linearity of the order -< is easily established, hence will be assumed
throughout.

«„ abbreviates the following:

w, = <o° = 1, o>2 = « ' = a) and «n+i = exP(w> w«)-

DEFINITION 1.2. An E-element a is said to be accessible (with regards to -<) if,
given any < -decreasing sequence from E led by a, there is a method (uniform
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26 MarikoYasugi [3)

for all such sequences) to show that it is finite. -< (or (E, -<)) is said to be
accessible if there is a uniform method to establish that every E-element is
accessible.

Note. We do not specify the nature of the "method" here.

DEFINITION 1.3. ht(a), the height of an E-element a, which is a natural
number, is defined as follows.

ht(O) = ht(w0) = 0, ht( l) = ht(w,) = 1, ht(wa) = ht(a) + 1,

ht(a, + • • • +aj = max(ht(a,), . . . , ht(aj)

(= ht(a,); according to our assumption on the order of a,, . . . , am).
Let / be a sequence from E. ht(/) is defined to be ht(/(O)).

In passing, the definition implies that for a decreasing sequence/

ht(/(/)) < ht(/), for i = 0, 1, 2, . . . .

DEFINITION 1.4. An E-element consisting of equal monomials alone will be
said to be homogeneous. « " + • • • +u" with / components will be abbreviated
as «7. If a = exp(«, a,)/, + • • • +exp(w, am)lm, av . . ., am all distinct, then
each exp(«, a,)/, is called a homogeneous term of a, ax the highest power of a
and exp(w, a,)/j the homogeneous term of the highest power (of a).

p{u>bl) = b; hp(a) = the highest power of a; hpt(a) = the homogeneous term
of the highest power of a.

2. An accessibility proof in an infinite system

Here we formulate an accessibility proof of (E, -<) in a semiformal system
with a restricted w-rule. We take over Gentzen's demonstration of the accessibil-
ity proof for un for each n (see Section 2 of Gentzen (1943)) in local technicali-
ties. The difference lies in that in his case the demonstration consists of a finite
(hence concrete) repetition of the derivations of a same sort, while here such a
repetition be regarded as a principle, rather than a practice; this difference is
what leads us to the accessibility proof for (E, <).

DEFINITION 2.1. II will denote a formulation of arithmetic with function
quantifications and the primitive recursive infinite rule, where the mathematical
induction and the usual V-introduction is also admitted if the derivation up to it
is finite. No sophisticated rules such as the choice rule are involved.
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[4] Construction principle and transfinite induction 27

We assume the arithmetization of (E, -<) in II. We shall use the following
notational convention.

a, b, c, . . . , x, y, z, . . . , r, . . . range over the elements of E; m,
n, . . . , / , j , . . . will range over natural numbers. Vx (E(x) D A) (E(x) repre-
sents x £ E) will often be abbreviated to \/xA.

DEFINITION 2.2. A formula in II, At(a), will be defined for each /, i =
0, 1, 2, . . . .

A0(a): V/(If / i s a decreasing sequence from E led by a, then/ is finite.)
Suppose A^a) has been defined. Let A?(a) abbreviate Vy {y =< a D At(y)).
Then,

Ai+l(a):Vx(A*(x)DA*(x +«")).

For the notational convenience, we shall write A(i; a) for A^a). The reader
should be aware that A(i; a) is not a single formula with a variable i, but a
distinct formula for each /.

THEOREM 1. V« >4(0; wn) w provable in II.

The theorem implies the

CONCLUSION. VX (£(X) D /l(0; X)) is provable in II. /« o//ier words, the
accessibility of (E, •<) w established in II.

e. The "uniform" method in Definition 1.2 is here the reasoning admissi-
ble in II.

DEFINITION 2.3. /V({a}fi(a)) stands for

Va(Vx (x < a D 5(x)) D B{a))

for any formula 5.

PROPOSITION 2.1. The following 1 through 6 are provable in Ufor each k without
applications of the infinite rule; furthermore the proofs are primitive recursive in k.

2.A(k + \\0)-^A{k + 1; wo),
3.Pr({x}A(0;x)),
4.Pr({x)A(k; x))^Pr({x}A(k + 1; x)),
5.Pr({x}A(k;x))-+A(k+ l;0),
6. From Pr({x}A(k; x)) and A(k + 1; 0)^^(A: + 1 ; a) we can deduce

A(k; 0)^>A(k; wa).
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28 MarikoYasugi [s]

PROOF OF THEOREM 1 from Proposition 2.1. For each k,
7.Pr({x}A(k;x))

by 3 and repeated applications of 4. For any fixed n, let k range over n,
n — 1, . . . , 1, 0 consecutively in 5 and 6, where a = un_k in 6. 2 with k = n
and consecutive applications of 5, 7 and 6 for k = n, n — 1,. . . , 1, 0 yield in
succession:

A{n + 1; 0)-*A(n + 1; w0),

This last sequent and 1 above yield A(0; wn) in II for every n; the derivations are
primitive recursive in n. The infinite rule now yields Vn A(0; «„) in II.

