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Tree structure of spectra of spectral Moran
measures with consecutive digits
Cong Wang and Feng-Li Yin

Abstract. Let {bn}∞n=1 be a sequence of integers larger than 1. We will study the harmonic analysis of
the equal-weighted Moran measures μ{bn},{Dn} with Dn = {0, 1, 2, . . . , qn − 1}, where qn divides bn
for all n ≥ 1. In this paper, we first characterize all the maximal orthogonal sets of L2(μ{bn},{Dn}) via a
tree mapping. By this characterization, we give some sufficient conditions for the maximal orthogonal
set to be an orthonormal basis.

1 Introduction

Let μ be a compactly supported Borel probability measure on R
d . We say that μ is a

spectral measure if there exists a countable set Λ of Rd such that E(Λ) = {e2πi⟨λ ,x⟩ ∶
λ ∈ Λ} forms an orthonormal basis for L2(μ). In this case, Λ is called a spectrum of μ.
Spectral theory for the Lebesgue measure on sets has been studied extensively since
it is initialed by Fuglede in 1974 [16].

There exist probability measures that are not the restriction of the Lebesgue
measure to bounded sets, but they admit spectra. In 1998, Jorgensen and Pedersen
[18] constructed the first example of a singular, non-atomic spectral measure μ4,{0,2}
(i.e., the one-fourth standard Cantor measure) and proved that the set

Λ = {
n
∑
k=0

4k dk ∶ dk ∈ {0, 1}, n ≥ 0}

is a spectrum of μ4,{0,2}. Following this discovery, more interesting spectral mea-
sures were found and new spectra for μ4,{0,2} were found (see [2, 5, 6, 8, 10, 19,
20]). Subsequently, some singular phenomena different from the spectral theory of
Lebesgue measures were discovered. For example, there exists only one spectrum
with containing 0 for L2[0, 1], while a given singular spectral measure μ has more
than one spectrum which is not obtained by the translations of each other [10,
14]. Another surprising and interesting difference is that the Fourier expansions
of functions in L2(μ4,{0,2}) with respect to different spectra may have different
convergence properties. Strichartz [22, 23] proved that for any continuous function
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2 C. Wang and F.-L. Yin

on R, its Fourier expansion with respect to Λ is uniformly convergent; but Dutkay
et al. showed in [11] that there exists a continuous function on R whose Fourier
expansion with respect to the spectrum 17Λ is divergent at 0. Based on the above
exotic phenomena, a natural question is raised:

For a given spectral measure, can we find all spectra?
It is quite challenging to “characterize” all the spectra (no example is known

with this property). Motivated by the above problem, many researchers concentrated
their work on investigating self-similar/self-affine/Moran spectral measures and the
construction of their spectra from various aspects (see [1, 3, 4, 7–10, 12, 14, 17, 21, 25]
and the references therein).

Nowadays, there are a few of literature on this topic to construct new spectra. Most
of this literature deals with the issue of self-similar/self-affine measures. Various of
new spectra have been constructed for the measure μ4,{0,2} by Dutkay et al. [10],
for self-similar measure with consecutive digits by Dai et al. [7], Dai [5], for infinite
Bernoulli convolution by Li [20], Fu et al. [14], for certain self-affine measures on R

d

by Deng et al. [9], etc. Besides these results, some answers for spectral Moran measures
have been given in [15, 24]. Motivated by these, the main focus of this paper is to study
the classification of spectra of the so-called Moran measures with consecutive digits,
where μ4,{0,2} and Cantor measures with consecutive digits are special cases.

Let {bn}∞n=1 be a sequence of integers larger than 1 and Dn = {0, 1, 2, . . . , qn − 1}
for each n ≥ 1, there exists a Borel probability measure μ{bn},{Dn}, which is defined
by the following infinite convolutions of finite measures:

μ{bn},{Dn} = δb−1
1 D1 ∗ δ(b1 b2)−1D2 ∗ . . . ,(1.1)

where rE = {rx ∶ x ∈ E}, δE = 1
#E ∑e∈E δe (#E is the cardinality of the finite set E , δe

is the Dirac measure at the point e ∈ R) and the convergence is in a weak sense. Note
that Dn = {0, 1, 2, . . . , qn − 1}, we call the measure μ{bn},{Dn} a Moran measure with
consecutive digits. In particular, when bn = b and Dn = {0, 1, . . . , q − 1} ∶=D for all
n ∈ N, then the measure μ{bn},{Dn} is reduced to the self-similar measure μb ,D (see
[13]).

Let us first recall the known results on the spectrality of the measure μ{bn},{Dn}.
In the self-similar case, Dai, He, and Lai [7] showed that the measure μb ,D is spectral
if and only if q∣b. Recently, An and He [2] proved that if qn ∣bn for all n ≥ 1, then
μ{bn},{Dn} is a spectral measure. Continuing the above research, the main goal of
this paper is to investigate the structure of spectra for the Moran spectral measure
μ{bn},{Dn}.

The starting point of our approach is to analyze the precise structure of the zero set
of the Fourier transform μ̂{bn},{Dn}, and then we introduce the maximal orthonormal
sets, as candidates for the spectra of the measure μ{bn},{Dn}. We shows that there is
one-to-one correspondence between a maximal orthonormal set and a tree mapping
(Theorem 1.2). More precisely, we decomposed the maximal orthonormal sets of the
measure μ{bn},{Dn} using C j-adic expansion and put them into a labeling of the tree.

Definition 1.1 Let bn = qnrn for all n ≥ 1, we say that τ is a tree mapping if it is a map
τ ∶D0,∗ → Z which satisfies:
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Tree structure of spectra of spectral Moran measures with consecutive digits 3

(i) τ(0n) = 0 for all n ≥ 1,
(ii) for all n ≥ 1, τ(σ1 . . . σn) ∈ (σn + qnZ)⋂{−1, 0, 1, . . . , qnrn+1 − 2},
(iii) for any word σ ∈D0,n(n ≥ 1), there exists σ ′ ∈Dn ,∞ such that τ((σσ ′)∣ j) = 0

for all j sufficiently large.

