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Abstract

This article introduces the Clairaut conformal Riemannian map. This notion includes the previously
studied notions of Clairaut conformal submersion, Clairaut Riemannian submersion, and the Clairaut
Riemannian map as particular cases, and is well known in the classical theory of surfaces. Toward this,
we find the necessary and sufficient condition for a conformal Riemannian map ϕ : M → N between
Riemannian manifolds to be a Clairaut conformal Riemannian map with girth s = e f . We show that the
fibers of ϕ are totally umbilical with mean curvature vector field the negative gradient of the logarithm
of the girth function, that is, −∇ f . Using this, we obtain a local splitting of M as a warped product
and a usual product, if the horizontal space is integrable (under some appropriate hypothesis). We also
provide some examples of the Clairaut conformal Riemannian maps to confirm our main theorem. We
observe that the Laplacian of the logarithmic girth, that is, of f, on the total manifold takes the special
form. It reduces to the Laplacian on the horizontal distribution, and if it is nonnegative, the universal
covering space of M becomes a product manifold, under some hypothesis on f. Analysis of the Laplacian
of f also yields the splitting of the universal covering space of M as a warped product under some
appropriate conditions. We calculate the sectional curvature and mixed sectional curvature of M when
f is a distance function. We also find the relationships between the total manifold and the fibers being
symmetrical and, in particular, having constant sectional curvature, and from there, we compare their
universal covering spaces, if fibers are also complete, provided f is a distance function. We also find a
condition on the curvature tensor of the fibers to be semi-symmetric, provided that the total manifold
is semi-symmetric and f is a distance function. In turn, this gives the warped product of symmetric,
semi-symmetric spaces into two symmetric, semi-symmetric subspaces (under some hypothesis). Also if
the Hessian or the Laplacian of the Riemannian curvature tensor fields is zero, or has a harmonic curvature
tensor, then the fibers of ϕ also satisfy the same property, if f is also a distance function. By obtaining
Bochner-type formulas for Clairaut conformal Riemannian maps, we establish the relations between the
divergences of the Ricci curvature tensor on fibers and horizontal space and the corresponding scalar
curvature. We also study the horizontal Killing vector field of constant length and show that they are
parallel under appropriate hypotheses. This in turn gives the splitting of the total manifold, if it admits a
horizontal parallel Killing vector field and if the horizontal space is integrable. Finally, assuming that ∇ f
is a nontrivial gradient Ricci soliton on M, we prove that any vertical vector field is incompressible and
hence the volume form of the fiber is invariant under the flow of the vector field.
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1. Introduction

The geometry of Riemannian submersions has been effectively studied by several
geometers since its formulation (see for example, [6, 11, 23, 33]). The theory of the
Riemannian submersion was further generalized to that of the conformal submersion
[8, 15] and the Riemannian map [7] independently. In 2010, Şahin generalized the idea
of the conformal submersion and the Riemannian map to the conformal Riemannian
map [31].

The well-known Clairaut relation states that for every geodesic γ on a surface
of revolution M, (e f ◦ γ) sinϑ is constant, where e f is the distance of a point of
M from the axis of rotation, and ϑ is the angle between the tangent vector of the
geodesic and the meridian. Bishop [4] introduced the concept of the Clairaut Rie-
mannian submersion using Clairaut’s relation for geodesics on surfaces of revolution
[2, 29]. In 2017, the Clairaut condition for Riemannian maps was introduced by Şahin
in [32]. Using a similar approach, Meena and Zawadzki extended the Clairaut condi-
tion for the conformal submersion in [19]. The current paper generalizes the concept
of the Clairaut Riemannian submersion [4], the Clairaut conformal submersion [19],
and the Clairaut Riemannian map [32] to the Clairaut conformal Riemannian map.

Note that these maps have possible applications in many different areas. For exam-
ple, Riemannian submersions have applications in Yang–Mills theory, Klauza–Klein
theory, gravity, relativity, supergravity theory, superstring theory, Morse theory, and
so forth [6, 24, 33].

The conformal maps are the maps that preserve angles. Understanding the confor-
mal Riemannian maps is fundamental for various branches of mathematics, including
complex analysis, differential geometry, and theoretical physics. They provide a
powerful tool for studying geometric structures, and have far-reaching applications
in both pure and applied mathematics. The conformal factors of conformal maps
provide an appropriate deformation that furnishes realistic models in applications.
The conformal maps have applications in many areas, including the study of min-
imal surfaces, harmonic functions, and finding the solutions of partial differential
equations. They are also essential in the theory of Riemann surfaces. In hyper-
bolic geometry, which is a non-Euclidean geometry, conformal maps play a cru-
cial role in understanding the relationships between different models of hyperbolic
space [30]. The conformal mappings also have applications in gravity [21], med-
ical science (brain imaging), and computer graphics [12, 36–38, 43]. In addition,
conformal maps are the most suitable candidates for harmonic morphisms; see
[3, page 106].

The Riemannian maps satisfy the generalized eikonal equation, which is useful
to build some quantum models [7]. We note that under certain regularity condi-
tions, Riemannian maps (so called semi-Riemannian maps) were also considered in
semi-Riemannian geometry with applications (see the book by Garcia-Rio and Kupeli
[10]). The Clairaut theorem is a foundational mathematical tool with widespread
applications across various scientific and engineering areas. Consequently, there are
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many possible applications of the Clairaut conformal maps in mathematics, physics,
medical science, computer graphics, and so forth.

The paper is organized as follows. Section 2 is devoted to the preliminaries,
which are used throughout the paper. In Section 3, we first define Clairaut conformal
Riemannian maps and characterize them using the Clairaut relation. One relation is
that the fibers are totally umbilical, which yields the splitting of total manifolds under
appropriate conditions.

Section 4 deals with the Laplacian of the logarithm girth function. Employing
suitable hypotheses on M, f, and so forth, we again get some splitting-type results.

Section 5 deals with the geometry of the Clairaut conformal Riemannian maps
using distance functions, that is, C2 functions f satisfying ‖∇ f ‖2 = 1 [26]. The
important geometric properties, like symmetry, semi-symmetry, and so forth, of fibers
are studied if the total manifold of the Clairaut conformal Riemannian map also
satisfies the same property, provided that the logarithm of the girth of the map is a
distance function. We also obtain splitting-type results in this section for these spaces.

In Section 6, we obtain generalized Bochner formulas for Clairaut conformal
Riemannian maps. As an application, we study vertical and horizontal Killing vector
fields of constant length, and consequently obtain the splitting of the fibers and the
horizontal space, when it is integrable, under some appropriate geometric conditions.

Section 7 is the last section of the paper, which contains two subsections. In Section
7.1, we prove contracted-type Bianchi identities for the Clairaut conformal Riemannian
maps. In Section 7.2, we study the geometry of the Clairaut conformal Riemannian
maps whose total manifolds admit a Ricci soliton.

2. Preliminaries

In this section, we describe some preliminaries on the conformal Riemannian maps,
which are used throughout our paper.

Let ϕ : (Mm, g)→ (M′m
′
, g′) be a smooth map between Riemannian manifolds and

ϕ∗p : TpM → Tϕ(p)M′ be its differential map. We decompose the tangent space TpM
into the kernel space of ϕ∗p and its orthogonal complementary space. Also, we
decompose the tangent space Tϕ(p)M′ into the range space of ϕ∗p and its orthogonal
complementary space at a point ϕ(p) ∈ M′. Then we can write

TpM = (kerϕ∗p) ⊕ (kerϕ∗p)⊥ = νp ⊕ hp

and

Tϕ(p)M′ = (range ϕ∗p) ⊕ (range ϕ∗p)⊥.

The conformal Riemannian map ([31, Definition 1]): A map ϕ : (Mm, g)→ (M′m
′
, g′)

is said to be a conformal Riemannian map at p ∈ M if 0 < rank ϕ∗p ≤ min{m, m′} and
there is dilation ρ : M → R+ such that

g′(ϕ∗pX,ϕ∗pY) = ρ2(p)g(X, Y) (2-1)
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for all X, Y ∈ Γ(kerϕ∗p)⊥. The map ϕ is called a conformal Riemannian map if ϕ is a
conformal Riemannian map at each point of M.

In what follows, the conformal Riemannian map means the conformal Riemannian
map with dilation ρ.
The O’Neill tensors ([23, Section 2]): These tensors, commonly denoted by A and T,
are defined as

Aξ1ξ2 = h∇hξ1νξ2 + ν∇hξ1hξ2, (2-2)

Tξ1ξ2 = h∇νξ1νξ2 + ν∇νξ1hξ2, (2-3)

for all ξ1, ξ2 ∈ Γ(TM), where ∇ is the Levi-Civita connection of g. For any ξ1 ∈ Γ(TM),
the tensors Tξ1 and Aξ1 are skew-symmetric operators on (Γ(TM), g) reversing the
horizontal and vertical distributions.

It is also easy to see that T is vertical, that is, Tξ1 = Tνξ1 and A is horizontal,
that is, Aξ1 = Ahξ1 . We note that the tensor field T satisfies TUW = TWU for all
U, W ∈ Γ(kerϕ∗). See [23] for more details on these tensors.

Now from (2-2) and (2-3), we have for all X, Y ∈ Γ(kerϕ∗)⊥ and U, V ∈ Γ(kerϕ∗):

∇UV = TUV + ν∇UV = TUV + ∇̂UV , (2-4)

∇XU = AXU + ν∇XU, (2-5)

∇XY = AXY + h∇XY . (2-6)

Totally umbilical fibers ([33, (5.40)]): A Riemannian map has totally umbilical
fibers if

TUV = g(U, V)H or TUX = −g(H, X)U

for all U, V ∈ Γ(kerϕ∗) and X ∈ Γ(kerϕ∗)⊥, where the mean curvature vector field of
the fiber is defined as

H =
1
r

r∑
i=1

TUi Ui

for {Ui}ri=1, an orthonormal basis of the fiber of ϕ.
The second fundamental form of a Riemannian map ([33, Definition 23]): The
second fundamental form of a Riemannian map ϕ is defined as

(∇ϕ∗)(ξ1, ξ2) = ∇ϕξ1ϕ∗(ξ2) − ϕ∗(∇ξ1ξ2) (2-7)

for all ξ1, ξ2 ∈ Γ(TM). Here ∇ϕξ1ϕ∗(ξ2) = ∇′ϕ∗ξ1ϕ∗ξ2, where ∇′ is the Levi-Civita
connection on M′ and ∇ϕ is the pull back of the connection of ∇′ under ϕ.
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The adjoint of the covariant derivative ([26, page 59]): The adjoint of the covariant
derivative of (0, k)-tensor T is defined as

(∇∗ T )(X2, X3, . . . , Xk) =
m∑

i=1

(∇EiT )(Ei, X2, . . . , Xk), (2-8)

where {Xi}1≤i≤m are smooth vector fields and {Ei}1≤i≤m is an orthonormal frame in some
neighborhood of p ∈ M.