PROOF OF THE CONCLUSION. For any a in E, the least n such that a < «„ can
be determined primitive recursively from a, say g(a). So, for each a, A(0; w ô)) is
provable in II without infinite rule; furthermore the derivation is primitive
recursive in a. (This fact can be established by modifying the last part of the
proof of Theorem 1.) A(0; w ^ ) implies ,4(0; a). Now apply the infinite rule to
obtain Vx(E(x) D /l(0; x)).

Notice that the theorem (as well as the conclusion) has been established by a
single application of the infinite rule.

PROOF OF PROPOSITION 2.1. Since the proofs are essentially the same as those
of Gentzen (1943), we shall briefly remark on one point.

4 of Proposition 2.1. According to Gentzen, we let d bt fux(b, c, a) and let n
befu2(b, c, a). By the definition of A, we have

(l)^(A: + 1; d),A*(k; c + udm) -+ A*(k; c + ud(m + 1)),
hence by induction applied to m in A *(k; c + udm), we obtain

(2)A(k+ 1; d),A*(k; c)^A*(k; c + udn).
Notice that (1) and (2) can be established uniformly in (independently of) k.
Deducing the required conclusion from (2) is a straightforward process.

3. Functional interpretation

A careful analysis of the proof procedure in Section 2 leads us to a certain
construction principle, based on which the accessibility of (E, <) can be
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[6] Construction principle and transfinite induction 29

established. We first present an informal account of construction in order to get
the general idea, the formulation of which will be given in the next two sections.

DEFINITION 3.1. Finite types are defined as usual (see Godel (1958), Hindley,
Lercher and Seldin (1972), Yasugi (1963)): 0 is the ground type (representing
natural numbers); s —»/ is a type if J and t are, representing functionals which
map the objects of type s to those of type t. sx -* (s2 -> (• • • (sn -> /) • • • )) will
b e a b b r e v i a t e d to s l 9 s 2 , ... ,sn—*t.

A type function is a primitive recursive function whose values are finite types.
We list some useful type functions below.

[0] = 1->1, where 1

{/} =0->(«/»->[/]), or Q, ««»-»[/].

<j>, \p, x, • • • will be used for functional variables; a functional variable of type
/ will be denoted by $',$', etc., but we omit the type symbol whenever possible.

DEFINITION 3.2. G,(4>[<1, a) will be defined for each /, / = 0, 1, 2, . . . .
G0(<f>l°\ a): Given a function/, if / i s a decreasing sequence from E led by an

x < a, then </>(0](/) is a decreasing sequence from E satisfying that <>[0](/)O) is
the homogeneous term of the highest power of/(«,) for some np where («,}y is
an increasing sequence and n0 = 0, and such that if </>'°'(/) is finite, then so is / .
(See Section 1 for homogeneous terms, etc.)

This is the way I would like to describe Go. Dissatisfaction has been expressed
to me, however, as to the informal manner as it stands, hence an attempt of a
formulation of Go in a semi-formalism.

Let / stand for a function from natural numbers to E. We call such a function
a sequence from E. We include finite sequences here. / is said to be decreasing if
/(") < f(m) when n > m. f is said to be led by x an element of E if /(0) = x.
Now (JO(</>(01, a) can be expressed as follows.
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30 MarikoYasugi [7]

V/ {[(/ is a decreasing sequence from E)
< a A /(0) = x)

{«,}y (({/i,}^ is an increasing sequence of natural numbers /\n0 = 0)

A(4>[01(/) is a finite sequence)] D / i s finite},

where hpt is seen in Definition 1.4.
Suppose Gi(<j>l'\ x) has been defined.

G/*1'1, X) D G,(<?>[' + 1I(x, &I]),X + «»)).

. If we define G?(<f>[i], a) to be

Vx(x <aD G,W\ x)),

then it can be easily shown that

(?•(*, a) « G,.(*, a).

Thus, G, can be replaced by G* everywhere.
As in Section 2, we shall write G(i; <fc x) for G,«>, x) for the notational reason.

DEFINITION 3.3. For each /, / = 0, 1 , 2 , . . . , we define the following.

»(VJC(JC -< z D G(i; ^ « ' » ( x ) , x)) D G(i; ^ '> (z , <>«'"»), z)).

Once again we write Pr(/; >//) for Pr^) and /*(/; ^) for P^).

PROPOSITION 3.1. There is a uniform {in i) method to construct primitive
recursive functionals of appropriate types for 1 —-4 below. {See Godel (1958),
Hinata (1967), Hindley and others (1972) and Yasugi (1963) for primitive recursive
functionals of finite type.)