Given a tree mapping τ, we define the following sets:

D(τ)={σ ∈D0,∞ ∶ τ(σ ∣m)=0 for all m large enough}
and

Λ(τ) = {
∞
∑
k=1

τ(σ ∣k)rk b1 . . . bk−1∣σ ∈D(τ)}.

It will play a special role in the following theorem, which gives a characterization of
the maximal orthogonal set of L2(μ{bn},{Dn}).

Theorem 1.2 The set Λ with 0 ∈ Λ is a maximal orthonormal set of μ{bn},{Dn} if and
only if there exists a tree mapping τ such that Λ = Λ(τ).

While a maximal orthonormal set is not necessarily a spectrum since it may lack of
completeness in L2(μ{bn},{Dn}). So what we need to do is to investigate under what
conditions on τ such that the set Λ(τ) to be a spectrum for the measure μ{bn},{Dn}.
We first introduce a good path to ensure the above maximal orthogonal set E(Λ(τ))
to be a complete set in L2(μ{bn},{Dn}).

Theorem 1.3 Let {qn , bn}∞n=1 be a sequence of positive integers larger than 1 with qn ∣bn
for all n ∈ N and supn≥1{bn} < ∞. Let τ be a tree mapping of μ{bn},{Dn}. Suppose there
is a constant integer N > 0 such that for any word σ ∈D0,k(k ≥ 1), there exists σ ′ ∈
Dk ,∞ such that σσ ′ ∈D(τ) and one of the following two conditions is satisfied:

(i) τ((σσ ′)∣k+ j) = 0 for all j ≥ 1;
(ii) τ((σσ ′)∣k+ j) = 0 for all 1 ≤ j ≤ n, τ((σσ ′)∣k+n+1) ∈ qk+n+1Z/{0} and

max{ j ≥ 1 ∶ τ((σσ ′)∣k+n+ j) ≠ 0} ≤ N .(1.2)

Then Λ(τ) is a spectrum of μ{bn},{Dn}.

We remark that (1.2) shows that the efficient length of the word σσ ′ is uniformly
bounded, that is to say, σ ′ is crucial in the proof of the completeness. However, the
length of σσ ′ i.e., max{ j ≥ 1 ∶ τ((σσ ′)∣k+ j) ≠ 0}may be not uniformly bounded since
it also depends on the choice of n in 0n .

Next, we consider other digits that can be used for the base expansion of the
integers in the candidate set Λ, and give a sufficient condition when these will generate
spectra for the measure μ{bn},{Dn}.

Definition 1.4 We say that τ is a generalized tree mapping if it is a mapping τ ∶
D0,∗ → Z, which satisfies:

(i) τ(σ1σ2 . . . σn) = 0 if σn = 0;
(ii) τ(σ1σ2 . . . σn) ∈ σn + qnZ if σn ≠ 0.
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4 C. Wang and F.-L. Yin

We say that σ ∈D0,∞ is a useful word about the generalized tree mapping τ if there
exists an integer τ◇(σ) ∈ Z satisfying

τ◇(σ) ≡
n
∑
k=1

τ(σ ∣k)rk Bk−1 (mod rn+1Bn), for all n ≥ 1.

Given a generalized tree mapping τ, we let

Λ◇(τ) = {τ◇(σ)∣σ is a useful word}.

Theorem 1.5 Let {qn , bn}∞n=1 be a sequence of positive integers larger than 1 with qn ∣bn
for all n ∈ N and supn≥1{bn} < ∞. Let τ be a generalized tree mapping,

(i) Λ◇(τ) is a maximal orthogonal set of μ{bn},{Dn};
(ii) if supσ∈D0,∗

∣τ(σ)∣ < ∞, then Λ◇(τ) is a spectrum of μ{bn},{Dn}.

The paper is organized as follows. In Section 2, we recall some preliminary results
on basic criterion for spectral measures to prove our main results in the sequel, and
characterize all the maximal orthonormal sets Λ for L2(μ{bn},{Dn}). Theorem 1.3 is
proved in Section 3. In Section 4, the proof of Theorem 1.5 is given.

2 Preliminaries and maximal orthogonal set

In this section, we first give some necessary definitions and facts that we need in the
proof of the main theorem. Subsequently, we characterize all the maximal orthogonal
sets Λ for L2(μ{bn},{Dn}) via a tree mapping (see Definition 1.1).

2.1 A criterion for spectral measures

Let μ be a probability measure with compact support on R. As usual, we define the
Fourier transform of the measure μ,

μ̂(ξ) = ∫ e−2πi ξx dμ(x).(2.1)

A countable set Λ ⊆ R is called an orthonormal set/ maximal orthonormal
set/spectrum, respectively, of μ if E(Λ) ∶= {e2πi λx ∶ λ ∈ Λ} is an orthonormal
set/maximal orthogonal set/orthonormal basis, respectively, for L2(μ). It is easy to
show that Λ is an orthogonal set of μ if and only if μ̂(λ i − λ j) = 0 for any λ i ≠ λ j ∈ Λ,
which is equivalent to

(Λ − Λ) ∖ {0} ⊆ Z(μ̂),

where Z( f ) ∶= {ξ ∶ f (ξ) = 0} is the set of the roots of the function f (ξ).
Combining (1.1) and (2.1), we can conclude that

μ̂{bn},{Dn}(ξ) =
∞
∏
j=1

MD j(
ξ

b1b2 . . . b j
),

where

MD j(ξ) =
1

q j
(1 + e−2πi ξ + ⋅ ⋅ ⋅ + e−2πi(q j−1)ξ).
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A direct calculation shows that

Z(MD j) = {
a
q j
∶ q j ∤ a, a ∈ Z},

where q j ∤ a means that q j does not divide a. Hence, the zero of μ̂{bn},{Dn} is given
by

Z(μ̂{bn},{Dn}) = ⋃
j≥1
{r jB j−1a ∶ a ∈ Z and q j ∤ a} ,(2.2)

where r j = b j/q j for all j ≥ 1 and B j = b0b1⋯b j with b0 = 1.
To this end, we introduce a fundamental criterion for spectral measures, which

is a direct application of Stone–Weierstrass Theorem and Parseval’s identity. For any
ξ ∈ R, denote

Q(ξ) = ∑
λ∈Λ
∣μ̂(ξ + λ)∣2 .