Further, it follows that

∇∗ ∇T = trace∇2T = ΔT , (2-9)

where ∇T and ΔT denote the covariant derivative and Laplacian of T , respectively.
Now we recall some results that are used later in our investigation.

LEMMA 2.1 [31 Lemma 4.1]. Let ϕ : (Mm, g)→ (M′m
′
, g′) be a conformal Riemannian

map between Riemannian manifolds. Then
m∑

a=r+1

g′((∇ϕ∗)(X, Y), Z̄a)Z̄a = X(ln ρ)Ȳ + Y(ln ρ)X̄ − g(X, Y) ϕ∗(∇ ln ρ),

where {Z̄a}ma=r+1 is an orthonormal frame of range ϕ∗ in some neighborhood of ϕ(p),
and X, Y ∈ Γ(kerϕ∗)⊥ are the horizontal lifts of X̄, Ȳ, respectively.

Thus, we have the following decomposition.

LEMMA 2.2 [34, Theorem 2.1]. Let ϕ : (M, g)→ (M′, g′) be a conformal Riemannian
map between Riemannian manifolds. Then

(∇ϕ∗)(X, Y) = (∇ϕ∗)(range ϕ∗)(X, Y) + (∇ϕ∗)(range ϕ∗)⊥(X, Y),

where

(∇ϕ∗)(range ϕ∗)(X, Y) = X(ln ρ)ϕ∗Y + Y(ln ρ)ϕ∗X − g(X, Y)ϕ∗(∇ ln ρ) (2-10)

for all basic vector fields X, Y.

In what follows, we require the fundamental tensor A for the conformal Riemannian
map, which has the following expression.

PROPOSITION 2.3 [13, Lemma 2.1]. Let ϕ : (M, g)→ (M′, g′) be a conformal
Riemannian map between Riemannian manifolds. Then

2AXY = ν[X, Y] − ρ2g(X, Y)
(
∇ν

1
ρ2

)

for all X, Y ∈ Γ(kerϕ∗)⊥.

It is interesting to know under what conditions a given Riemannian manifold splits.
We use the following splitting theorem in this context.
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THEOREM 2.4 (Splitting theorem (see [16, Theorem 6.1, page 187])). Suppose (Mm, g)
is a connected and complete Riemannian manifold admitting a nonzero parallel vector
field. Then the universal cover of (M, g) splits isometrically as a product N(m−1) × R,
where N is a Riemannian submanifold of N.

3. The Clairaut conformal Riemannian maps

In this section, we explore the geometry of Clairaut conformal Riemannian maps.
First, we characterize the geodesics of conformal Riemannian maps (Proposition 3.1).
Then using this characterization, we obtain a necessary and sufficient condition for
a conformal Riemannian map to be a Clairaut conformal Riemannian map. It turns
out that, in this case, the fibers of ϕ are totally umbilical with mean curvature vector
field −∇ f (Theorem 3.2). From this main result (under some hypothesis), we obtain
the splitting of the total manifold as the warped product or usual product of horizontal
integral submanifolds of M and fibers (Corollary 3.4). We also give an example and a
family of Clairaut conformal Riemannian maps and show that they indeed satisfy the
necessary and sufficient conditions of Theorem 3.2.

We recall that the Clairaut condition for Riemannian and conformal submersions
was first studied by [4, 19], respectively. Also, the Clairaut condition for Riemannian
maps was explored in [32]. In this article, we further generalize this notion to introduce
the Clairaut conformal Riemannian map and investigate its geometry in detail.
Clairaut conformal Riemannian map: A conformal Riemannian map
ϕ : (M, g)→ (M′, g′) between Riemannian manifolds is said to be the Clairaut
conformal Riemannian map if there is a function s : M → R+ such that for every
geodesic γ on M, the function (s ◦ γ) sinϑ(t) is constant along γ, where for all t, ϑ(t)
is the angle between γ̇(t) and the horizontal space at γ(t). Following the terminology
already used in [1], we call s the girth of the Clairaut conformal Riemannian map.

We know that with the help of Clairaut’s theorem, we can find all the geodesics
on a surface of revolution. It should also be observed that the notion of the Clairaut
conformal Riemannian map is based on the geodesic curve. We find necessary and
sufficient conditions for a curve on the total space (M, g) to be a geodesic, by using
techniques similar to [19, 32].

PROPOSITION 3.1. Let ϕ : (M, g)→ (M′, g′) be a conformal Riemannian map between
Riemannian manifolds. Let γ : I → M be a regular curve on M such that U(t) = νγ̇(t)
and X(t) = hγ̇(t). Then γ is a geodesic on M if and only if

AXX + ν∇XU + TUX + ν∇UU = 0 (3-1)

and

∇ϕXϕ∗X = 2X(ln ρ)ϕ∗X − ‖X‖2ϕ∗(∇ ln ρ)

+ (∇ϕ∗)(range ϕ∗)⊥(X, X) − ϕ∗(2AXU + TUU). (3-2)
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Now we prove the main result of this section, that is, we find a necessary and
sufficient condition for a conformal Riemannian map to be the Clairaut conformal
Riemannian map.

THEOREM 3.2. Let ϕ : (M, g)→ (M′, g′) be a conformal Riemannian map between
Riemannian manifolds such that the fibers of ϕ are connected. Then ϕ is the Clairaut
conformal Riemannian map with girth s = e f , where f is a smooth function on M, if
and only if the fibers of ϕ are totally umbilical with the mean curvature vector field
−∇ f , and also the dilation ρ along each fiber of ϕ is constant.

PROOF. First we prove that ϕ is a Clairaut conformal Riemannian map with s = e f if
and only if for any geodesic γ : I → M with U(t) = νγ̇(t) and X(t) = hγ̇(t), t ∈ I ⊂ R,
the equation

g(U(t), U(t))g(γ̇(t), (∇ f )γ(t))

+
ρ2

2
g
(
∇ν

1
ρ2 , U(t)

)
g(X(t), X(t)) + g((TUU)(t), X(t)) = 0 (3-3)

is satisfied. To prove this, let ϑ(t) ∈ [0, π/2] denote the angle between γ̇(t) and X(t).
Let the speed of γ be constant, a = ‖γ̇‖2 (say). Now

g(X, X) = a cos2 ϑ(t) (3-4)

and

g(U, U) = a sin2 ϑ(t). (3-5)

Differentiating (3-4) and substituting (3-2) yields that

g(AXX, U) − g(TUU, X) = −a sinϑ(t) cosϑ(t)
dϑ
dt

. (3-6)

Moreover, ϕ is a Clairaut conformal Riemannian map with s = e f if and only if
d/dt(e f◦γ sinϑ) = 0, that is,

cosϑ
dϑ
dt
+ sinϑ

d f
dt
= 0. (3-7)

By (3-5), (3-6), and (3-7), and using Proposition 2.3, we confirm (3-3).
If at any t0, γ̇ ∈ Γ(kerϕ∗), that is, X(t0) = 0, then by (3-3),

g(U, U)g(U,∇ f ) = 0;

this implies that U( f ) = 0. Thus, f is constant on any fiber as the fibers are connected.
Consequently, ∇ f is horizontal.
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Hence, by similar arguments to those in [19], we obtain a pair of equations:

g(TUU, X) + g(U, U)g(X,∇ f ) = 0 (3-8)

and

ρ2

2
g(X, X)g

(
U,∇ν

1
ρ2

)
= 0 (3-9)

for all vertical U and horizontal X.
From (3-8), it follows that the fibers are totally umbilical with mean curvature vector

field −h∇ f = −∇ f (as shown above, ∇ f is the horizontal vector field). Also, from
(3-9), we conclude that ρ is constant along fibers. This completes the proof. �

REMARK 3.3.

(i) Henceforth, (3-8) and (3-9) are referred to as the Clairaut conditions. We call
the function f in the above theorem the logarithmic girth function [1]. In the
next section, we explore the geometry of this function in detail.

(ii) The proof of Theorem 3.2 shows that f and the dilation ρ are constant on any
fiber. Hence, f and ρ can be regarded as functions on the horizontal space (when
the horizontal space is integrable).

(iii) In view of the above remark, we see that indeed the geometry of the Clairaut
conformal Riemannian map ϕ is concentrated on horizontal space. Hence, we
can regard it as a horizontal Clairaut conformal Riemannian map.

It should be noted that Garcia-Rio and Kupeli obtained splitting theorems for
Riemannian manifolds by assuming the existence of Riemannian maps between them
under certain conditions on Ricci curvature, scalar curvature, and the tension field [9].
Now using the above theorem, we obtain the splitting of the total manifold under some
hypotheses.

Note: In what follows, we denote the universal covering space of a manifold N by Ñ.

COROLLARY 3.4. Let ϕ satisfy the hypotheses of Theorem 3.2, and also suppose that
ϕ is the Clairaut conformal Riemannian map with girth s = e f , where f is a smooth
function on M. Let the horizontal space be integrable and Lh denote a leaf of the
horizontal space, and let Fν denote a fiber of ϕ. Then, we have the following.

(i) M splits as M = Lh × f Fν, that is, M is a locally twisted product of the leaf
of the horizontal space and the fiber. In particular, if the horizontal space is
one-dimensional, then M is locally the warped product Lh × f Fν, where Lh is
of dimension 1. Consequently, M̃ splits as M̃ = L̃h × f F̃ν, that is, the universal
covering space of M is isometric to the warped product of the universal covering
space of the leaf of the horizontal space and the universal covering space of the
fiber.

(ii) If Hess f = 0, then we have local splitting of M as Lh × Fν, and isometric splitting
of M̃ as M̃ = L̃h × F̃ν.
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PROOF. (i) From Theorem 3.2, if ϕ is a Clairaut conformal Riemannian map, then
the fibers of ϕ are totally umbilical and ρ is constant along the fibers of ϕ. Also by
hypothesis, as the horizontal space is integrable, A is zero (see [6, pages 10 and 11]).
Therefore, Lh is totally geodesic. Thus, by [28, Proposition 3(b)], M is the locally
twisted product of the leaf of the horizontal space and the fiber. Clearly, by Remark
3.3(ii), we can regard f to be a function on the space Lh. Hence, the twisted product
reduces to the warped product. The second conclusion follows from the de Rham
decomposition-type theorem [28, Theorem 1].