1. Pr(0; a0), where a0 is of type {0}.
2. /»(/; #.), where ft is of type </>.
3. Pr(i; xj/) -^ G(i + 1; y^xp), 0), where y, is of type {/} -^ [/ + 1].
4. ^ ( z ; xp) and

+ 1; £, 0) D G(; + 1; $(</>), a))

where 6, w of type \\i\\.
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[8] Construction principle and transfinite induction 31

PROOF. 1. Assume

<ao G(0; </>(*), x)),

where <f> is of type « 0 > ) . Let a* be the functional satisfying

for every / of type 1. In particular a*(/)(0) = /(I) and, if / is a decreasing
sequence led by a, then a*(f) is a decreasing sequence led by / ( I ) ( < a). So,
from the assumption,

G(0;

or

G(0; <Ha*(

and hence

g: <#»(

is a decreasing sequence of homogeneous terms satisfying the appropriate
condition. Let £ be the operation which augments g with the highest homoge-
neous term of a, hpt(a) (see Definition 1.2), as the initial entry, in case
g(0) -< hpt(a) (and leaves g unchanged otherwise). Thus, define OQ to be

(i) A*A^(«,<H/(1))(«*(/))),
where X denotes the usual A-notation. From the construction,

G(0; ao(a, <j>), a),

which, together with the assumption, implies Pr(0; ao).
2. Assume Pr(i; i//) where i// is of type {/}, namely,

(0) VzVx(V*(x «< z D G(i; X (*) , x)) ^ G(i; *{z, X ) , z)),

where \ is of type « ' > > • Abbreviate

Vy(y<aD G(i + I; 9(y), y))

to C($), where $ is of type « / + 1 >>. Recall that G(i + 1, &(y),y) stands for

VxV*(G(i; 4>, x) 3 G(i; $(y)(x, *), x + a')),
where >̂ is of type [/]. As before, let d be /w,(Z>, c, a) and let n be fu2(b, c, a), so
b < c + u" implies b < c + wdn, where d < a and n < w. Thus, assuming
b < c + u",

or

C($), G(/; <>, c) -* G(i; $(d)(c, </>), c + wd).

Define

(ii) *~(0 , a, b, c, 4>, <>) = <f>;

$~(/ + 1, a, ft, c, <1), <#>) = $(d, c + u>dl, 4>~(/, a, 6, c,
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32 MarikoYasugi [9]

O~ is of type 0, 0, 0, « i r + 1>>, [/] —» [/]. The recursion in (ii) is "uniform" in i
without assuming any particular functionals. Then, more generally,

C($), G(i; $ - ( / , a, b, c, <S>, <j>), c + <odl)

--> G(i; $ ~ ( / + 1, a, b, c, <D, 4), c + ud(l + 1)).

Letting / be 0, 1, 2, . . . , we obtain

C(«) , G(i; <f>, c) -> G(i; * ~ ( / , a, b, c, * , <J>), c + « ' / )

for every /. Put / = n = «(a, fe, c) = yu2(*' c> a ) a n < i ^ = d{a, b, c) =
/w,(6, c, a). Then

C(*), G(i; </>, c) -» (?(/; *~(«(a , b, c), a, b, c, <D, <j>), c + »«"•"•*n(a, b, c)).

Thus,

C($), G(/; «fc c) -* Vx(x -< c + <oa D G ( I ; 4>~(«(a, x, c), a, x, c, $ , <>), x)).

Rewriting

(iii) <J>*(a, x, c, $ , <?>) = $~(/j(a, x, c), a, x, c, $, <>),

we obtain

(1) C($), G(i; fc c) -» Vx(x < c + « a D G(i; <*>*(<*, x, c, $, <>), *)).

In (0), let z be c + w° and let x be Ajc$*(a, x, c, 4>, <J>). Then

Vx(x < c + cofl D G(i; 4>*(a, x, c, $ , 4,), x))

O -+ G(i; >//(c + a", \x&*(a, x, c, $ , ^>)), c + u").

(1) and (2) imply

C($), G(i; <t>, c) -* G(i; ^(c + « a , \x$*(a, x, c, $, 4.)), c + ua),

or

(3) C($) -» V</>Vc(C7(/; <>, c) D G(i; ^(c + wa, AxO*(a, x, c, $, <»), c + <oa)).

Define /8, to be

(iv) Xip\a\Q\c\<tnp(c + u>", \x<P*(a, x, c, $ , «?>)).

(3) will then turn to

C(*) -> V*Vc(G(i; *, c) 3 G(i; A(^)(a, *)(c, <»), c + <oa)),

or, recalling what C(4>) is,

VzV*(YK.y < O ( ? ( i + l; *(>-)^)) 3 G(i + 1; A(^)(a, O), z)),

which is Pr{i + 1; /S,-^)). Thus, we have established

hence P(i; ft).
Notice that /8, is defined uniformly in / and no induction on / is involved in

the course of the proof.
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3. Assume Pr(i; \j/). Then, in particular,

(1) Vx(x <Z + ID G(i; X(x), *)) -> G(i; *(z + 1, X ) , z + 1)

for any x- Suppose G(/; <J>, z) holds. Then,

(2) Vx(x < z D G(i; $, x)).

