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1. Let (Xn) be a sequence of real numbers. (Xn) corresponds
to a number Lim x called the Banach limit of (Xn) satisfying the

following conditions:

i +by ) = a Li +b Li

(1) Lim (a x yn) a Lim x b Lim Vo

(2) If x >0 for every mn, then Limxn >0
n = z

. - 14
(3) Lim X 14 imx

(4) If x = 1 for every mn, then Limx =1
n

The existence of such limits is proved by Banach [1].

The object of this paper is to obtain certain criteria for the
existence of unique Banach limit of Fourier series and conjugate series
which gives a new criterion for the convergence of Fourier series and
conjugate series,

Definitions: A sequence (sn) is said to be almost convergent
to a limit s if
n+tp

(1.1) lim 1 Z s, = 8
n>o n+1 k=p

uniformly with respect to p.

The following functions are frequently used:

gx(t) {f(x+t) + f(x-t) - 2{(x)} ,

$o(t) = {f(x+t) - f(x-1t)},
x
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t
[, e (u)]du,

i

G (1)
X

t

g;{(t) fo ¢X(u) du.

1

Lorentz [2] has proved the following theorems:

THEOREM A. A sequence (x ) has unique Banach limit if and
n

only if it is almost convergent.

THEOREM B. an = O(c ) is a Taubarian condition for an
n

almost convergent series Za_  if and only if, for every ¢ > 0, there
n

exists a lacunary sequence {n} with ¢ <e for n#n ,
v —— n v

v=1,2,3, ....
We prove the following theorems:

THEOREM 1. Let f(x) be a L-integrable and 2 periodic
function. The associated Fourier series

™ 8

(1.2) 1/2 a + (a cos nx +b sin nx)
n

n=

has unique Banach limit f(x) provided the following conditions hold

1 f lgx(t)]dt = o(r) as -0+
o

(1.3)

(2) fn+'1 ng(t)'/t dt = o(1) as n tends to o« |

uniformly with respect to p.

As the terms of the Fourier series tend to zero, theorems A
and B imply that (1.3) are the sufficient conditions for the convergence
of Fourier series.

It is important to note that the above conditions (1.3) do not imply
the Dini  condition of convergence of Fourier series. The following

example illustrates the above fact:

Consider the function
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n

f(x) x2 sin '1/x2 - cos 1/x2 , x# 0.

£(0) 0,

{ £(0+t) +g(0-1t) - 2£(0)}

go(t)

th sin 1/t2 - 2 cos 1/t22 0.

Evidently (41.3) (1) holds for above go(t), and for (1.3) (2) we have

1 1
n+1 n+4
2 . 2
J " [go(t)[/t dt = [t7 sin 1/t"]
n+p+1 ntp+1

which tends to zero as n tends to infinity uniformly with respect to
p, whereas

1
J leggl/tat = e ()
0
This shows that Dini's condition does not hold.

THEOREM 2. Let f(x) be_a L-integrable and periodic 2w
function. The associated conjugate series of (1.2)

™8

(1.4) (a]:1 sin nx - bn cos nx)

1

1

n

has unique Banach limit 'fb(x) provided it exists and the following
conditions hold:

f | ¢ (t)[dt = o(r) as 1 tends to O+
o X

n+1
(1.5) f ,¢x(t),/tdt = o(1) as n tends to
1
n+p+1

uniformly with respect to p.

2. Before proving the theorems we prove the following

(*) Titchmarsh, E.C. : Theory of functions p.342
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LEMMA

I Pl - A n;p sin(k+1/2)t
n T ntt sin t/2
k=p
then

0 NP - 0(1/nt?), O<t<m,

(2.1) (ii) Ni(t) = 0 (n4p+1) ,
(i) NP(t) = o(1/t)
n
(iv) fﬁ Ni(t)dt = 7
=T

Proof of the lemma.