(ii) If Hess f = 0 on M, then the fibers of ϕ give rise to a spherical foliation on M
(see [22]), as in this case, the mean curvature vector field of the fibers of ϕ is parallel.
Hence, by the Clairaut condition (3-8), T is parallel and consequently, T ≡ 0. This
implies that Fν is totally geodesic. Thus we affirm [28, Corollary 1(ii)]. �

COROLLARY 3.5. Let ϕ satisfy the hypotheses of Theorem 3.2, and also suppose that
ϕ is the Clairaut conformal Riemannian map with girth s = e f , where f is a smooth
function on M. If the map ϕ is totally geodesic, then ϕ becomes a simply Clairaut
Riemannian map and we have local splitting of M as Lh × Fν, and isometric splitting
of M̃ as M̃ = L̃h × F̃ν.

PROOF. If the map ϕ is totally geodesic, then from (2-10), it follows that ρ is constant
along the leaves of the horizontal space. From Remark 3.3(ii), ρ is constant along the
fibers of ϕ. Hence, ρ is constant on M and therefore, ϕ is a simply Clairaut Riemannian
map. From Proposition 3.1 and Theorem 3.2, we conclude that in this case, A = 0 and
T = 0. Consequently, the conclusion follows from [28, Proposition 3(d)]. �

EXAMPLE 3.6. Consider two Riemannian manifolds

(M = R4, g = e2x1 dx2
1 + e2x1 dx2

2 + e2x2 dx2
3 + e2x3 dx2

4)

and

(M′ = R3, g′ = dy2
1 + dy2

2 + dy2
3 + dy2

4).

Let ϕ : (M, g)→ (M′, g′) be given by

ϕ(x1, x2, x3, x4) = (cos x1, sin x1, cos x2, sin x2).

Then

kerϕ∗ = span{E3, E4} and (kerϕ∗)
⊥ = span{E1, E2},

where {E1 = e−x1∂/∂x1, E2 = e−x1∂/∂x2, E3 = e−x2∂/∂x3, E4 = e−x3∂/∂x4} is an ortho-
normal basis of TpM for all p ∈ M. Let {E′i = ∂/∂yi for i = 1, 2, 3, 4} be a basis of
Tϕ(p)M′. An easy computation shows that ϕ is the conformal Riemannian map with
dilation ρ = e−x1 . Clearly, the dilation is constant on kerϕ∗. The covariant derivatives
using Christoffel symbols for the metric g are

∇E3 E3 = −e−x1 E2, ∇E4 E3 = e−x2 E4, ∇E3 E4 = 0 and ∇E4 E4 = −e−x2 E3.
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Then for U ∈ Γ(kerϕ∗) and a1, a2 ∈ R,

∇UU = ∇a1E3+a2E4 (a1E3 + a2E4)

= −a2
1e−x1 E2 − a2

2e−x2 E3 + a1a2e−x2 E4.

Consequently,

TUU = h(∇UU) = e−x1 E2.

In conclusion, ϕ is the Clairaut conformal Riemannian map with dilation ρ = e−x1 and
logarithmic girth function f = −x2/(a2

1 + a2
2).

EXAMPLE 3.7. Let M = M1 ρ ×s M2 be a doubly warped product [24] of two
Riemannian manifolds (M1, gh) and (M2, gν) with the Riemannian metric

g = (ρ ◦ ϕ2)2ϕ∗1(gh) + (s ◦ ϕ1)2ϕ∗2(gν),

where s and ρ are positive smooth functions on M1 and M2. We can see the first
projection ϕ1 : M1 ρ ×s M2 → M1 is a conformal submersion onto M1 whose vertical
and horizontal spaces at (p1, p2) are identified with Tp2 M2 and Tp1 M1, respectively.
Since the horizontal distribution is integrable, the O’Neill tensor A vanishes. Now, to
compute another O’Neill tensor T, we use Koszul’s formula to get

TUV = −g(U, V) ∇h log(s),

where U, V ∈ Γ(kerϕ1∗). Thus, any fiber of ϕ1 turns out to be totally umbilical. Also,
we can prove easily that ρ is constant along the fibers of ϕ1. We now consider the
conformal immersion ϕ2 : M1 → M1 ρ ×s M2; then the composite map ϕ2 ◦ ϕ1 is a
conformal Riemannian map. Moreover, projection ϕ1 and map ϕ2 ◦ ϕ1 have the same
vertical distribution. Hence, ϕ2 ◦ ϕ1 is a Clairaut conformal Riemannian map with
dilation ρ and girth s.

Note: It should be noted that in the following, ϕ denotes the Clairaut conformal
Riemannian map between Riemannian manifolds (Mm, g) and (M′m

′
, g′) with girth

s = e f and dilation ρ.

4. The Laplacian of the logarithmic girth function

In this section, we study the Laplacian of the logarithmic girth function on the
fibers, total manifold, and on the vertical and horizontal spaces. From the analysis of
the Laplacian, we split the total manifold in various contexts.

REMARK 4.1. Note that because ∇ f is horizontal,

Ĥess f (U, V) = ∇̂2 f (U, V) = g(∇Uν∇ f , V) = 0.

Thus, the Laplacian on the fibers Δ̂ f vanishes.
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THEOREM 4.2. If Δ f denotes the Laplacian on M, then

Δ f =
1
ρ2 div(range ϕ∗)(ϕ∗ ∇ f ) − (m − r)g(∇ f ,∇ ln ρ), (4-1)

where r = dim(kerϕ∗) and (m − r) = dim(kerϕ∗)⊥.

PROOF. The Laplacian of a function f on the fibers is zero (see Remark 4.1).
However, the Laplacian of a function f on M is defined as

Δ f = trace Hess f (ξ1, ξ2),

where ξ1, ξ2 ∈ Γ(TM). Then

Δ f =
r∑

i=1

g(∇Ui ∇ f , Ui) +
m∑

j=r+1

g(∇Xj ∇ f , Xj)

= −
r∑

i=1

g(∇Ui Ui,∇ f ) +
1
ρ2

m∑
j=r+1

g′(ϕ∗(∇Xj ∇ f ),ϕ∗(Xj))

=
1
ρ2

m∑
j=r+1

g′(ϕ∗(∇Xj ∇ f ),ϕ∗(Xj)),

where {Ui}ri=1 and {Xj}mj=r+1 are orthonormal frames of kerϕ∗ and (kerϕ∗)⊥, respec-
tively, in a neighborhood of some fixed p ∈ M, which are parallel at p ∈ M. Now,
using (2-7) and the fact that fibers are totally umbilical with mean curvature vector
field −∇ f (Theorem 3.2), in the above equation, we get at p,

Δ f =
1
ρ2

m∑
j=r+1

g′(∇ϕXj
ϕ∗(∇ f ) − (∇ϕ∗)(Xj,∇ f ),ϕ∗Xj)

=
1
ρ2

m∑
j=r+1

{g′(∇′ϕ∗Xj
(ϕ∗(∇ f )),ϕ∗Xj) − g′((∇ϕ∗)(Xj,∇ f ),ϕ∗Xj)}.

Finally, applying Lemmas 2.2 and 2.1 in the above equation, after some simplifications,
we get at p,

Δ f =
1
ρ2 div(range ϕ∗)(ϕ∗ ∇ f ) − (m − r)g(∇ f ,∇ ln ρ). �

REMARK 4.3. By the above theorem, we observe that the Laplacian on the total
manifold Δ f is the same as the Laplacian on the horizontal space Δh f , because the
Laplacian on the vertical space Δν f vanishes.

COROLLARY 4.4. If M is compact and if f = Cρ, where C > 0 is some constant, then
both f and ρ are constants. Consequently, the fibers of ϕ are totally geodesic, ϕ becomes
simply a Riemannian map, and M̃ is the product manifold, provided that the horizontal
space is integrable. In particular, the same conclusion follows if the horizontal space
is of dimension one.
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PROOF. From (4-1),

Δ f =
1
ρ2 div(range ϕ∗)(ϕ∗ ∇ f ) − (m − r)g(∇ f ,∇ ln ρ).

By hypothesis, it follows that ∫
M

f g(∇ f ,∇ f ) dΩM = 0.

This shows that f is constant and hence the conclusion follows.
Note that both ∇ f and ∇ρ are horizontal vectors, as ρ is constant on each fiber of

ϕ (Theorem 3.2). In particular, if the horizontal space is of dimension 1, then clearly
f = Cρ and the same conclusion holds and the splitting occurs with horizontal leaves
(connected) being of one dimension. �

PROPOSITION 4.5. Suppose that M is complete. If Δh f is nonnegative and
‖d f ‖ ∈ L1(M), then f is a constant function on M.

PROOF. By Remark 4.1,

Δ f = Δh f .

Since Δh f ≥ 0, Δ f ≥ 0. Then by the corollary in [42, Section 1], if
∫

M ‖d f ‖ < ∞,
then Δ f = 0. However, then Δ f 2 = 2 fΔ f + 2‖d f ‖2 = 2‖d f ‖2. But again, by the same
argument as above, as ‖d f ‖ ∈ L1(M), Δ f 2 = 0. Consequently, f is a constant function
on M. �

COROLLARY 4.6. Under the hypotheses of the above proposition, the following hold.

(i) Any regular curve on M is a geodesic.
(ii) If the horizontal space is integrable, then we have local splitting of M as Lh × Fν,

and isometric splitting of M̃ as M̃ = L̃h × F̃ν.

PROOF. As in this case f is constant (the conformal factor ρ is non-constant), we obtain
the following.

(i) By (3-7), cosϑ (dϑ/dt) = 0, which implies either ϑ is constant or ϑ is an integral
multiple of π/2. In any case, the Clairaut condition implies that any regular curve
is a geodesic. Hence item (i) follows.

(ii) Because f is constant, the fibers of ϕ are totally geodesic submanifolds of M and
hence TUU ≡ 0. Therefore, item (ii) follows, if the horizontal space is integrable
([28, Proposition 3(d)]). �

5. Geometry of fibers if the logarithmic girth function is a distance function

In this section, we mainly show that the fibers of a Clairaut conformal Riemannian
map satisfy some central geometric properties like symmetry, semi-symmetry (under
some hypothesis on the curvature tensor), provided that the total manifold satisfies the
same condition and if the logarithmic girth function f is a distance function, that is,
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‖ ∇ f ‖ ≡ 1. In particular, we obtain that if M̃ is isometric to a Euclidean space or sphere
or hyperbolic space, then the universal covering space of the fibers is isometric to a
sphere or sphere of radius 1/

√
2 or Euclidean space, respectively. We also confirm the

splitting of the universal coverings of symmetric spaces and semi-symmetric spaces
(under some conditions).