Let x be \x<j>, so (2) becomes

Vx(x < z + l D G(i; x(x), x)),

hence by (1), where x is AJC<|>,

(3) G(i; Hz + 1, x), z + co°).

Define y, by

(v) Xxp\zX^p(z + 1, \x<t>).

Then

So, (3) under the assumption G{i; <j>, z) yields

G(i; y^)(z, </>), z

and hence

/; <», z) D G(

which is G(/ + 1; Y , # ) . °)-
Y, is defined uniformly in / without assuming any particular functionals.
4. Assume Pr(i; \f>) and V<KG(/ + 1; <>, 0) D G(/ + 1; O(</>), a)). The two

assumptions together with 3 yield

or
VxVx(G(/; x, X)D G(i;&

Letting x be 0, we obtain

VX(G(/; x, 0) D G(i; 4

Define 8, to be

(vi) \xp\<!>\x<t>{

This will do.

(yMMx,x),

KyM))(o, x),

'MW, X).

8, is defined uniformly in /, assuming the existence of yt, whose uniform
definition has been given in (v).
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PROPOSITION 3.2. There is a uniform {in i) method to construct functionals e, and
Vj which satisfy the following.

1. Pr{i; e,), where e, is of type {/}.
2. G(0; Pj, «,), where vt is of type [0] {for every /).

PROOF. 1. Define e, by

(vii) £o = ao, e, + 1 = #.(e,-),

where y3, was defined in (iv).

(1) iV(0,eo)

by 1 of Proposition 3.1, and

A-(i; i i)->/V(i + l ; A ( O )
by 2 there, or

(2) /V(<"; e , ) ^ ^ ( ' + l; *+,)•

(1) and repeated applications of (2) yield Pr{i; e,) for every ;'.
Notice that, according to (vii), fy, which was defined identically for every j ,

supplies with the mechanism to produce e, for every /.
2. Define r(ik) for k = i + 1, / , . . . , 0 as follows.

(viii) T(,,, + 1) = /,., TOtk) = XxSk(ek, rak+n, x),

where It is the identity of type [i + 1] —»[i + 1], T(ik) is of type [k] —»[k]. T{, t ) is
defined uniformly in / by the reversed recursion on k, k = i + 1, / , . . . , 0,
assuming the recursion mechanism of Sk and e .̂ Sk was defined in (vi) uniformly
in A:; ê  was defined in (vii) by recursion on k. Now,

(1) G{i + 1; * , 0) -» G(i + 1; T ( W + 1 ) ( ^ ) , (oo)

is a tautology. Suppose T(,?Jt+1) satisfies

(2) G(k+l; $, 0) ^ G(A: + 1; r0Je+1)^), a,_k).

1 above with i = k, 4 of Proposition 3.1 with /" = k, \p = ek, $ = T(J>A:+IJ and
a = co,_t, and (2) above yield

G{k; x, 0) -+ G(/c; 8fc(et, T(I-,*+1), X), ",--*+I),

or

(3) G(*; x, 0) -H. G(*; r ( a ) ( X ) , «,_k + ,)•

(1) through (3) ensure that (3) holds for every k, k = i + 1, / , . . . , 0. In
particular,

(4) G ( 0 ; X , 0 ) ^ G ( 0 ; T ( , O ) ( X ) , < O , + 1 ) ,

where x is of type [0]. On the other hand,

(5) G(0; /f°l, 0)

https://doi.org/10.1017/S144678870002437X Published online by Cambridge University Press

https://doi.org/10.1017/S144678870002437X


[12] Construction principle and transfinite induction 35

trivially holds, where /[0] is the identity of type [0]. (5) and (4) with x = /t01 yield

(6)

Define v{ by

(ix) vo

Then (5) and (6) yield

G(0, vt, o,)

for every i.
Vj is defined from /[01 and T ^ with a simple mechanism.

PROPOSITION 3.3. There are functionals which work as described below.
ht(/): See Definition 1.3.
hp(a): See Definition 1.4.
fi: For any decreasing sequence f of homogeneous terms, /*,(/) is a decreasing

sequence of monomials such that ft(/)(i) is a monomial in /(m,) for some mt, where
{mi)i is an increasing sequence and, if [i(f) is finite, then so is f.

Mhfor each h a natural number: For any decreasing sequence ffrom E such that
ht(/) = h, Mh(f) is a decreasing sequence of the highest powers of some entries of
f, hence ht(A/A(/)) = h — 1, and the finiteness of Mh{f) implies the same off.

The types of those functionals are as follows.

ht(/):l->0, hp:0-H>0,

ju: 1 - • 1 and Mh:\->\ for all h.

PROOF, ht and hp are easily defined.

(x)° /x(/)(0) = the monomial of /(0) if /(0) is a homogeneous term.

Suppose fi(/)(0), fi(/)(l), . . . , ju(/)O) and 0, mx, . . . ,mj have been defined in a
manner that

(xY Kf)U) — the monomial of/(/n,).