O<t<mw,

1 {cos pt - cos(ptnti)t}

1) NP(t) =
n

2
ntl (2 sin t/2)
Np(t) - O(i/ntz) , I<t<w
n
. . _ sin(k+1/2)t
(ii) Since Dk(t) = T sint/2 /2
= 0 (k)
we have Ni(t) = 0 (n+p+1) :

2 sin(p+Hn+1)/2)t sin(nt+1)t/2

(i) NE(t)
n

= 0(1/t)
o 1
i 1 NY(t) dt = ——
(v) 4/m [ NP(e) vl

-
1
n+1
This proves the lemma.
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Proof of the theorem 1.

Let sn(x) be the nth partial sum of the series (1.2). Itis easy

to show that

B p sin(n+1/2)t
s _(x) - f(x) = 1/2n fogx(t) sint/z O
1 n+p
tpn(x) - ix) = g T {s (x) - £(x))
k=p
4 p
= 1/27 fo gx(t) Nn(t) dt
1 ——
n+p +1 n+1 T
=1/2n(fo +f1 +_1_)
ntp+1 n+1
p
g (1) N2(t) at
= P+Q+R.

P = o(1) uniformly with respect to p, by the hypothesis (1.3) (1) and
(2.1) (ii).

Using (2.1) (1)

™ e (0]
R = 0(/n [, > dt) .
n+1
Applying integration by parts and (1.3) (1),
G (] " T G (t)
= dt
R = 0(/n E , *+2/n J LT )
n+1 n+1
= o(1) uniformly with respect to p, and
1
1 ntl sin(pHn+1)/2)t sin (n+1)t/2
Q= 2(n+1)m f 1 gx(t) 2 dt.
S 2 ( sin t/2)
nt+p+1
259
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Using the well known inequality Isin(n+1)tl < (n+1)| sin tI R

1
n+1 fgx(t)l
Q = 0('1/2‘:7f . . dt)
ntp+1

1l

0o(1) uniformly with respect to p, by (1.3)(2).

~ th
Proof of the theorem 2. Let sn(x) be the n partial sum of
(1.4).
m ~
j pr(t) Dk(t) dt

(o]

We have (x) =-

2
n ™

where Dk(t) is Dirichlet's conjugate kernel.

n+p
P _1T1 'gk(x)
n n K=p
f;p o 2 fﬂ (1) 1 n;p{ cos t/2 cos(k+1/2)t boat
n T odrjx (n+1) K=p sin t/2 sin t/2
~p 2 v
tP - (- = t
n ( nfi LPX()cott/Zdt)
n+p+1
1
n+p+1 n+p
2 g ~
- - t
m(n+l) J o LJrJx(t) kfp Dk (t)
T n+p
2 cos(k+1/2)
—_——t  dt
* w(n+1) f 1 t‘bx(t) kzi sin t/2
n+p+1 P
= A+B
1
2 n+p+1
A = 0
0 (- jo lq;x (t)]  (n+p+1) dt ,

1]

o(1) uniformly with respect to p, by (1.5);
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n+1 >

B = yo(t) dt
m(n+1) f 1 x (sin t/2)2

J, L cos(p+nt1)t sin nt/2

n+p+1
cos(ptnti)t sin t/2

2
+ w_(t)
f~1— * (sin £/2)°

B1 = 0 (f 1 lq,:x(t)l /tdt) = o(1) wuniformly with

respect to p, by (4.5).

n+p+1
y 2
= t
B, = 0(/n [ fy )]/t dy
n+1
g (t) = Ty (t)
1 X X
= o{_ ([ tZJ t2 [, —5  an}).
_—n+1 n+1
BZ = o(41) uniformly with respect to p, using (1.5).
2 [ 2
- = f1 ¢x(t) cot t/2 dt += f . pr(t) cot t /2 dt
n+1 ntp+i
1
n+l

_<_‘12; f 1 lq;x(t) l / tdt = o(1) as n tends to o

n+p+1

uniformly with respect to p, which proves the theorem.

The author is indebted to Dr. J.A. Siddiqi for his help and advice
and to the referee for his suggestions in preparing the manuscript.
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