We use the techniques of [26, Theorem 9.4.2] for the general computations involved
in this section. In what follows, we use the Riemannian curvature tensor R of M
defined by

R(ξ1, ξ2)ξ3 = ∇ξ1 ∇ξ2ξ3 − ∇ξ2 ∇ξ1ξ3 − ∇[ξ1,ξ2]ξ3,

where ξ1, ξ2, ξ3 ∈ Γ(TM).
In this section, we use the concepts of symmetric space, semi-symmetric space, and

harmonic curvature tensor.
Symmetric space [26]: A Riemannian manifold is locally symmetric if and only if
∇R ≡ 0. A locally symmetric Riemannian manifold is called globally symmetric if it is
complete and also simply connected.
Space form [26]: A complete Riemannian manifold of constant sectional curvature is
called a Riemannian space form.

In particular, the space of constant sectional curvature is a locally symmetric space.
Semi-symmetric space [35]: A Riemannian manifold is said to be semi-symmetric if
R(ξ1, ξ2) · R = 0 for ξ1, ξ2 ∈ Γ(TM). The equation R(ξ1, ξ2) · R = 0 is equivalent to

(R(ξ1, ξ2) · R)(ξ3, ξ4)ξ5 = R(ξ1, ξ2)R(ξ3, ξ4)ξ5 − R(R(ξ1, ξ2)ξ3, ξ4)ξ5
− R(ξ3, R(ξ1, ξ2)ξ4)ξ5 − R(ξ3, ξ4)R(ξ1, ξ2)ξ5

for all ξ1, ξ2, ξ3, ξ4, ξ5 ∈ Γ(TM).
For the detailed study of semi-symmetric spaces, we refer to [35] and the references

therein.
Harmonic curvature tensor [26]: A Riemannian manifold is said to have harmonic
curvature tensor if ΔR = 0 (see (2-9)).

For some applications of the harmonic curvature tensor, see [27].

PROPOSITION 5.1. Let ϕ : (M, g)→ (M′, g′) be a Clairaut conformal Riemannian
map between Riemannian manifolds with s = e f . If f is a distance function, then for
U, V , W, E ∈ Γ(kerϕ∗) and X, Y ∈ Γ(kerϕ∗)⊥,

g(R(U, V)W, E) = g(R̂(U, V)W, E) − g(V , W)g(U, E) + g(U, W)g(V , E), (5-1)

g(R(U, V)W, X) = −g(V , W)g(∇U ∇ f , X) + g(U, W)g(∇V ∇ f , X), (5-2)

g(R(U, X)Y , V) = g((∇UA)XY , V) + g(AXU, AYV)

− g(∇X ∇ f , Y)g(U, V) − X( f )Y( f )g(U, V), (5-3)

where R and R̂ denote the Riemannian curvature tensors of M and fibers of ϕ,
respectively.
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PROOF. Using Theorem 3.2 and the fact that ‖ ∇ f ‖2 = 1 in the first three statements of
[13, Lemma 2.2], we get the required result. �

COROLLARY 5.2. Under the hypothesis of the above proposition, if U, V , X are
mutually linearly independent vectors, then the following statements hold.

(i) sec(U, V) = ŝec(U, V) − ({‖U‖2‖V‖2 − g(U, V)2})/‖U ∧ V‖2, where ŝec(U, V)
denotes the sectional curvature of the plane P spanned by U, V on the fibers of
ϕ. Consequently, if M has nonnegative sectional curvatures, then the fibers of ϕ
too have nonnegative sectional curvatures.

(ii) sec(U, X) = (‖AXU‖2 − {g(∇X ∇ f , X) + X( f )2}‖U‖2)/‖X‖2‖U‖2, where sec(U, X)
denotes the mix sectional curvature of the plane P spanned by U, X on M.
Consequently, we have the inequality:

sec(U, X) ≥ −{g(∇X ∇ f , X) + X( f )2}
‖X‖2

.

The equality holds in the above inequality if and only if the horizontal space is
integrable.

PROOF. Let U, V be two linearly independent vectors. Now, substituting W = U and
E = V in (5-1),

g(R(U, V , V , U)) = g(R̂(U, V , V , U)) − g(U, U)g(V , V) + (g(U, V))2,

which shows that

sec(U, V) = ŝec(U, V) − ‖U‖
2‖V‖2

‖U ∧ V‖2
+

g(U, V)2

‖U ∧ V‖2
.

Now, by the Cauchy–Schwarz inequality, we obtain the strict inequality:

sec(U, V) < ŝec(U, V).

Therefore, it follows that if sec(U, V) ≥ 0, then ŝec(U, V) ≥ 0.
Similarly, let X, U be two linearly independent vectors. Now, substituting V = U

and Y = X in (5-3),

g(R(U, X, X, U)) = ‖AXU‖2 − {g(∇X ∇ f , X) + X( f )2}‖U‖2,

which proves that

sec(U, X) =
‖AXU‖2 − {g(∇X ∇ f , X) + X( f )2}‖U‖2

‖X‖2‖U‖2
.

Clearly, the last inequality and the equality statement follow in an obvious way. �

REMARK 5.3. By (5-1) and (5-2),

νR(U, V)W = R̂(U, V)W − g(V , W)U + g(U, W)V
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and

hR(U, V)W = −g(V , W)∇U ∇ f + g(U, W)∇V ∇ f .

THEOREM 5.4. If M is locally symmetric, then the fibers of ϕ are also locally
symmetric provided that ‖ ∇ f ‖ = 1.

PROOF. Since M is symmetric, we have (∇ER)(U, V , W) = 0 for all E, U, V , W ∈
Γ(kerϕ∗), which means ν(∇ER)(U, V , W) = 0 and h(∇ER)(U, V , W) = 0. Thus,

0 = ν(∇ER)(U, V , W) = ν∇E(R(U, V , W)) − νR(∇EU, V , W)

− νR(U,∇EV , W) − νR(U, V ,∇EW).

Using (2-4) and then a Clairaut condition (Remark 3.3) in the above equation yields

0 = ν∇E(R(U, V , W)) − νR(∇̂EU, V , W) + R(∇ f , V , W)g(E, U)

− νR(U, ∇̂EV , W) + R(U,∇ f , W)g(E, V)

− νR(U, V , ∇̂EW) + R(U, V ,∇ f )g(E, W).

Substituting Remark 5.3 in the above equation,

ν∇E(νR(U, V , W) + hR(U, V , W)) − νR(∇̂EU, V , W)

− νR(U, ∇̂EV , W) − νR(U, V , ∇̂EW) = 0.

Again applying Remark 5.3 in the above equation,

∇̂E(R̂(U, V)W) − ν∇E(g(V , W)U) + ν∇E(g(U, W)V) + TEhR(U, V , W)

− R̂(∇̂EU, V)W + g(V , W)∇̂EU − g(∇̂EU, W)V

− R̂(U, ∇̂EV)W + g(∇̂EV , W)U − g(U, W)∇̂EV

− R̂(U, V)∇̂EW + g(V , ∇̂EW)U − g(U, ∇̂EW)V = 0.

Since we have TEhR(U, V , W) = hR(U, V , W)( f )E = 0, employing (5-2) and the fact
that f is a distance function in the aforementioned equation, we conclude that

(∇̂ER̂)(U, V , W) = 0. �

COROLLARY 5.5. Let M satisfy the hypothesis of the above theorem. Suppose that
the horizontal space is integrable and complete, then it must be a locally symmetric
subspace of M and consequently, locally M = Lh × f Fν and M̃ = L̃h × f F̃ν is a warped
product of two symmetric subspaces of M, where f is a distance function.

PROOF. The first part of the proof follows from [25, Propositions 2.2 and 2.3] and the
second part follows from [28, Proposition 3(b)]. �

PROPOSITION 5.6. Suppose that the fibers of ϕ are complete. If M is a space form
having sectional curvatures k, then the fibers are also space forms having sectional
curvatures (k + 1) and in particular are symmetric as well.
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PROOF. From Remark 5.3,

R(U, V , W) = R̂(U, V , W) − g(V , W)U + g(U, W)V . (5-4)

Since M has constant sectional curvature k, using the well-known form of the curvature
tensor [26] and (5-4),

R̂(U, V , W) = (k + 1){g(V , W)U − g(U, W)V}

for all U, V , W ∈ Γ(kerϕ∗). Thus, the fibers have constant sectional curvature (k + 1).
This completes the proof. �

COROLLARY 5.7. Under the hypothesis of the above proposition, the following hold.

(i) If k = 0, that is, M̃ is isometric to Euclidean space Rm, then F̃ν is isometric to
the unit sphere Sr.

(ii) If k = 1, that is, M̃ is isometric to Sm, then F̃ν is isometric to a sphere Sr of radius
1/
√

2.
(iii) If k = −1, that is, M̃ is isometric to Hm of curvature −1, then F̃ν is isometric to

a Euclidean space Rr.

Following the proof of Corollary 5.5, we obtain the following corollary.

COROLLARY 5.8. Let M̃ be as in the above corollary. Suppose that the horizontal
space is complete and integrable, then the following warped products occur.

(i) If k = 0, then L̃h must be a totally geodesic submanifold of Rm, that is, it must be
R

m−r. Hence, Rm = Rm−r × f S
r(1).

(ii) If k = 1, then by similar arguments to those given for item (i), Sm(1) =
S

m−r(1) × f S
r(1/
√

2).
(iii) If k = −1, then Hm = Hm−r × f R

r.

THEOREM 5.9. Suppose the horizontal space is integrable and M is semi-symmetric,
then the fibers of ϕ are semi-symmetric. If E, U, V , W, F ∈ Γ(kerϕ∗), the following
condition holds:

R̂(E, F, W, V)U − R̂(E, F, W, U)V − g(V , E)R̂(U, F, W)

+ g(U, E)R̂(V , F, W) − g(V , F)R̂(E, U, W) + g(U, F)R̂(E, V , W)

− g(V , W)R̂(E, F, U) + g(U, W)R̂(E, F, V) = 0.