Check /(w, + 1) and see if it is a homogeneous term. If so, and if f(mj) =
exp((o, ax)nl and /(w, + 1) = exp(w, a^)n2, then either ax > a2, or a, = a2 and
nx > n2. If the former is the case, let mJ+l = mj + 1 and

M/)C/ + 0 = exp(w, a2).
If the latter is the case, check/(w, + 2). «, > n2 > . . . will stop within at most
nx steps. Then/(w, + p) = exp(w, ap+l)np+l and a, > ap+l. Put mJ+x = m.j + p
and

(x)°, (xy and (x)7 + 1 define ju, which is primitive recursive in / .

https://doi.org/10.1017/S144678870002437X Published online by Cambridge University Press

https://doi.org/10.1017/S144678870002437X


36 MarikoYasugi [ 13 J

In case one hits a q such that /(ny + q) is not a homogeneous term satisfying
/(m, + q) -< f(mj + q — 1) while searching for the p as above, define /x(/XO =
0 for every / > /w, + ^.

Next, let *»A be the functional defined in 2 of Proposition 3.2. Define Mh to be

(xi) W ( M *»("*+i(/))C/))).
Then by Proposition 3.2 and the properties of /t and hp, A/A satisfies the
condition. The construction of Mh is uniform in h inasmuch as that of vh is.

THEOREM 2. There is a uniform method to establish that every element ofEis
accessible with regards to -< .

PROOF. The construction of Mh in Proposition 3.3 is uniform in A as men-
tioned above. Thus, define N by

(xii) N(0;f)=f, N(i + l;f) = Mht(/)^(N(i;f)).

N is of type 0, 1 -» 1. If/ is any decreasing sequence from E, then N(ht(f); f) is
a decreasing sequence of height 0, which is infallibly finite; according to the
definition of Mh, the finiteness of N(ht(f); f) implies the same of/. Thus,/must
be finite. This proves that every element of E is -< -accessible.

N(i; f) is defined by recursion on /, whose mechanism is provided by the
construction of Mh, which in turn depends on vh.

SPECULATION. In (i) through (xii), we have defined functionals for each set of
values of parameters, i, k, . . . . Thus, let St denote the functional for /. We can
regard {S1,}, as an enumeration of some functionals, which we write as 5. From
a reversed view point, S can be regarded as an object, or a construction
principle, which produces individual S/s as instances of it. It is such an 5 we are
to characterize in the subsequent sections.

4. Construction principle

Here we shall formulate the construction principle, which was announced in
the preceding section.

DEFINITION 4.1. 1) Symbols.
1.1) &,%,...: parameters.
1.2) f, g, . . . : a finite list of unary function symbols.
1.3) p, q, . . . : a finite list of function symbols (distinct from those of 1.2)).
1.4) P, Q, . . . : a finite list of predicate symbols.
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2) Pre-types.
2.1) A function symbol (in 1.2)) accompanied by a parameter is a pre-type.
2.2) A finite type (denoted by 0, s, t, etc.) is a pre-type (see Definition 3.1).
2.3) If 8 and t are pre-types, then so is § -»t.
3) Pre-variables. For each pre-type 3, there are assumed to be denumerably

many pre-variables </>8, ^8, . . . .
4) Pre-terms and free and bound occurrences of parameters.
4.1) Pre-variables are pre-terms; the parameters in their superscripts (pre-

types) are free.
4.2) Primitive recursive terms of finite type (see Godel (1958), Hinata (1967),

Hindley and others (1972), Yasugi (1963)) are pre-terms; there are no parame-
ters here.

4.3) If X and Y are pre-terms, then so is X(Y}; the free occurrences of
parameters in X(Y} are exactly those in X or Y, and the bound occurrences
likewise.

4.4) If A' is a pre-term and <j> is a pre-variable which is free in X, then \<j>X is a
pre-term; the free occurrences of parameters in it are exactly those in <J> or X,
and the bound occurrences likewise.

4.5) If P,, . . . , Pm are predicate symbols accompanied by appropriate
numbers of parameters and Xx, . . . , Xm, Xm+l are pre-terms, then
C[P1; . . . , Pm, Xx, . . . , Xm, Xm+i] is a pre-term; the free occurrences of param-
eters in it are those in any of P,, . . . , Pm, Xx, . . . , Xm, Xm+l, and the bound
ones likewise.

4.6) If X and Y are pre-terms which are free of R, then p[X, Y] is a pre-term.
The free parameters are those in one of X and Y, and the bound ones likewise.

4.7) If X and Y are pre-terms, where & does not occur free in X, then
R[&; X, Y] is a pre-term. The free occurrences of parameters are & and those
in X or Y; the bound ones are those in X or Y.