Theorem 2.1 [18] Let μ be a Borel probability measure with compact support on R,
and let Λ ⊆ R be a countable subset. Then:

(i) Λ is an orthonormal set of μ if and only if Q(ξ) ≤ 1 for any ξ ∈ R;
(ii) Λ is a spectrum of μ if and only if Q(ξ) ≡ 1 for any ξ ∈ R;
(iii) Q(ξ) is an entire function in the complex plane if Λ is an orthogonal set of μ.

2.2 Maximal orthogonal sets

We start with some notations for simplicity. Fix such an integer n ≥ 0, let

Dn ,k = {σn+1σn+2 . . . σn+k ∶ σ j ∈D j , n + 1 ≤ j ≤ n + k}

be the set of all words with length k. We adopt that Dn ,∗ = ⋃∞k=1 Dn ,k ⋃{∅} is
the set of all the finite words beginning with Dn+1 and Dn ,∞ = {σn+1σn+2 . . . ∶
σk ∈Dk , k ≥ n + 1} is the set of all the infinite words beginning with Dn+1.
For any σ = σn+1σn+2 . . . σn+k ∈Dn ,∗, we use ∣σ ∣ = k to be its length and σ ∣ j ∶=
σn+1σn+2 . . . σn+ j(1 ≤ j ≤ ∣σ ∣). For any σ ∈Dn ,∗ and σ ′ ∈Dn′ ,∗⋃Dn′ ,∞, the word
σσ ′ is their nature conjunction. In particular, ∅I = I and 0∞ = 000 . . . .

For simplicity, we set b0 = 1 and Bk = b0b1b2 . . . bk for all k ≥ 1. Given a tree
mapping τ, recall that

D(τ) = {σ ∈D0,∞ ∶ τ(σ ∣m)=0 for all m large enough}.(2.3)

For any σ ∈D(τ), we let

τ(σ) =
∞
∑
k=1

τ(σ ∣k)rk Bk−1 and Λ(τ) = {τ(σ)∣σ ∈D(τ)},(2.4)

which plays a special role in Theorem 1.2.
Before giving a proof of Theorem 1.2, we give the following lemma.

Lemma 2.2 Let Cn = {−1, 0, 1, . . . , qnrn+1 − 2} and Cn = C1 ×⋯× Cn for all n ≥ 1.
Then for any k ∈ Z(k ≠ 0), there exists a unique word σ = σ1σ2 . . . σn ∈ Cn with σn ≠ 0,
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such that

k = σ1 + σ2r2q1 +⋯+ σnrn q1b2 . . . bn−1 ∶= π(σ).

Moreover, if k = 0, then σ = σ1 = 0.

Proof For any k ∈ Z and ∣k∣ < q1r2 , let

σ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1(−1), k = −(q1r2 − 1),

(q1r2 + k)(−1), −(q1r2 − 1) < k < 0,

k, 0 ≤ k < q1r2 − 1,

−11, k = q1r2 − 1,

then k = π(σ). When ∣k∣ > q1r2 , then k can be decomposed uniquely as k = c1 +
k1q1r2 , where c1 ∈ C1 . If ∣k1∣ < q2r3 , then k1 has to be decomposed as in the previous
step. Otherwise, we further decompose k1 in a similar way and we get ∣kn ∣ < qn+1rn+2
after finite number k steps. The expansion is unique since each decomposition is
unique. ∎

Now, we can give the proof of Theorem 1.2.

Proof of Theorem 1.2 Suppose Λ = Λ(τ) for some tree mapping τ. We show that
it is a maximal orthogonal of μ{bn},{Dn}. To see this, we firstly show the orthogonality
of Λ. Pick two distinct λ, λ′ ∈ Λ, by the definition of Λ(τ), we can find σ ≠ σ ′ ∈D(τ)
such that

λ =
∞
∑
j=1

τ(σ ∣ j)r jB j−1 and λ′ =
∞
∑
j=1

τ(σ ′∣ j)r jB j−1 .

Let k be the first index such that σ ∣k ≠ σ ′∣k . Then, for some integer M , we can write

λ − λ′ = rk Bk−1(τ(σ ∣k) − τ(σ ′∣k) +Mqk).

By (ii) in Definition 1.1, τ(σ ∣k) and τ(σ ′∣k) are in distinct residue classes of qk . This
implies λ − λ′ ∈ Z(μ̂{bn},{Dn}) and then Λ(τ) is orthogonal.

With respect to the maximality of the orthogonal set Λ, the proof is by contradic-
tion. Suppose θ ∈ R/Λ and θ is orthogonal to all elements in Λ. Since 0 ∈ Λ, it gets that
θ = θ − 0 ∈ Z(μ̂{bn},{Dn}). Hence, by (2.2), there exists k ∈ Z such that θ = rk Bk−1a,
where a ∈ Z and qk does not divide a. By Lemma 2.2, it yields that

a = εk + εk+1qk rk+1 + ⋅ ⋅ ⋅ + εk+l qk rk+l bk+1bk+2 . . . bk+l−1 ,

where ε j ∈ C j(k ≤ j ≤ k + l) and qk does not divide εk . Consequently, it can infer that

θ = rk Bk−1a = εk rk Bk−1 + εk+1rk+1Bk +⋯+ εk+l rk+l Bk+l−1 .

Note that there exists unique σs(0 ≤ σs ≤ qs − 1) such that

εs ≡ σs(mod qs) ∀ 1 ≤ s ≤ k + l .

https://doi.org/10.4153/S0008439523000991 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439523000991


Tree structure of spectra of spectral Moran measures with consecutive digits 7

Denote εs = σs = 0 for all s > k + l . Since θ ∉ Λ, we can find the smallest integer α such
that τ(σ1 . . . σα) ≠ εα . By (iii) in the definition of τ, we can find

λ =
α
∑
j=1

τ(σ ∣ j)r jB j−1 +MBα

for some integer M . Then there exists M′ such that

θ − λ = rα Bα−1(εα − τ(σ ∣α) +M′qα).