PROOF. Since M is semi-symmetric [35], we have (R(U, V) · R)(E, F)W = 0 for
all E, U, V , W, F ∈ Γ(kerϕ∗), which means that ν((R(U, V) · R)(E, F)W) = 0 and
h((R(U, V) · R)(E, F)W) = 0. Then ν((R(U, V) · R)(E, F)W) = 0 implies

νR(U, V)R(E, F)W − νR(R(U, V)E, F)W
− νR(E, R(U, V)F)W − νR(E, F)R(U, V)W = 0.
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This can be written as

νR(U, V , νR(E, F, W)) − νR(U, V , hR(E, F, W)) − νR(νR(U, V)E, F, W)

− νR(hR(U, V)E, F, W) − νR(E, νR(U, V , F), W) − νR(E, hR(U, V , F), W)

− νR(E, F, νR(U, V , W)) − νR(E, F, hR(U, V , W)) = 0.

Applying the equations of Remark 5.3 in the above equation,

R̂(U, V , νR(E, F, W)) − g(V , R(E, F, W))U + g(U, R(E, F, W))V

− R̂(R(U, V , E), F, W) + g(F, W)νR(U, V , E) − g(νR(U, V , E), W)F

− R̂(E, νR(U, V , F), W) + g(νR(U, V , F), W)E − g(E, W)νR(U, V , F)

− R̂(E, F, R(U, V , W)) + g(F, νR(U, V , W))E − g(E, νR(U, V , W))F
− g(h∇V ∇ f , R(E, F, W))U − g(U, V)A∇ f hR(E, F, W)

− g(h∇W ∇ f , R(U, V , E))F − g(F, W)A∇ f hR(U, V , E)

+ g(h∇W ∇ f , R(U, V , F))E + g(E, W)A∇ f hR(U, V , F)

− g(h∇F ∇ f , R(U, V , W))E − g(E, F)A∇ f hR(U, V , W) = 0.

Again applying the equations of Remark 5.3 in the above equation yields

(R̂(U, V) · R̂)(E, F)W − R̂(E, F, W, V)U + R̂(E, F, W, U)V

+ g(V , E)R̂(U, F, W) − R̂(V , F, W)g(U, E) + g(V , F)R̂(E, U, W)

− g(U, F)R̂(E, V , W) + g(V , W)R̂(E, F, U) − g(U, W)R̂(E, F, V)

− g(h∇V ∇ f , R(E, F, W))U − g(U, V)A∇ f hR(E, F, W)

− g(h∇W ∇ f , R(U, V , E))F − g(F, W)A∇ f hR(U, V , E)

+ g(h∇W ∇ f , R(U, V , F))E − g(E, W)A∇ f hR(U, V , F)

− g(h∇F ∇ f , R(U, V , W))E − g(F, E)A∇ f hR(U, V , W) = 0.

This completes the proof. �

Again along similar lines to the proof of Corollary 5.5, we can obtain the following
corollary.

COROLLARY 5.10. Let M satisfy the hypothesis of the above theorem. Suppose that the
horizontal space is integrable and complete, then M̃ = L̃h × f F̃ν, that is, M̃ is a warped
product of two semi-symmetric subspaces of M̃.

THEOREM 5.11. The following statements hold.

(i) If the Hessian of the curvature tensor of M vanishes, then the fibers of ϕ have
harmonic curvature tensors.

(ii) If M has harmonic curvature tensor, then the fibers of ϕ have harmonic
Riemannian curvature tensors.
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PROOF. Fix a point p ∈ M and let {Ui}ri=1 be an orthonormal frame of kerϕ∗ in the
neighborhood of p. Let U, V , W, E be vertical vector fields in the neighborhood of p
and that are parallel at p ∈ M. Suppose that the Hessian of the curvature tensor of M
is zero, that is,

(Hess R)(U, V , W, E) = 0 for all U, V , W, E ∈ Γ(kerϕ∗).

Then, we have (∇∗ ∇R)(U, V , W, E) = 0 (see (2-9)). This implies

ν(∇∗ ∇R)(U, V , W, E) = 0.

Substituting (2-8) in the above equation,

ν

r∑
i=1

(∇Ui ∇Ui R)(U, V , W, E) = 0.

Equivalently,

ν

r∑
i=1

{∇Ui ((∇Ui R)(U, V , W, E)) − (∇Ui R)(∇Ui U, V , W, E) − (∇Ui R)(U,∇Ui V , W, E)

− (∇Ui R)(U, V ,∇Ui W, E) − (∇Ui R)(U, V , W,∇Ui E)} = 0.

Since ∇Ui U = ∇Ui V = ∇Ui W = ∇Ui E = 0 at p, the aforementioned equation gives
at p,

ν

r∑
i=1

∇Ui ((∇Ui R)(U, V , W, E)) = 0.

Hence, at p,

ν

r∑
i=1

∇Ui{∇Ui (R(U, V , W, E)) − R(∇Ui U, V , W, E) − R(U,∇Ui V , W, E)

− R(U, V ,∇Ui W, E) − R(U, V , W,∇Ui E)} = 0.

Substituting ∇Ui U = ∇Ui V = ∇Ui W = ∇Ui E = 0 at p in the above equation, we have
at p,

ν

r∑
i=1

∇Ui (∇Ui (R(U, V , W, E))) = 0.

Employing (5-1) in the above equation, we get at p ∈ M,

ν

r∑
i=1

{∇Ui (∇Ui (R̂(U, V , W, E) − g(V , W)g(U, E) + g(U, W)g(V , E)))} = 0.
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Thus, at p ∈ M,

ν

r∑
i=1

∇Ui{∇Ui (R̂(U, V , W, E)) − ∇Ui g(V , W)g(U, E) − g(V , W)∇Ui g(U, E)

+ ∇Ui g(U, W)g(V , E) + g(U, W)∇Ui g(V , E)} = 0.

Again as ∇Ui U = ∇Ui V = ∇Ui W = ∇Ui E = 0 at p ∈ M, the aforementioned equation
at p reduces to

ν

r∑
i=1

∇Ui (∇Ui (R̂(U, V , W, E))) = 0.

Finally, applying (2-8) in the above equation, at p,

(∇̂∗ ∇̂R̂)(U, V , W, E) = 0.

Thus, by (2-9), we obtain Δ̂R̂ = 0 at p. This completes the proof of statement (i).
Now to prove statement (ii), we proceed as follows. Suppose that M has harmonic

curvature tensor, that is, ΔR = 0. Then we have [26],

trace Hess R(U, V , W, E) = 0 for all U, V , W, E ∈ Γ(kerϕ∗).

Equivalently,

r∑
i,j=1
i�j

Hess R(Ui, Uj, Uj, Ui) = 0, (5-5)

where {Ui}ri=1 is an orthonormal frame in a neighborhood of p ∈ M, which is parallel
at p ∈ M. Using (2-9) in (5-5), we have at p ∈ M,

ν

r∑
i,j=1
i�j

(∇∗ ∇R)(Ui, Uj, Uj, Ui) = 0.

Employing (2-8) in the aforementioned equation, we get at p ∈ M,

ν

r∑
i,j=1
i�j

(∇Ui ∇Ui R)(Ui, Uj, Uj, Ui) = 0.

Since we have ∇Ui Ui = 0 = ∇Ui Uj at p ∈ M, the aforementioned equation at p
reduces to

ν

r∑
i,j=1
i�j

∇Ui ((∇Ui R)(Ui, Uj, Uj, Ui)) = 0.

https://doi.org/10.1017/S1446788724000090 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788724000090


20 K. Meena, H. M. Shah and B. Şahin [20]

Now substituting ∇Ui Ui = 0 = ∇Ui Uj at p ∈ M in the above equation, we obtain at p,

ν

r∑
i,j=1
i�j

∇Ui (∇Ui (R(Ui, Uj, Uj, Ui))) = 0. (5-6)

Substituting (5-1) in (5-6) at p,

ν

r∑
i,j=1
i�j

∇Ui (∇Ui (R̂(Ui, Uj, Uj, Ui) − r(r − 1))) = 0.

This implies at p,

ν

r∑
i,j=1
i�j

∇Ui (∇Ui R̂(Ui, Uj, Uj, Ui)) = 0.

Again applying ∇Ui Ui = 0 = ∇Ui Uj at p, the aforementioned equation reduces to

ν

r∑
i,j=1
i�j

(∇Ui ∇Ui R̂)(Ui, Uj, Uj, Ui) = 0.

Thus, equivalently at p,
r∑

i,j=1
i�j

(∇̂Ui∇̂Ui R̂)(Ui, Uj, Uj, Ui) = 0.

By Definition (2-8), at p, the above equation reduces to
r∑

i,j=1
i�j

(∇̂∗ ∇̂R̂)(Ui, Uj, Uj, Ui) = 0.

Finally, (2-9) shows that at p, Δ̂R̂ = 0. This completes the required proof. �

6. The Bochner-type formulas

In this section, we derive some Bochner-type formulas and use them to study
vertical and horizontal Killing fields on M. Our approach here should be compared
with [27, Lemma 2.1]. As an application of the Bochner-type formulas obtained in this
section, we find Bochner formulas for horizontal and vertical Killing vector fields. In
particular, we show that if M admits a horizontal Killing vector field, then under some
assumptions, it is parallel. This yields the splitting of M̃ as a warped product if the
horizontal space is integrable: M̃ = (N × R) × f F̃ν.
Killing vector field [26]: A smooth vector field ξ on M is a Killing vector field on M
if Lξg = 0.

We begin by proving a result about the Lie derivative of a vector field.
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LEMMA 6.1. Let Δν, Δh denote the Laplacian operators on the vertical and the
horizontal spaces, respectively. In addition, R̂ic and Ric(kerϕ∗)⊥ denote the Ricci tensors
of the fibers of ϕ and horizontal space, respectively. Then for a vertical vector field U
and horizontal vector field X, the following statements hold.

(i) traceν(∇(·)LXg)((·), X) = −r(X( f ))2.
(ii) traceh(∇(·)LXg)((·), X) = 1

2Δ
h‖X‖2 − ‖∇hX‖2 + Ric(kerϕ∗)⊥(X, X) + ∇Xdivh(X).