4.8) If X is a pre-term, 6,, . . . , G, are some of the free parameters in X and
P,, . . . , P; are auxiliary function symbols accompanied by some parameters
which are not among C,, . . . , G, and not bound in X, then Sub^ ; p^;;; pp is a
pre-term. The free parameters in X which are distinct from 6,, . . . , C, and the
parameters in P,, . . . , Pm are free in the new pre-term. The bound ones are
those in X and Gx,. . . , G,.

DEFINITION 4.2. Functional specification.
1) A type function is a primitive recursive function (of one or several

arguments) which enumerates some finite types.
2) Let 3 be a finite list of unary type functions corresponding to function

symbols in 1.2) of Definition 4.1.
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Let p be a finite list of primitive recursive functions corresponding to auxiliary
function symbols in Definition 4.1. Those will be called auxiliary functions.

Let 5JJ be a finite set of primitive recursive predicates corresponding to
predicate symbols in Definition 4.1. Those will be called case-predicates.

3) The functional specification (with regards to (g, p, 5)3)) of any symbol
defined in 1.2) ~ 1.4) of Definition 4.1 is obtained from it by specifying it by the
corresponding object from 2f, p and 9$.

4) For a pre-type 3, the functional specification of § is defined as follows. If B
is a function symbol accompanied by a parameter, then its specification is the
corresponding function from g, regarding the parameter as the variable. If § is a
finite type, then 3 is itself its own specification. Suppose the specifications of 3
and t are respectively primitive recursive functions/and g of several parameters,
then the specification of 3 -» t is a function of m variables h such that for each
set of values of parameters, say k, /i(k) = /(k) -> g(k). We write / -» g for h.

Note. Various properties of primitive recursive functions and predicates which
are presumed in the definitions are supposed to be provable in primitive
recursive arithmetic.

DEFINITION 4.3. 1). Let F be the functional specification of any symbol from
1.2) — 1.4) of Definition 4.1 accompanied by some parameters (see 3) of
Definition 4.2), and let %x, . . . , <©m be some parameters. Then

will denote the substitution in F of numbers kv . . . , km for & , , . . . , ®m

respectively. We call this a numerical specification of F. If <•©,,..., %m exhaust
all the parameters in F, then we say that it is a complete (numerical) specifica-
tion of F.

2) The numerical specification defined in 1) above induces the numerical
specification of the functional specification of a pre-type, which represents a
finite type. It will be denoted as in 1).

3) Let <J>8 be a pre-variable and let F be the functional specification of 3. Then
<j>F will be called a variable of the type function F. If %x, . . ., %m exhaust the
parameters occurring in F, then G = Spec(F; * ' . . ; f ^ ) , a complete (numerical)
specification of <j>F, is defined to be </>G. Notice that G is a finite type, hence
there is a pre-variable <#>G, which is regarded also as a variable of type G.

4) Let X be the functional specification of a pre-term, where $ , , . . . , ©m

exhaust the free parameters in X. A complete numerical specification of X,
Spec^A'; *•;;." ̂ m), is defined according to the construction in 4) of Definition
4.1.
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4.1) Spec(<j>F; * ' : : : ^-) has been defined in 3) above.
4.2) Terms of finite type are not affected by specifications.

4 . 4 ) s p e C ( \ ^ ; ••: : :*-> = x s p e c ^ ; • • : : : l - yspcc tx ; • • : : : • - ) .
4.5) SpecCCIP,, ...,P,,XU..., X,, Xl+l\; *•::! £-)

= C[ai*i, . . . , a/*/, aYj, . . . , aXt, oXl+l~^,

whereoYabbreviates Spec(Y; f>:\:^-).
4.6) spec(p[^, y j ; •• : : : *-) = p[Spec(x; •• : : : • - ) , spec( y ; f;::: •->].

4.8)Spec(Sub(^; ^ : : : ^ ) ; *•::;•-)

— ^ p e c ^ ' * , •••km o p , • • • op,;»

where /?, denotes the functional specification of an auxiliary function symbol
and apt = Spec(A; ?;.V.^-) (see 2) above).

Since the parameters inpx, . . . ,pt are not among Sj, . . . , Q,, the definition is
consistent.

PROPOSITION 4.1. The definition immediately above is complete.

PROOF. By induction on the construction of pre-terms, within which by
induction on A: in 4.7).

DEFINITION 4.4. Term-forms and the associated type functions.
The functional specification of a pre-term is a term form in the subsequent

circumstances. We quote 4) of Definition 4.1.
4.1) A variable is a term-form; the associated type function is the type

function in 3) of Definition 4.3.
4.2) A term is a special case of the term-form and its type is a special case of

the type function.
4.3) The type function of X is of the form/—> g and that of Y is/ . The type

function of X( Y > is g.
4.4) If <f> is a variable of type function/ and A1 is a term-form of g, then \<j>X is

a term-form of / - » g.
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4.5) If Px, . . ., Pm are mutually exclusive predicates and X, is a term-form of
type function^, i = 1, . . . , m + 1, then C[PX, . . ., Pm, Xx, . .., Xm, Xm+X] is a
term-form of type function

"(Xl)/l + • • • +n(xjfm + Xl • • • Xm/m+l.

where x, is the characteristic function of Pt and «(x,) represents its reciprocal
signum.