By (ii) in the definition of τ, τ(σ ∣α) ≡ σα (mod qα), which is also congruent to εα
by our construction. This implies θ − λ is not in the zero set of μ̂{bn},{Dn} since qα ∣
(εα − τ(σ ∣α)). It contradicts to θ being orthogonal to all λ ∈ Λ.

Conversely, suppose we are given a maximal orthogonal set Λ of μ{bn},{Dn} with
0 ∈ Λ. Then Λ ⊂ Z(μ̂{bn},{Dn}). Hence, we expand λ/r1 (λ ∈ Λ)with Lemma 2.2 and
get

λ =
k
∑
j=1

ελ , jr jB j−1 ∶=
∞
∑
j=1

ελ , jr jB j−1 ,(2.5)

where ελ , j ∈ C j(1 ≤ j ≤ k) with ελ ,k ≠ 0 and ελ , j = 0 for all j ≥ k + 1. Note that all
ε0,n are zero. We first consider ελ ,1 the first coefficients of λ’s. As ελ ,1 can be written
uniquely as ik + q1αk ∈ C1 for some ik ∈D1 = {0, 1, . . . , q1 − 1}, we claim that

{ελ ,1}λ∈Λ = {i + q1α i ∶ i ∈D1} ⊆ C1 .

(Here α i depends only on i but not on λ, hence the set has q1 elements.) In fact, the
orthogonality of Λ implies that {ελ ,1}λ∈Λ ⊆ {i + q1α i ∶ i ∈D1}. On the other hand, if
{ελ ,1}λ∈Λ ⫋ {i + q1α i ∶ i ∈D1}, then there exists 0 ≤ i′ ≤ q1 − 1 such that q1 ∤ (ελ ,1 −
i′) for all λ ∈ Λ, which contradicts the maximality of Λ. This proves the claim.

From the claim, we can define τ on D0,1 by τ(σ1) = σ1 + q1ασ1(σ1 ∈D1) and in
particular τ(0) = 0. Similarly, we can show, for each 0 ≤ i1 ≤ q1 − 1, that

{ελ ,2 ∶ ελ ,1 = i1 + q1α i1}λ∈Λ = {i2 + q2α i2 ∶ i2 ∈D2} ⊆ C2

and define τ(σ1σ2) = σ2 + q2ασ2(σ2 ∈D2). Inductively, we can define a mapping τ on
D0,∗. By the construction of τ, it is easy to see that (i) and (ii) in Definition 1.1 are
satisfied. For any σ = σ1σ2 . . . σm ∈D0,∗ , again by the construction of τ, there exist
infinitely many λ such that ελ ,t = σt + qt ασt for 1 ≤ t ≤ m. Together with (2.5), fix such
a k, if m ≥ k, then we have λ = ∑∞j=1 ελ , jr jB j−1 = τ(σ0∞); If m < k, there exists σ ′ =
σm+1σm+2 . . . σk such that ελ ,n = τ(σ1 . . . σm σm+1 . . . σn) for all m + 1 ≤ n ≤ k. Then

λ =
∞
∑
j=1

ελ , jr jB j−1 = τ(σσ ′0∞).

This implies that (iii) in Definition 1.1 holds. Hence, τ is a tree mapping and Λ ⊂ Λ(τ).
Conversely, Λ(τ) ⊂ Λ since Λ is a maximal orthogonal set. And then Λ = Λ(τ). ∎
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3 The proof of Theorem 1.3

Theorem 1.2 shows that a countable set is a maximal orthonormal set of the measure
μ{bn},{Dn} if and only if it can be labeled as a tree. In this section, we will give a
sufficient condition for a tree mapping to generate a spectrum. In the remainder of this
paper, we always assume that the measure μ{bn},{Dn} satisfies P = supn≥1{bn} < ∞.
Given a tree mapping τ for μ{bn},{Dn}, we recall that

D(τ) = {σ ∈D0,∞ ∶ τ(σ ∣m)=0 for all m large enough}

and

τ(σ) =
∞
∑
k=1

τ(σ ∣k)rk Bk−1 , ∀ σ ∈D(τ),

where Bn = b0b1 . . . bn with b0 = 1. Similarly, for any σ ′ ∈D0,n , we define

τ∗(σ ′) =
n
∑
k=1

τ(σ ′∣k)rk Bk−1 .

We list some propositions, which will be useful in the sequel. Recall that

μ{bn},{Dn}(⋅) = δb−1
1 D1 ∗ δ(b1 b2)−1D2 ∗ . . .

= μn(⋅) ∗ μ>n(b1b2 . . . bn ⋅),
where μn is the convolutional product of the first n discrete measures and

μ>n = δb−1
n+1Dn+1 ∗ δ(bn+1 bn+2)−1Dn+2 ∗ . . . .

Proposition 3.1 Let τ be a tree mapping. Then, for any ξ ∈ R and for any σ ∈D(τ),
we have

μ̂{bn},{Dn}(ξ + τ(σ)) = lim
k→∞

μ̂k(ξ + τ∗(σ ∣k)).

Proof Since

τ(σ) =
∞
∑
j=1

τ(σ ∣ j)r jB j−1 = τ∗(σ ∣k) +
∞
∑

j=k+1
τ(σ ∣ j)r jB j−1 ,

it follows from the periodicity of ∣MDs(x)∣ that

μ̂k(ξ + τ(σ)) =
k
∏
s=1

MDs(ξ + τ(σ)) =
k
∏
s=1

MDs(ξ + τ∗(σ ∣k)) = μ̂k(ξ + τ∗(σ ∣k)).

And then the result follows. ∎

Proposition 3.2 Let τ be a tree mapping. Then, for all k ∈ N, we have

D0,k = {σ ∣k ∶ σ ∈D(τ)}.

Proof Clearly, {σ ∣k ∶ σ ∈D(τ)} ⊂D0,k . Conversely, it follows from (iii) of Defi-
nition 1.1 that for any word σ ′ ∈D0,k , there exists σ ′′ ∈Dk ,∞ such that σ ′σ ′′ ∈D(τ).
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This impliesD0,k ⊆ {σ ∣k ∶ σ ∈D(τ)} since (σ ′σ ′′)∣k = σ ′ ∈D0,k . Hence, we finish the
proof. ∎

Proposition 3.3 Let τ be a tree mapping. Then, for all k ≥ 1 and for any ξ ∈ R, we have

∑
σ∈D0,k

∣μ̂k(ξ + τ∗(σ))∣2 ≡ 1.