(iii) traceν(∇(·)LUg)((·), U) = 1
2Δ
ν‖U‖2 − ‖∇νU‖2 + ∇Udivν(U) + R̂ic(U, U) +

(1 − r)‖U‖2‖ ∇ f ‖2.
(iv) traceh(∇(·)LUg)((·), U) = 1

2Δ
h‖U‖2 − ‖ν∇hU‖2 − g(U, U)divh(∇ f )

−traceh(g(ν∇(·)U, U)d f (·)).
(v) traceν(∇(·)LUg)((·), X) = traceν(g(∇(·) ∇XU, (·))) − 2X( f ) divν(U).
(vi) traceh(∇(·)LUg)((·), X) = 0.
(vii) traceν(∇(·)LXg)((·), U) = 0.
(viii) traceh(∇(·)LXg)((·), U) = 0.

PROOF. Let {Ui}1≤i≤r and {Xj}r+1≤j≤m be orthonormal frames in a neighborhood of
p ∈ M that are parallel at p. Now again at p,

(∇Ui LXg)(Ui, X) = ∇Ui (LXg(Ui, X)) − LXg(∇Ui Ui, X) − LXg(Ui,∇Ui X)

= ∇Ui{g(h∇Ui X, X) + g(∇XX, Ui)} − g(∇Ui X,∇Ui X) − g(∇∇Ui XX, Ui)

= ∇Ui (g(AXX, Ui)) − g(h∇Ui X, h∇Ui X) − g(ν∇Ui X, ν∇Ui X)

− g(∇h∇Ui XX, Ui) − g(∇ν∇Ui XX, Ui) = −g(TUi X, TUi X).

Now, by the skew-symmetry of tensor T and a Clairaut condition (Remark 3.3),
we have g(TUV , X) = −g(TUX, V) = −g(U, V)g(∇ f , X). Consequently, TUX = X( f )U.
Substituting this in the above equation, we get the proof of statement (i).

Also at p,

m∑
j=r+1

(∇Xj LXg)(Xj, X)

=

m∑
j=r+1

{∇Xj (LXg(Xj, X)) − LXg(∇Xj Xj, X) − LXg(Xj,∇Xj X)}

=

m∑
j=r+1

∇Xj g(∇Xj X, X) +
m∑

j=r+1

∇Xj g(∇XX, Xj)

−
m∑

j=r+1

g(∇Xj X,∇Xj X) −
m∑

j=r+1

g(∇∇Xj XX, Xj).
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This implies at p,

m∑
j=r+1

(∇Xj LXg)(Xj, X)

=

m∑
j=r+1

{∇Xj (g(∇Xj X, X)) + g(∇Xj ∇XX, Xj) − g(∇∇Xj XX, Xj)} − ‖ ∇hX‖2

=
1
2
Δh‖X‖2 − ‖∇hX‖2 +

m∑
j=r+1

{g(∇Xj ∇XX, Xj) − g(∇∇Xj XX, Xj)}

=
1
2
Δh‖X‖2 − ‖∇hX‖2 +

m∑
j=r+1

{g(R(Xj, X)X, Xj) + g(∇X ∇Xj X, Xj)}

=
1
2
Δh‖X‖2 − ‖∇hX‖2 + Ric(kerϕ∗)⊥(X, X) + ∇Xdivh(X),

which completes the proof of statement (ii).
Next again at p,

(∇Ui LUg)(Ui, U) = ∇Ui (LUg(Ui, U)) − LUg(Ui,∇Ui U)

= ∇Ui{g(∇Ui U, U) + g(∇UU, Ui)} − g(∇Ui U,∇Ui U) − g(∇∇Ui UU, Ui)

= ∇Ui (g(∇Ui U, U)) + g(∇Ui ∇UU, Ui) − | ∇νU|2 − g(∇∇Ui UU, Ui)

= 1
2Δ
ν‖U‖2 − ‖∇νU‖2 + g(R(Ui, U)U, Ui) + ∇Udivν(U).

Employing [13] and then Theorem 3.2 in the aforementioned equation, we get the proof
of statement (iii).

In addition, at p,

m∑
j=r+1

(∇Xj LUg)(Xj, U) =
m∑

j=r+1

{∇Xj (LUg(Xj, U)) − LUg(Xj,∇Xj U)}

=

m∑
j=r+1

∇Xj g(ν∇Xj U, U) +
m∑

j=r+1

∇Xj g(h∇UU, Xj)

−
m∑

j=r+1

g(∇Xj U,∇Xj U) −
m∑

j=r+1

g(∇∇Xj UU, Xj)

=

m∑
j=r+1

∇Xj (g(∇Xj U, U)) −
m∑

j=r+1

∇Xj (g(U, U)∇ f , Xj) −
m∑

j=r+1

g(h∇Xj U, h∇Xj U)

−
m∑

j=r+1

g(ν∇Xj U, ν∇Xj U) −
m∑

j=r+1

g(∇h∇Xj UU, Xj) −
m∑

j=r+1

g(∇ν∇Xj UU, Xj)
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=
1
2
Δh‖U‖2 − ‖ν∇hU‖2 −

m∑
j=r+1

g(ν∇Xj U, U)Xj( f ) −
m∑

j=r+1

g(U, U)g(∇Xj∇ f , Xj)

=
1
2
Δh‖U‖2 − ‖ν∇hU‖2 − g(U, U) divh(∇ f ) −

m∑
j=r+1

g(ν∇Xj U, U)Xj( f ),

which is the same as statement (iv).
By similar computations, one can prove the remaining statements. �

THEOREM 6.2. Let Δν and Δh denote the Laplace operator on the vertical and the
horizontal space, respectively. In addition, Ric, R̂ic, and Ric(kerϕ∗)⊥ denote the Ricci
tensor of M, fibers of ϕ, and horizontal space, respectively. Let ξ ∈ Γ(TM) and write
ξ = X + U. Then the generalized Bochner formulas are

div(Lξg)(ξ) = 1
2Δ
h‖X‖2 − ‖∇hX‖2 + Ric(kerϕ∗)⊥(X, X) + ∇Xdivh(X) − r(X( f ))2

+ 1
2Δ
ν‖U‖2 − ‖∇νU‖2 + ∇Udivν(U) + R̂ic(U, U) + (1 − r)‖U‖2‖ ∇ f ‖2

+ 1
2Δ
h‖U‖2 − ‖ν∇hU‖2 − g(U, U)divh(∇ f ) − traceh(g(ν∇(·)U, U)d f (·))

+ traceν(g(∇(·) ∇XU, (·))) − 2X( f )divν(U). (6-1)

1
2 div(L∇ f g)(ξ) = Ric(kerϕ∗)⊥(X,∇ f ) + ∇Xdivh(∇ f ) − rX( f )‖ ∇ f ‖2. (6-2)

Further,

div(Hess f ) = Ric|(kerϕ∗)(∇ f ) + Ric|(kerϕ∗)⊥(∇ f ) + ∇(Δ f ). (6-3)

PROOF. Let {Ui}1≤i≤r and {Xj}r+1≤j≤m be orthonormal frames in a neighborhood of
p ∈ M that are parallel at p. Then at p,

div(Lξg)(ξ) = div(LXg)(X) + div(LXg)(U) + div(LUg)(X) + div(LUg)(U). (6-4)

Clearly at p,

div(LXg)(X) =
r∑

i=1

(∇Ui LXg)(Ui, X) +
m∑

j=r+1

(∇Xj LXg)(Xj, X).

Applying Lemma 6.1 at p in the above equation,

div(LXg)(X) = 1
2Δ
h‖X‖2 − ‖∇hX‖2 + Ric(kerϕ∗)⊥(X, X)

+ ∇Xdivh(X) − r(X( f ))2. (6-5)

Also at p,

div(LUg)(U) =
r∑

i=1

(∇Ui LUg)(Ui, U) +
m∑

j=r+1

(∇Xj LUg)(Xj, U).
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Again employing Lemma 6.1 at p in the above equation yields

div(LUg)(U) =
1
2
Δν‖U‖2 − ‖∇νU‖2 + ∇Udivν(U) + R̂ic(U, U)

+ (1 − r)‖U‖2‖ ∇ f ‖2 + 1
2
Δh‖U‖2 − ‖ν∇hU‖2

− g(U, U) divh(∇ f ) −
m∑

j=r+1

g(ν∇Xj U, U)Xj( f ). (6-6)

We have at p,

div(LUg)(X) =
r∑

i=1

(∇Ui LUg)(Ui, X) +
m∑

j=r+1

(∇Xj LUg)(Xj, X).

Again applying Lemma 6.1 in the aforementioned equation yields at p,

div(LUg)(X) =
r∑

i=1

g(∇Ui ∇XU, Ui) − 2X( f )divν(U). (6-7)

Finally, at p,

div(LXg)(U) =
r∑

i=1

(∇Ui LXg)(Ui, U) +
m∑

j=r+1

(∇Xj LXg)(Xj, U).

Repeatedly using Lemma 6.1 in the above equation at p yields

div(LXg)(U) = 0. (6-8)

Then using consecutively (6-5), (6-6), (6-7) and (6-8) in (6-4), we conclude the proof
of (6-1).

To prove (6-2), we proceed as follows. Clearly, at p,

div(L∇ f g)(ξ) = div(L∇ f g)(X) + div(L∇ f g)(U)

=

r∑
i=1

(∇Ui L∇ f g)(Ui, X) +
m∑

j=r+1

(∇Xj L∇ f g)(Xj, X)

+

r∑
i=1

(∇Ui L∇ f g)(Ui, U) +
m∑

j=r+1

(∇Xj L∇ f g)(Xj, U)

=

r∑
i=1

(∇Ui L∇ f g)(Ui, X) +
m∑

j=r+1

(∇Xj L∇ f g)(Xj, X). (6-9)

Also at p,

(∇Ui L∇ f g)(Ui, X) = ∇Ui (L∇ f g(Ui, X)) − L∇ f g(∇Ui Ui, ∇ f ) − L∇ f (g(Ui,∇Ui X))

= ∇Ui{g(h∇Ui ∇ f , X) + g(∇X ∇ f , Ui)} − g(∇Ui ∇ f ,∇Ui X) − g(∇∇Ui X ∇ f , Ui)

= −2g(ν∇Ui ∇ f , ν∇Ui X) − 2g(h∇Ui ∇ f , h∇Ui X) = −2g(TUi ∇ f , TUi X).
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Recall that the tensor T is skew-symmetric (see Section 2) and also we have the
Clairaut condition (Remark 3.3). Therefore, we have TUX = X( f )U. Substituting in
the above equation, we get at p,

r∑
i=1

(∇Ui L∇ f g)(Ui, X) = −2r‖ ∇ f ‖2X( f ). (6-10)

In addition, at p,
m∑

j=r+1

(∇Xj L∇ f g)(Xj, X)