4.6) If X is a term-form of / , then Y is one of 0 - » ( / - » / ) . p[X, Y] is a
term-form of 0 —»/.

4.7) Let / and g be type functions of term-forms X and Y respectively, where
&, <$>x, . . . , ®m exhaust all the free parameters of / and g. Suppose for a type
function h with parameters &, %x, . . ., %m,

h(0, * „ . . . , A:m) = f(kx,..., km),

g(k, kx,..., km) = h(k, kx, . .., km) -> h(k + 1, kx,. . . , km)

for every set of k, kx, . . . , km (values of &,<&x,..., %m). Then R[&, X, Y] is a
term-form of type function h.

4.8) Suppose X is a term-form of type function f(6til,. . . , 6Dn, 6,, . . . , Q,).
Then SutyA'; f['. \ \%) is a term-form of type function

/(<$„.. . ,<$„,/>„.. . , />,)
w h o s e p a r a m e t e r s a r e Gi)x, . . .,

 6i>n a n d t h o s e i n / ; , , . . . ,/>/.

COROLLARY. /4 term-form and its associated type function share the same free
parameters, and a finite type is associated with a complete specification of a
term-form.

PRINCIPLE. The term-form is what we claim to be a construction principle,
since it is designed to enumerate some primitive recursive functionals, possibly
of different types.

DEFINITION 4.5. Reduction. For a term-form X of associated type function

(a complete numerical specification) can be said of type f(kx, . . . , km). X,
Y, . . . will denote term-forms, aX, oY, . . . their complete specifications
(without explicitly specifying the numbers unless necessary) and U, V, . . . some
primitive recursive terms of finite type.

aX => U will express the fact that U is the reduct of X, where aX and U share
a common finite type. Reducts will be defined so that, if a variable </>/(®" • ®-)
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occurs in X, then <f>/^k> *™) occurs in U, and no new variables are introduced.
The definition of reducts will be given according to the construction of pre-
terms in 4) of Definition 4.1.

4.1) Consider a pre-variable <J>f, where § is a pre-type, and let s be a complete
specification of 3. More precisely, s is the result of computation of a specifica-
tion, s represents a finite type, hence <j>* exists among the variables of finite type.
Now

4.2) X =* X if X is a primitive recursive term of finite type, since aX = X.
4.3) If aX => U and oY => F, then

where £/< F> represents the application of U to F in the usual sense.
4.4) If o<j> => ̂  and aA' =» £/, then

a(X<j>X) = Xa<f>aX => A^£/ ,

where the last X represents the usual X-notation.
4.5) Suppose oXj => Ut, i = 1, . . . , m + 1. Then

,, . .., Pm, X{, . . . , Xm, Ar
m+1]

= CfaP,, . . . , aPm, aXu . . ., aXm, aXm+l]

+ Xl • •

where x and /i(x,) were defined in Definition 4.4 and the reduct is defined in the
arithmetic of primitive recursive terms of finite type, x, here in fact represents
either 0 or 1, since we are dealing with a complete specification.

4.6) If aX => U and oY => F, then

ap[X, Y] = p[aX, oY]^p[ U, V],

where the last p is interpreted to be the recursion operator.
4.7) Suppose Spec(A'; f) => U and Spec(y; ff)=>W. (We have written out

just one parameter % for simplicity.) Then

Spcc{R[&,X, Y]; «?)=Spec(X; ?)=>£/,

Spcc(R[&,X,Y]; k
&

+ll)

= Spec(y;f?)<Spec(J?[«,Jf,r]; %*))=> W(V\

where S^x{R[&, X,Y\, f f) => F.
4.8) Let A' be a term-form where ®,, . . . , <$>m cover all the free parameters

distinct from C,, . . . , C, and those in/*!, . . . ,p,. Suppose
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w h e r e r , = Spec(/?;; f*;;; ff). T h e n

If aX => £/, then we say that aX reduces to U or aX is reducible to U. If every
complete specification of a term-form X is reducible (to a primitive recursive
term of finite type), then we say that X is reducible.

THEOREM 3. Every term-form is reducible.

PROOF. By induction on the construction of a term-form, within which by
induction on /. We have only to examine each case in Definition 4.5; consult
also Definitions 4.3 and 4.4.

CONCLUSION. Our construction principle—term-forms—is computable, in the
sense that every term-form is reducible, namely every complete specification of a
term-form is reduced to a primitive recursive term of finite type, which is
considered to be computable.

Note. As for the computability of primitive recursive functionals of finite type,
see for example Diller (1968), Hinata (1967) and Hindley and others (1972).

The demonstration of the computability of our construction is based on the
soundness of the system of primitive recursive functionals of finite type and the
double induction used in Theorem 3 above.