Proof We claim that {τ∗(σ)}σ∈D0,k is a spectrum of L2(μk). We can then use
Theorem 2.1 to conclude our lemma. Since this set has exactly q1q2 . . . qk elements,
we just need to show the mutual orthogonality.

For any two distinct words σ , σ ′ ∈D0,k , we have

τ∗(σ) =
k
∑
j=1

τ(σ ∣ j)r jB j−1 and τ∗(σ ′) =
k
∑
j=1

τ(σ ′∣ j)r jB j−1 .

Let s (1 ≤ s ≤ k) be the first index such that σ ∣s ≠ σ ′∣s . Then we can obtain that

τ∗(σ) − τ∗(σ ′) = rsb ∶ s − 1(τ(σ ∣s) − τ(σ ′∣s) +Mqs)

for some integer M. It follows from the periodicity of the exponential function e−2πix

that

MDs(
τ∗(σ) − τ∗(σ ′)

Bs
) = MDs(

τ(σ ∣s) − τ(σ ′∣s)
qs

) = 0,

where the last equation holds because (ii) in the definition of maximal mapping
implies that qs does not divide τ(σ ∣s) − τ(σ ′∣s). Since

μ̂k(ξ) =
k
∏
j=1
∣MD j(

ξ
B j
)∣,

it follows that μ̂k(τ∗(σ) − τ∗(σ ′)) = 0. And thus the desired result follows. ∎

We divide the proof of Theorem 1.3 into several lemmas.

Lemma 3.4 Assume that for any 1 ≤ j ≤ t, ck+ j ∈ {−1, 0, 1, . . . , qk+ jrk+ j+1 − 2} satis-
fies

ck+1 ∈ qk+1Z/{0} and ck+t ≠ 0.

Let ∣ξ∣ ≤ rk+1 − 1/qk , η1 = ξ/bk+1 and

ηn =
1

bk+n
(ηn−1 +

ck+n−1

qk+n−1
),

then one has
1

Pn+1 ≤ ∣ηn ∣ ≤
1

qk+n
(1 − 1

P2 ),

for all 2 ≤ n ≤ t, where P = supn≥1{bn} < ∞.
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Proof With an easy calculation, it can infer that

ηn =
ξ + ck+1rk+1 +∑n−1

j=2 ck+ jrk+ jbk+1 . . . bk+ j−1

bk+1 . . . bk+n
, ∀2 ≤ n ≤ t.

On the upper bound, it follows ck+ j ∈ {−1, 0, 1, . . . , qk+ jrk+ j+1 − 2} for all 1 ≤ j ≤ n,
then

∣ηn ∣ =
22222222222

ξ + ck+1rk+1 +∑n−1
j=2 ck+ jrk+ jbk+1 . . . bk+ j−1

bk+1 . . . bk+n

22222222222
≤ rk+1−1/qk+(qk+1rk+2−2)rk+1 +⋯+ (qk+n−1rk+n−2)rk+n−1bk+1 . . . bk+n−2

bk+1bk+2 . . .bk+n

≤ rk+nbk+1 . . . bk+n−1 − rk+n−1bk+1 . . . bk+n−2

bk+1 . . . bk+n

= 1
qk+n

(1 − 1
qk+n−1rk+n

) ≤ 1
qk+n

(1 − 1
P2 ),(3.1)

where the last inequality holds since P = supn≥1{bn}.
On the lower bound, for η1, a direct calculation shows that

∣η1∣ ≤
1

qk+1
(1 − 1

P2 ).

For η2 = 1
bk+2
(η1 + ck+1

qk+1
) , since

ck+1 ∈ qk+1Z/{0} and ck+1 ∈ {−1, 0, 1, . . . , qk+1rk+2 − 2},

it follows that

∣η2∣ ≥
1

bk+2
(1 − 1

qk+1
(1 − 1

P2 )) >
1

2P
≥ 1

P3 .

For η3 = 1
bk+3
(η2 + ck+2

qk+2
) , where ck+2 ∈ {−1, 0, 1, . . . , qk+2rk+3 − 2}, one has the fol-

lowing two cases:
(i) if ck+2 = 0, then η3 = 1

bk+3
η2, and hence

∣η3∣ >
1

P3bk+3
≥ 1

P4 ;

(ii) if ck+2 /= 0, then

∣η3∣ >
1

bk+3
( 1

qk+2
− 1

qk+2
(1 − 1

P2 )) =
1

qk+2bk+3P2 ≥
1

P4 .

Noting that 1
P4 ≤ 1

qk+3
(1 − 1

P2 ). Then we get that

1
P4 ≤ ∣η3∣ ≤

1
qk+3
(1 − 1

P2 ).
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Continuing the above procedure several times, we can obtain, for all 2 ≤ n ≤ t, that
1

Pn+1 ≤ ∣ηn ∣ ≤
1

qk+n
(1 − 1

P2 ).

Hence, the lemma is proved. ∎

Since supn≥1{bn} < ∞ and qn ∣bn , there are only finitely many (bn ,Dn), say that
(b(1),D(1)), (b(2),D(2)), . . . , (b(N),D(N)) with D(i) = {0, 1, . . . , q(i) − 1} for
some N ∈ N. Hence, it is easy to show that

c1 =min{∣MD(i)(ξ)∣ ∶ ∣ξ∣ ≤
1

q(i)
(1 − 1

P2 )} > 0,(3.2)

and

c(t) = min
⎧⎪⎪⎨⎪⎪⎩
∣MD(i) (ξ + j

q(i)) ∣ ∶
ξ ∈([ 1

P t+1 , 1
q(i)

(1− 1
P2 )]∪[− 1

q(i)
(1− 1

P2 ),− 1
P t+1])

∀ j ∈ {0, 1, . . . , q(i) − 1}

⎫⎪⎪⎬⎪⎪⎭
> 0.

(3.3)

The following lemma will be use to prove Lemma 3.6, which is crucial in proof of
completeness of the maximal orthogonal set.