=

m∑
j=r+1

{∇Xj (L∇ f g(Xj, X)) − L∇ f g(∇Xj Xj, X) − L∇ f g(Xj,∇Xj X)}

=

m∑
j=r+1

∇Xj g(∇Xj ∇ f , X) +
m∑

j=r+1

∇Xj g(∇X ∇ f , Xj)

−
m∑

j=r+1

g(∇Xj ∇ f ,∇Xj X) −
m∑

j=r+1

g(∇∇Xj X ∇ f , Xj)

= 2
m∑

j=r+1

{g(∇Xj ∇X ∇ f , Xj) − g(h∇h∇Xj X ∇ f , Xj)}

= 2
m∑

j=r+1

{g(R(Xj, X)∇ f , Xj) + g(∇X ∇Xj ∇ f , Xj)}

= 2 Ric(kerϕ∗)⊥(X, ∇ f ) + 2 ∇Xdivh(∇ f ). (6-11)

Using (6-10) and (6-11) in (6-9), we obtain (6-2).
Toward proving (6-3) we proceed as follows.
We have the following at p:

div(L∇ f g)(ξ) =
r∑

i=1

(∇Ui L∇ f g)(Ui, ξ) +
m∑

j=r+1

(∇Xj L∇ f g)(Xj, ξ)

=

r∑
i=1

∇Ui (L∇ f g(Ui, ξ)) −
r∑

i=1

L∇ f g(Ui,∇Uiξ)

+

m∑
j=r+1

∇Xj (L∇ f g(Xj, ξ)) −
m∑

j=r+1

L∇ f g(Xj,∇Xjξ)

= 2
r∑

i=1

∇Ui (g(∇Ui ∇ f , ξ)) − 2
r∑

i=1

g(∇Ui ∇ f ,∇Uiξ)

+ 2
m∑

j=r+1

∇Xj (g(∇Xj ∇ f , ξ)) − 2
m∑

j=r+1

g(∇Xj ∇ f ,∇Xjξ)
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= 2
r∑

i=1

∇Ui (g(∇ξ ∇ f , Ui)) − 2
r∑

i=1

g(∇Ui ∇ f ,∇Uiξ)

+ 2
m∑

j=r+1

∇Xj (g(∇ξ ∇ f , Xj)) − 2
m∑

j=r+1

g(∇Xj ∇ f ,∇Xjξ)

= 2
r∑

i=1

g(∇Ui ∇ξ ∇ f , Ui) − 2
r∑

i=1

g(∇Ui ∇ f ,∇Uiξ)

+ 2
m∑

j=r+1

g(∇Xj ∇ξ ∇ f , Xj) − 2
m∑

j=r+1

g(∇Xj ∇ f ,∇Xjξ). (6-12)

We know that at p,

g(R(Ui, ξ)∇ f , Ui) = g(∇Ui ∇ξ ∇ f − ∇ξ ∇Ui ∇ f − ∇∇Ui ξ
∇ f , Ui),

which implies at p,

g(∇Ui ∇ξ ∇ f , Ui) = g(R(Ui, ξ)∇ f , Ui) + g(∇ξ ∇Ui ∇ f , Ui) + g(∇∇Ui ξ
∇ f , Ui).

Similarly, we have at p,

g(∇Xj ∇ξ ∇ f , Xj) = g(R(Xj, ξ)∇ f , Xj) + g(∇ξ ∇Xj ∇ f , Xj) + g(∇∇Xj ξ
∇ f , Xj).

Substituting these equations in (6-12), we get at p,

div(L∇ f g)(ξ) = 2
r∑

i=1

g(R(Ui, ξ)∇ f , Ui) + 2
r∑

i=1

g(∇ξ ∇Ui ∇ f , Ui)

+ 2
m∑

j=r+1

g(R(Xj, ξ)∇ f , Xj) + 2
m∑

j=r+1

g(∇ξ ∇Xj ∇ f , Xj)

= 2
r∑

i=1

g(R(∇ f , Ui)Ui, ξ) + 2∇ξdivν(∇ f )

+ 2
m∑

j=r+1

g(R(∇ f , Xj)Xj, ξ) + 2∇ξdivh(∇ f )

= 2 Ric|(kerϕ∗)(∇ f , ξ) + 2 Ric|(kerϕ∗)⊥(∇ f , ξ) + 2 ∇ξ(divν(∇ f ) + divh(∇ f )),

which implies the required proof. �

REMARK 6.3. If X and U are Killing vector fields on M, then ξ = X + U is also a
Killing vector field. As LXg = 0 and LUg = 0 implies that div(X) = 0 and div(U) = 0,
from the Bochner formula in Theorem 6.2,
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1
2 {Δ

h‖X‖2 + Δ‖U‖2}
= ‖ ∇νU‖2 + ‖ν∇hU‖2 + ‖ ∇hX‖2 + (r − 1)‖U‖2‖ ∇ f ‖2 − R̂ic(U, U)

− Ric(kerϕ∗)⊥(X, X) + r(X( f ))2 + g(U, U) divh(∇ f )

+ traceh(d f (·)∇(·)U) − traceν(g(∇(·) ∇XU, (·))).

As an application of the generalized Bochner formula, the following results can be
proved easily.

COROLLARY 6.4. If ξ = X is the Killing vector field, then
1
2Δ
h‖X‖2 = ‖ ∇hX‖2 − Ric(kerϕ∗)⊥(X, X) + r(X( f ))2. (6-13)

In particular, if X = ∇ f is the Killing vector field, then
1
2Δ
h‖ ∇ f ‖2 = ‖ ∇h ∇ f ‖2 − Ric(kerϕ∗)⊥(∇ f ,∇ f ) + r‖ ∇( f )‖2. (6-14)

COROLLARY 6.5. If ξ = U is the Killing vector field, then
1
2Δ‖U‖

2 = ‖ ∇νU‖2 + ‖ν∇hU‖2 + (r − 1)‖U‖2‖ ∇ f ‖2

+ g(U, U) divh(∇ f ) + traceh(d f (·)∇(·)U) − traceν(g(∇(·) ∇XU, (·))).
(6-15)

REMARK 6.6. We can compare the generalized Bochner formula (6-1) with the
Bochner formula of [27, Lemma 2.1]. We observe that div(Hess f ) obtained in [27] and
(6-3) obtained here are similar. Also our formulas for the Killing vector field (6-13)
and (6-14) are similar. However, the generalized formulas obtained in Remark 6.3
and in (6-15) differ drastically. This shows how the geometry of a Clairaut conformal
Riemannian map is rich, in comparison.

COROLLARY 6.7. Suppose a Clairaut conformal Riemannian map has nonconstant
girth and an integrable horizontal space with Ric(kerϕ∗)⊥(X, X) ≤ 0. Let X be a
horizontal Killing vector field, which attains its maximum on Lh (in particular, this
condition is satisfied if Lh is compact), then X is a parallel Killing vector field. Thus,
the universal covering space of the leaves of the horizontal space splits as (N × R),
(where N is a submanifold of M) and hence, M̃ = (N × R) × f F̃ν is a warped product
if the horizontal space is integrable.

PROOF. Suppose X is Killing, h is integrable, then as Ric(kerϕ∗)⊥(X, X) ≤ 0, by (6-13),
‖X‖2 is subharmonic function on each leaf Lh. If ‖X‖ attains a maximum value, then
‖X‖ is constant. This yields that X is a parallel vector field. This shows that L̃h splits as
N × R (Theorem 2.4). Thus, in turn, we obtain the product M̃ = (N × R) × F̃ν by [28,
Proposition 3(b)] if the horizontal space is integrable.

In particular, if Lh is compact, then ‖X‖ attains a maximum value and the above
argument follows. �

From, Corollary 6.4, we obtain the following corollary.
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COROLLARY 6.8. If there exists a constant-length horizontal Killing vector field X
such that Ric(kerϕ∗)⊥(X, X) ≤ 0, then X must be parallel. In particular, if f is a distance
function and ∇ f is a Killing field, then it is parallel, that is, Hess f = 0. Then M̃ =
(N × R) × F̃ν, that is, M̃ is the product of (N × R) and a fiber if the horizontal space is
integrable (Corollary 3.4).

REMARK 6.9. If the girth of the Clairaut conformal Riemannian is nonconstant, then
if U is a constant-length Killing vertical vector field such that divh(∇ f ) ≥ 0, then using
Corollary 6.5 and Lemma 6.1, we easily see that R̂ic(U, U) ≤ 0.

THEOREM 6.10. For U ∈ Γ(kerϕ∗) and X ∈ Γ(kerϕ∗)⊥:

(i) div(Hess f )(X) = divh(∇2 f )(X) = Ric(kerϕ∗)⊥(X,∇ f ) +∇Xdivh(∇ f ) − rX( f )‖∇ f ‖2;
(ii) div(Hess f )(U) = −‖∇ f ‖2divν(U) = d̂iv(L∇ f g)(U),

where d̂iv and div denote divergence on the fibers of ϕ and M, respectively. In addition,
r = dim(kerϕ∗).

PROOF. Let {Ui}1≤i≤r and {Xj}r+1≤j≤m be orthonormal parallel frames in a neighborhood
of p ∈ M that are parallel at p. We know that at p,

div(L∇ f g)(X) =
r∑

i=1

(∇Ui L∇ f g)(Ui, X) +
m∑

j=r+1

(∇Xj L∇ f g)(Xj, X)

=

r∑
i=1

∇Ui (L∇ f g(Ui, X)) −
r∑

i=1

L∇ f g(Ui,∇Ui X)

+

m∑
j=r+1

∇Xj (L∇ f g(Xj, X)) −
m∑

j=r+1

L∇ f g(Xj,∇Xj X)

= 2
m∑

j=r+1

{∇Xj (g(∇X ∇ f , Xj)) − g(∇Xj ∇ f ,∇Xj X)} − 2
r∑

i=1

g(∇Ui ∇ f ,∇Ui X)

= 2
m∑

j=r+1

{g(∇Xj∇X∇ f , Xj) − g(h∇Xj∇ f , h∇Xj X)} − 2
r∑

i=1

g(ν∇Ui∇ f , ν∇Ui X)

= 2
m∑

j=r+1

{g(∇Xj ∇X ∇ f , Xj) − g(h∇Xj ∇ f , h∇XjX)} − 2
r∑

i=1

g(‖ ∇ f ‖2Ui, X( f )Ui).