5. Functional interpretation concluded

Now we shall show that the functional construction in Section 3 can be
interpreted in terms of the construction principle in Section 4. We first build up
a term-form that corresponds to the functional N in Theorem 2 of Section 3,
following the procedure in (i) — (xii) there, and then demonstrate that it does
the work.

Definition 5.1. 1) We specify the type functions, auxiliary functions and
auxiliary predicates, (2f, £, $), in Definition 4.2 (see also Definition 3.1).

p: & + 1,($ + 1) - &, % - &.
%: & = ® + 1, ( S - 1) - & > 0.
2) Construction. For any object S which was defined in (i) ~ (xii), Section 3,

we let T(S) denote the term-form which is to be defined corresponding to it.
(Review the note at the end of Section 3.)
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(i)* The OQ in (i) is a primitive recursive functional of finite type. Let T(a0) be
a0 itself,

(ii)* Let T(<&~) be

where d = d(a, b, c) and a, b, c, <£, $ are variables. Notice that R is not
involved.

(iii)* T($>*) = T(&~)(n(a, x, c>>.
(iv)* T(y3) = Xi//XaX$XcA<^<c + to", Axr($*)>,

where the associated type functions are as follows.

$:0^[ffi + 1],
*: [£].
(v)* 7Xy)

where the associated type functions are {&} for ^ and [&] for <|>.
(vi)* T(8) =

), 7X/8)].
(viii)* Here we need some auxiliary steps.
Define/(®) to be [% + 1] -»[® + 1] and /A®> to be ATJ • TJ, where TJ has the

type function [$ + 1]. Define further:

6 = \<>0, for <j> of type ||0||,

y = c[(« + i ) - c > o,z ,e] .
Then

y].

(ix)* T{v) = C[<V = 0, /[°>, Sub(r~; , ? , ) ] ,
where /[01 is the identity of type [0], and

(x)* fi is a term of finite type; 7(jii) = /t.
(xi)* T(M) = *

where

M~ = Sub(r(M); 9i f f ) .

PROPOSITION 5.1. The expressions defined in (i)* —Xxii)* are legitimate term-
forms.
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PROPOSITION 5.2. For any f0 a decreasing sequence from E and a number i,

Spec(niV);htf/o)f)

acts as the N(i; f0) in (xii).

PROOF. We shall show that for each term-form T(S) in one of (i)* — (xii)*
above, any of its complete specification is reduced to the term which is obtained
from 5 by instantiating it by the same set of values of parameters. See
Definitions 4.3 and and 4.5 for evaluation.

(i) Obvious.
(ii) Spec(7T*~); f) = p[Spec(^l; f), Spec(\l&&+lXd, c + «"/>; f)]

which represents the <b~ in (ii) according to the interpretation of p as the
recursion operator of functionals (see Yasugi (1963)).

(iii) — (vi) are dealt with likewise. Let us consider (iv) as an example.
(iv)Spec(r(/8);f)

= X Spec(^; f)Xa\ Spec($; f)\c\ Spec(<?>; f)

; f)(c + «*, \x

where Spec(r($*); f ) =* $f by (iii), s = 0, (0 -» [/]) -^ [/] and f = 0 ̂ . [/ + 1].
(vii) We prove this case by induction on i.

Spec(*[&, r(a0), T( fi)]; «) =* a0 = e0.

Suppose

Spec(J?[ffi,

has been established.

, 7X«0),

by (iv) and the induction hypothesis.

(viii) Spec(Z; f f) = Spec(r(5)<n£)>; ? f (l+,f-*)

= Spec(r(5); f ,e (/+1f_,)<SPec(r(e); f

= SPec(r(S);

by (vi) and (vii).
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Spec(y;«£) = C[Spec((® + 1) ^ G > 0; * £), Spec(Z; f £), Spec(0; » f)]

where x(/> &) is the characteristic function of (/ + 1) — k > 0. Thus, if k < / +
1, then the reduct is

Suppose A: < / and

Then

); ,e
+l f ) = Spec(y; i »)<Spec(7tT);

(ix) Spec(r(T~); f ) = SpeC(r(r); f ^ .XSpe^/™; f ,%,)) => r(/>O)</t°]>

by (viii) where Jt = / + 1.

(x) Spec(r(^); f ) = C[Spec(^) = 0; ?) , /t°l, Spec(r(T~);,?, ? ) ]

if*

(xi) Spec(r(M); *) = X/V<hp<ia<Spec(r(^);

by(x).
(xii) Let ht(/0) bej.

Spec(A/~; fj) = Spec(r(M);

by (xi).

Spec(r(JV);f/)=>/„.
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Suppose i <j and

Spec(T(N);f?)=>N(rJ0).

Then

) ; £ , •) = SPec(M~; f/)<SPec(r(Ar); f/)>

This completes the proof of the proposition.

CONCLUSION. The functional construction which the accessibility proof of (E,
-<) in Section 3 is based upon can be interpreted in the theory of term-forms.
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