Lemma 3.5 Assume that for any 1 ≤ j ≤ t, ck+ j ∈ {−1, 0, 1, . . . , qk+ jrk+ j+1 − 2} satis-
fies

ck+1 ∈ qk+1Z/{0} and ck+t ≠ 0.

Let ∣ξ∣ ≤ rk+1 − 1/qk , and let

η = ξ + ck+1rk+1 +
t
∑
j=2

ck+ jrk+ jbk+1 . . . bk+ j−1 ,

then there exists a constant C(t) ∈ (0, 1) (only depending on t) such that ∣μ̂>k(η)∣ ≥
C(t).

Proof We define η1 = ξ
bk+1

and

ηn =
ξ + ck+1rk+1 +∑n−1

j=2 ck+ jrk+ jbk+1 . . . bk+ j−1

bk+1 . . . bk+n
, ∀2 ≤ n ≤ t.

According to the fact that

∣μ̂>k(η)∣ =
∞
∏
s=1
∣MDk+s(

η
bk+1 . . . bk+s

)∣,

it follows from the periodicity of ∣MDk+s(x)∣ and ck+1 ∈ qk+1Z/{0} that

∣μ̂>k(η)∣ = ∣MDk+1(η1)∣ ⋅
t
∏
s=2
∣MDk+s(ηs +

ak+s

qk+s
)∣ ⋅

∞
∏

s=t+1
∣MDk+s(

η
bk+1 . . . bk+s

)∣,

where ak+s ≡ ck+s (mod qk+s) with ak+s ∈ {0, 1, . . . , qk+s − 1} for 2 ≤ s ≤ t.
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We estimate the products one by one. From the proof of Lemma 3.4, it can infer
that

∣η1∣ ≤
1

qk+1
(1 − 1

P2 ).

And thus we have, together with (3.2), that

∣MDk+1(η1)∣ ≥ c1 > 0.(3.4)

For any 2 ≤ s ≤ t, using Lemma 3.4 again, we also have that
1

Ps+1 ≤ ∣ηs ∣ ≤
1

qk+s
(1 − 1

P2 ).

It follows from (3.3) that

∣MDk+s(ηs +
ak+s

qk+s
)∣ ≥ c(t) > 0.(3.5)

For s ≥ t + 1, we set

γ = η
bk+1 . . . bk+t

for convenience. Thus, we conclude that

∣ γ
bk+t+1

∣ ≤ 1
qk+t+1

(1 − 1
P2 ).

Using (3.2) again, it gets that
∞

∏
s=t+1

∣MDk+s(
η

bk+1 . . . bk+s
)∣ = ∣MDk+t+1(

γ
bk+t+1

)∣ ⋅
∞

∏
m=2

∣MDk+t+s(
γ

bk+t+1 . . . bk+t+m
)∣

= ∣MDk+t+1(
γ

bk+t+1
)∣ ⋅

∞

∏
m=2

∣ sin qk+t+m πγ(bk+t+1 . . . bk+t+m)−1

qk+t+m sin πγ(bk+t+1 . . . bk+t+m)−1 )∣

≥ c1 ⋅
∞

∏
m=2

∣ sin qk+t+m πγ(bk+t+1 . . . bk+t+m)−1

qk+t+m πγ(bk+t+1 . . . bk+t+m)−1 )∣.(3.6)

On the other hand, for any m ≥ 2, it can be easily checked that

∣ qk+t+m πγ
bk+t+1 . . . bk+t+m

∣ ≤
π(1 − 1

P2 )
qk+t+1bk+t+2 . . . bk+t+m−1rk+t+m

≤
π(1 − 1

P2 )
2m−1 .

Combined this with (3.6), we can obtain from the monotonicity of ∣ sin x/x∣ in [0, π]
and sin x/x ≥ 1 − 6−1x2 for x ∈ [0, π/2] that

∞
∏

s=t+1
∣MDk+s(

η
bk+1 . . . bk+s

)∣ ≥ c1 ⋅
∞
∏
m=1
(1 −

π2(1 − 1
p2 )2

6 ⋅ 4m ) ∶= c′ > 0.(3.7)

Combined with (3.4), (3.5), and (3.7), we get that

∣μ̂>k(η)∣ ≥ c1c(t)t−1c′ > 0.

Therefore, the desired result follows from C(t) = c1c(t)t−1c′. ∎
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Lemma 3.6 For any word σ ∈D0,k(k ≥ 1), let σσ ′ ∈D(τ) satisfying (1.2) given as in
Theorem 1.3. Let ∣ξ∣ ≤ rk+1 − 1/qk , and let

η = ξ +
∑∞j=1 τ((σσ ′)∣k+ j)rk+ jBk+ j−1

Bk
.

Then there exists a constant c such that ∣μ̂>k(η)∣ ≥ c.

Proof We distinguish two cases to prove it.
Case I. When σ ′ = 0∞ with τ((σσ ′)∣ j) = 0 for any j ≥ k + 1, thus η = ξ and

∣η∣ ≤ rk+1 −
1

qk
.

It is easy to check that ∣μ̂>k(η)∣ ≥ c′ > 0, where c′ is given as in (3.7).
Case II. When σ ′ = 0n δ(n ∈ N, δ ∈Dk+n ,∞) with τ((σσ ′)∣k+ j) = 0 (∀ 1 ≤ j ≤ n),

τ((σσ ′)∣k+n+1) ∈ qk+n+1Z/{0} and max{ j ∶ τ((σσ ′)∣k+n+ j) ≠ 0, j ≥ 1} ≤ N .

Together with the periodicity of ∣MDk+s(x)∣, it implies that

∣μ̂>k(η)∣ =
∞
∏
s=1
∣MDk+s(

η
bk+1 . . . bk+s

)∣

=
n
∏
s=1
∣MDk+s(

η
bk+1 . . . bk+s

)∣ ⋅
∞
∏

s=n+1
∣MDk+s(

η
bk+1 . . . bk+s

)∣

=
n
∏
s=1
∣MDk+s(

ξ
bk+1 . . . bk+s

)∣ ⋅ ∣μ̂>k+n(γ)∣,(3.8)

where

γ =
η

bk+1 . . .bk+n
=

ξ
bk+1 . . .bk+n

+ τ((σ σ ′)∣k+n+1)ck+n+1 +
∞

∑
j=2

τ((σ σ ′)∣k+n+ j)rk+n+ j bk+n+1 . . . bk+n+ j−1 .

Since max{ j ∶ τ((σσ ′)∣k+n+ j) ≠ 0, j ≥ 1} ≤ N , it follows that γ can be rewritten
as

γ = ξ
bk+1 . . .bk+n

+ τ((σσ ′)∣k+n+1)ck+n+1 +
N
∑
j=2

τ((σσ ′)∣k+n+ j)rk+n+ jbk+n+1 . . . bk+n+ j−1 .

Using Lemma 3.5, there exists a constant C(N) ∈ (0, 1) (only depending on N) such
that

∣μ̂>k+n(γ)∣ > C(N).(3.9)

Note that ∣ξ∣ ≤ rk+1 − 1/qk , we also have
n
∏
s=1
∣MDk+s(

ξ
bk+1 . . . bk+s

)∣ ≥
∞
∏
s=1
∣MDk+s(

ξ
bk+1 . . . bk+s

)∣ = ∣μ̂>k(ξ)∣ ≥ c′ ,(3.10)

where the last inequality holds from Case I.
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Combined with (3.8), (3.9), and (3.10), we get that

∣μ̂>k(η)∣ ≥ C(N)c′ > 0.

Let c = C(N)c′, we can obtain the desired result. ∎

Now, we have all ingredients for the proof of Theorem 1.3.

Proof of Theorem 1.3. Since τ is a tree mapping, it follows that Λ(τ) is a maximal
orthogonal set. By Theorem 2.1, we have

Q(ξ) = ∑
I∈D(τ)

∣μ̂{bn},{Dn}(ξ + τ(I))∣
2

=
∞
∑
n=0

∑
I∈D(τ), lτ(I)=n

∣μ̂{bn},{Dn}(ξ + τ(I))∣
2
≤ 1, ∀ ξ ∈ R.

Here, lτ(I) is the smallest integer n such that τ(I∣k) = 0 for all k ≥ n. Moreover, fixed
ξ ∈ (0, 1), for any ε > 0, there exists an integer Nε such that

∑
I∈D(τ), lτ(I)≥Nε

∣μ̂{bn},{Dn}(ξ + τ(I))∣
2
< ε.(3.11)

From Theorem 2.1, we only need to show that Q(ξ) ≥ 1 for all ξ ∈ (0, 1). Together
with Proposition 3.1, it can infer that

Q(ξ) ≥ ∑
I∈D(τ), lτ(I)<Nε

∣μ̂{bn},{Dn}(ξ + τ(I))∣
2

= ∑
I∈D(τ), lτ(I)<Nε

lim
k→∞
∣μ̂k(ξ + τ∗(I∣k))∣

2

= lim
k→∞

∑
I′∈D(τ), lτ(I)<Nε

∣μ̂k(ξ + τ∗(I∣k))∣
2
.

Using the condition of Theorem 1.3, it follows that

Q(ξ) ≥ lim
k→∞

∑
σ∈D0,k , lτ(σ σ ′)<Nε

∣μ̂k(ξ + τ∗((σσ ′)∣k))∣
2

= lim
k→∞

∑
σ∈D0,k , lτ(σ σ ′)<Nε

∣μ̂k(ξ + τ∗(σ))∣
2
,(3.12)

where σ ′ are given as in the theorem. It can easily be checked that

∣μ̂{bn},{Dn}(ξ + τ(σσ ′))∣ = ∣μ̂k(ξ + τ∗(σ))∣ ⋅ ∣μ̂>k

( ξ + τ∗(σ)
Bk

+
∑∞j=1 τ((σσ ′)∣k+ j)rk+ jBk+ j−1

Bk
)∣,
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and

∣ ξ + τ∗(σ)
Bk

∣ = ∣
ξ +∑k

j=1 τ(σ ∣ j)r jB j−1

Bk
∣ ≤ rk+1 −

1
qk

.

Therefore, combining with Lemma 3.6, we get

∣μ̂{bn},{Dn}(ξ + τ(σσ ′))∣ ≥ c∣μ̂k(ξ + τ∗(σ))∣,

where c is given in Lemma 3.6. Together with (3.11), it yields that

∑
σ∈D0,k , lτ(σ σ ′)≥Nε

∣μ̂k(ξ + τ∗(σ))∣
2
≤ 1

c2 ∑
σ∈D0,k , lτ(σ σ ′)≥Nε

∣μ̂{bn},{Dn}(ξ + τ∗(σ))∣
2
< ε

c2 .

Applying Propositions 3.2 and 3.3, we infer that

∑
σ∈D0,k , lτ(σ σ ′)<Nε

∣μ̂k(ξ + τ∗(σ))∣
2
+ ∑

σ∈D0,k , lτ(σ σ ′)≥Nε

∣μ̂k(ξ + τ∗(σ))∣
2
= 1.

Then using (3.12), we obtain that

Q(ξ) ≥ lim
k→∞
(1 − ∑

σ∈D0,k , lτ(σ σ ′)≥Nε

∣μ̂k(ξ + τ∗(σ))∣
2
) ≥ 1 − ε

c2 .

Hence, Q(ξ) ≥ 1 and this completes the proof of Theorem 1.3. ∎

4 The proof of Theorem 1.5

The aim of this section is to prove Theorem 1.5. Recall that σ ∈D0,∞ is a useful word
about the generalized tree mapping τ if there exists an integer τ◇(σ) ∈ Z satisfying

τ◇(σ) ≡
n
∑
k=1

τ(σ ∣k)rk Bk−1 (mod rn+1Bn), for all n ≥ 1.

It is easy to see that if σ ∈D0,∞ is a useful word, then the associated τ◇(σ) is unique.
Given a generalized tree mapping τ, we let

D◇(τ) = {σ ∈D0,∞ ∶ σ is a useful word} and Λ◇(τ) = {τ◇(σ)∣σ ∈D◇(τ)}.

Proof of Theorem 1.5. (i) We first show that Λ◇(τ) is an orthogonal set of
μ{bn},{Dn}. For any two distinct words σ , σ ′ ∈D◇(τ), we let n be the first index
such that σ ∣n ≠ σ ′∣n . Since

τ◇(σ) ≡
n
∑
k=1

τ(σ ∣k)rk Bk−1 (mod rn+1Bn) and τ◇(σ ′) ≡
n
∑
k=1

τ(σ ′∣k)rk Bk−1 (mod rn+1Bn),

it follows that

τ◇(σ) − τ◇(σ ′) = rn Bn−1(τ(σ ∣n) − τ(σ ′∣n) + qn M)
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for some integer M. Using the definition of the generalized tree mapping, we know
that

qn ∤ (τ(σ ∣n) − τ(σ ′∣n)).

Together with (2.2), we also have that

τ◇(σ) − τ◇(σ ′) ∈ Z(μ̂{bn},{Dn}).

Hence, Λ◇(τ) is an orthogonal set of μ{bn},{Dn}.
Next, we show the maximality of Λ◇(τ) by contradiction. Suppose that there

exists a θ ∈ R/Λ◇(τ) such that θ is orthogonal to all elements in Λ◇(τ). Note that
0 ∈ Λ◇(τ), we have that θ ∈ Z(μ̂{bn},{Dn}). Hence, by (2.2), there exists k ∈ Z such
that θ = rk Bk−1a, where a ∈ Z and qk does not divide a. By Lemma 2.2, it yields that

a = εk + εk+1qk rk+1 +⋯+ εk+l qk rk+l bk+1bk+2 . . . bk+l−1 ,

where ε j ∈ C j = {−1, 0, 1, . . . , q jr j+1 − 2}(k ≤ j ≤ k + l) and qk does not divide εk .
Consequently, it can infer that

θ = rk Bk−1a = εk rk Bk−1 + εk+1rk+1Bk +⋯+ εk+l rk+l Bk+l−1 ,(4.1)

where qk does not divide εk . Note that there exists unique σ j (0 ≤ σ j ≤ q j − 1) such
that

ε j ≡ σ j (mod q j) ∀ k ≤ j ≤ k + l .

Denote σ j = 0 for all 1 ≤ j < k and let σ = σ1σ2 . . . σk+l . By the definition of useful
words, it can be easily checked that σ0∞ is a useful word.

Since θ ∉ Λ◇(τ), we can find the smallest integer α such that τ(σ1 . . . σα) ≠ εα .
Hence,

θ − τ◇(σ0∞) = rα Bα−1(εα − τ((σ0∞)∣α) +Mqα),

for some integer M. Using the definition of the generalized tree mapping again, we
know that (σ0∞)∣α ≡ σα (mod qα), which is also congruent to εα by our construction.
It implies that

qα ∣ (εα − τ((σ0∞)∣α)),

and thus θ − τ◇(σ0∞) ∉ μ̂{bn},{Dn}. This contradicts the assumption and the maxi-
mality of Λ◇(τ) follows.

(ii) Together with the conclusion (i) and Theorem 1.2, there exists a tree mapping
τ1 such that Λ◇(τ) = Λ(τ1). For any σ ′ ∈D0,k (k ≥ 1), by the definition of the tree
mapping τ1, there is an infinite word σ ′′ ∈Dk ,∞ such that σ ′σ ′′ ∈D(τ1). Since
Λ◇(τ) = Λ(τ1), it follows that there exists σ ∈D◇(τ) such that τ◇(σ) = τ1(σ ′σ ′′).
Note that σ ∣k0∞ is a useful word, we can find σ ′′′ ∈D(τ1) such that τ◇(σ ∣k0∞) =
τ1(σ ′′′). Hence, one has that

τ1(σ ′σ ′′) ≡ τ◇(σ) ≡ τ◇(σ ∣k0∞) ≡ τ1(σ ′′′) (mod rn+1Bn) for any 1 ≤ n ≤ k.
(4.2)
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A direct calculation shows that

∣ τ∗1 ((σ ′σ ′′)∣n) − τ∗1 (σ ′′′∣n) ∣≤
n
∑
j=1
(q jr j+1 − 2)r jB j−1 < rn+1Bn .

Together with (4.2), it implies that τ∗1 ((σ ′σ ′′)∣n) = τ∗1 (σ ′′′∣n) for all 1 ≤ n ≤ k and thus
we have that

σ ′′′∣k = (σ ′σ ′′)∣k = σ ′ .

Hence, we rewrite σ ′′′ as σ ′′′ = σ ′δ with δ ∈Dk ,∞. Since supσ∈D0,∗
∣τ(σ)∣ < ∞, there

exists a constant M such that ∣τ(σ)∣ < 2M for all σ ∈D0,∗. Then

∣τ1(σ ′δ)∣ = ∣τ◇(σ ∣k0∞)∣ ≤ 2M
k
∑
j=1

r jB j−1 ≤ 2M+1rk Bk−1 .(4.3)

Repeating the procedure of (4.1), we also have that

2M+1rk Bk−1 = ϑk rk Bk−1 + ϑk+1rk+1Bk +⋯+ ϑk+�rk+�Bk+�−1 ,(4.4)

where ϑ j ∈ C j for all k ≤ j ≤ k + �. Then it is easy to check that

2M+1rk Bk−1 = ∣ϑk rk Bk−1 + ϑk+1rk+1Bk +⋯+ ϑk+�rk+�Bk+�−1∣

≥ rk+�Bk+�−1 −
k+�−1
∑
j=k
(q jr j+1 − 2)r jB j−1

≥ rk+�−1Bk+�−2 .

Consequently, it can infer that

2M+1 ≥ rk+�−1qk bk+1bk+2 . . . bk+�−2 ≥ 2�−1 ,

and thus � ≤ M + 2.
We let m be the largest order of the expansion of τ(σ ′δ) with respect to the base

{C j}∞j=1. Using (4.3) and (4.4), it can obtain that

m ≤ k + � ≤ k +M + 2.

Therefore, it follows from the definition of m that

max{ j ≥ 1 ∶ τ1((σ ′δ)∣k+ j) ≠ 0} ≤ M + 2.

Hence, the conclusion (ii) follows form Theorem 1.3. ∎
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