(6-16)

At p, using

R(Xj, X)∇ f = ∇Xj ∇X ∇ f − ∇X ∇Xj ∇ f − ∇∇Xj X ∇ f
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in (6-16), we get at p,

div(L∇ f g)(X) = 2
m∑

j=r+1

{g(R(Xj, X)∇ f , Xj) + g(∇X ∇Xj ∇ f , Xj)} − 2rX( f )‖ ∇ f ‖2

= 2Ric(kerϕ∗)⊥(X,∇ f ) + 2∇Xdivh(∇ f ) − 2rX( f )‖ ∇ f ‖2,

which implies the proof of item (i).
However, we have at p,

div(L∇ f g)(U) =
r∑

i=1

(∇Ui L∇ f g)(Ui, U) +
m∑

j=r+1

(∇Xj L∇ f g)(Xj, U)

=

r∑
i=1

∇Ui (L∇ f g(Ui, U)) −
r∑

i=1

L∇ f g(Ui,∇Ui U)

+

m∑
j=r+1

∇Xj (L∇ f g(Xj, U)) −
m∑

j=r+1

L∇ f g(Xj,∇Xj U)

= −2
r∑

i=1

g(∇Ui ∇ f ,∇Ui U) +
m∑

j=r+1

∇Xj (g(∇Xj ∇ f , U))

+

m∑
j=r+1

∇Xj (g(∇U ∇ f , Xj)) − 2
m∑

j=r+1

g(∇Xj ∇ f ,∇Xj U)

= −2
r∑

i=1

g(‖ ∇ f ‖2Ui, ν∇Ui U) = −2‖ ∇ f ‖2divν(U) = d̂iv(L∇ f g)(U),

which completes the proof. �

7. Contracted-type Bianchi identities and their applications to Ricci solitons

In this section, we derive the contracted-type Bianchi identities in the context when
the total manifold admits a Clairaut conformal Riemannian map. The well-known
contracted Bianchi identity ([26, Proposition 3.15]) states that on any Riemannian
manifold,

dS = 2div(Ric),

where S denotes the scalar curvature of the manifold.
This identity has wider applications and in particular, is used in the study of Ricci

solitons (see for example, [27]). In addition, we see its applications to Ricci solitons
on total manifolds admitting Clairaut conformal Riemannian maps.

7.1. Contracted-type Bianchi identities. In this subsection, we derive the
contracted-type vertical and horizontal Bianchi identities in our context, which are
used in our study in Section 7.2.
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PROPOSITION 7.1. For U ∈ Γ(kerϕ∗) and X ∈ Γ(kerϕ∗)⊥,

dŜ(U)(p) = ∇̂Ŝ(U)(p) = 2 d̂ivR̂ic(U)(p)

and

dS(kerϕ∗)⊥(X)(p) = ∇XS(kerϕ∗)⊥(p) = 2 divh Ric(kerϕ∗)⊥(X)(p),

where R̂ic and Ric(kerϕ∗)⊥ , respectively, denote the Ricci tensor of a fiber of ϕ and
the horizontal space. Also, Ŝ and S(kerϕ∗)⊥ denote the scalar curvature of the fiber of
ϕ and the scalar curvature of M restricted to the horizontal space, respectively. In
addition, d̂iv and divh denote the divergence on the fiber of ϕ and the horizontal space,
respectively.

PROOF. Let {Ui}1≤i≤r be an orthonormal frame of kerϕ∗ in a neighborhood of p ∈ M,
parallel at p. Therefore, the scalar curvature of a fiber is at p:

Ŝ = trace R̂ic =
r∑

i=1

g(R̂ic(Ui), Ui).

Thus, at p,

∇̂UŜ(p) = ∇̂U

{ r∑
i,j=1;i�j

g(R̂(Ui, Uj)Uj, Ui)
}

=

r∑
i,j=1;i�j

∇̂U(g(R̂(Ui, Uj)Uj, Ui))

=

r∑
i,j=1;i�j

g((∇̂UR̂)(Ui, Uj)Uj, Ui) −
r∑

i,j=1;i�j

g(R̂(∇̂UUi, Uj)Uj, Ui)

−
r∑

i,j=1;i�j

g(R̂(Ui, ∇̂UUj)Uj, Ui) +
r∑

i,j=1;i�j

g(R̂(Ui, Uj)∇̂UUj, Ui)

+

r∑
i,j=1;i�j

g(R̂(Ui, Uj)Uj, ∇̂UUi).

As {Ui}1≤i≤r is an orthonormal frame parallel at p,

∇̂UŜ(p) =
r∑

i,j=1;i�j

g((∇̂UR̂)(Ui, Uj)Uj, Ui).

Applying the second Bianchi identity to the aforementioned equation,

∇̂UŜ(p) = −
r∑

i,j=1;i�j

{g((∇̂Ui R̂)(Uj, U)Uj, Ui) + g((∇̂Uj R̂)(U, Ui)Uj, Ui)}
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= −
r∑

i,j=1;i�j

{(∇̂Ui R̂)(Uj, U, Uj, Ui) + (∇̂Uj R̂)(U, Ui, Uj, Ui)}

= 2
r∑

i,j=1;i�j

(∇̂Ui R̂)(Ui, Uj, Uj, U) = 2
r∑

i,j=1;i�j

g((∇̂Ui R̂)(Ui, Uj)Uj, U)

= 2
r∑

i,j=1;i�j

∇̂Ui (g(R̂(Ui, Uj)Uj, U)) = 2
r∑

i,j=1;i�j

∇̂Ui g(R̂ic(U), Ui).

Finally,

∇̂UŜ(p) = 2
r∑

i,j=1;i�j

g(∇̂Ui R̂ic(U), Ui) = 2d̂iv R̂ic(U)(p).

By similar arguments, we can prove the other statements. �

7.2. Applications to Ricci solitons. In recent years, geometers (including the first
author) studied the geometry of smooth maps using Ricci soliton [13, 17, 18, 20,
39–41]. In this subsection, we study geometry of a Clairaut conformal Riemannian
map, when the total manifold admits a nontrivial Ricci soliton.
Ricci solitons are the self-similar solutions of the Ricci flow. The concept of Ricci
flow was first introduced by Hamilton [14] in 1982, motivated by the work of Eells and
Sampson [5] on the harmonic map and the flow was given by the equation

∂g
∂t
= −2Ric.

Thus, Ricci solitons turn out to be the generalizations of the Einstein metrics and are
the solutions of the equation

Ric(g) + 1
2 LXg = λg, (7-1)

where λ is a real constant. The soliton is said to be shrinking if λ < 0, steady if λ = 0,
and expanding if λ > 0.

In what follows, we need the following results for the analysis of Ricci solitons.
If we do the computation using bases in a neighborhood of p that are parallel at p,

then [13, Lemma 2.3] gives the following proposition.

PROPOSITION 7.2. For U, V ∈ Γ(kerϕ∗) and X ∈ Γ(kerϕ∗)⊥,

Ric(U, V) = R̂ic(U, V) + r‖ ∇ f ‖2g(U, V),
Ric(U, X) = −(r + 1)g(∇X ∇ f , U),

where r = dim(kerϕ∗) and (m − r) = dim(kerϕ∗)⊥.

REMARK 7.3. If f is a distance function, then by Proposition 7.2,

Ric(U, U) = R̂ic(U, U) + r‖U‖2. (7-2)
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If the fibers of ϕ are Einstein with Einstein constant μ̂, then (7-2) gives

Ric(U, U) = (μ̂ + r)‖U‖2.

If M is an Einstein manifold with Einstein constant μ, then (7-2) implies

R̂ic(U, U) = (μ − r)‖U‖2.

Therefore, the fibers are also Einstein with Einstein constant (μ − r). In particular, if
(μ − r) = 0, then the fibers are Ricci flat.

REMARK 7.4. If the total manifold of a Clairaut conformal Riemannian map admits
the gradient Ricci soliton ∇ f , which is the gradient of the logarithmic girth function,
then its scalar curvature satisfies

S = λm − Δh f .

The last equation follows by tracing (7-1) and the fact that ∇ f is a horizontal vector
field.

THEOREM 7.5. Let ϕ : (M, g)→ (M′, g′) be a Clairaut conformal Riemannian map
between Riemannian manifolds. Suppose that (M, g) admits a Ricci soliton with
the potential vector field X ∈ Γ(kerϕ∗)⊥. Then the scalar curvature of the fibers is
constant and hence (r‖ ∇ f ‖2 − X( f )) is a constant function on the fiber. Therefore, for
U ∈ Γ(kerϕ∗),

d̂iv R̂ic(U)(p) = 0, (7-3)

where R̂ic denotes the Ricci tensor of the fibers of ϕ and d̂iv denotes the divergence on
the fibers of ϕ.

PROOF. As (M, g) admits a Ricci soliton with the potential vector field X ∈ Γ(kerϕ∗)⊥,
by hypothesis, for U, V ∈ Γ(kerϕ∗),

1
2 (LXg)(U, V) + Ric(U, V) = λg(U, V),

which can be written as

1
2 {g(∇UX, V) + g(∇VX, U)} + Ric(U, V) = λg(U, V)

or

− 1
2 {g(h∇UV , X) + g(h∇VU, X)} + Ric(U, V) = λg(U, V).

Using (2-4),

−g(TUV , X) + Ric(U, V) = λg(U, V).
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Using the Clairaut condition in the above equation,

g(U, V)X( f ) + Ric(U, V) = λg(U, V).

Choose {Ui}1≤i≤r and {Xj}r+1≤j≤m to be orthonormal frames of kerϕ∗ and (kerϕ∗)⊥ in
a neighborhood of p that are parallel at p. Then applying Proposition 7.2 in the above
equation, we affirm at p,

R̂ic(U, V) = (r‖ ∇ f ‖2 − X( f ) + λ)g(U, V).

Tracing the above equation,

Ŝ(p) = (r‖ ∇ f ‖2 − X( f ) + λ) r. (7-4)

Hence,

∇̂UŜ(p) = 0.

Therefore, the scalar curvature of the fibers of ϕ is constant. Thus, (7-3) follows from
Proposition 7.1. Also, we see from (7-4) that on the fibers of ϕ, (r‖ ∇ f ‖2 − X( f )) is
a constant function (as we assume that fibers are connected). Let (r‖ ∇ f ‖2 − X( f )) =
C, constant on the fibers of ϕ. This implies that the scalar curvature of the fibers is
(C + λ)r. �

COROLLARY 7.6. Under the hypotheses of the above theorem, if X = ∇ f , then any
U ∈ Γ(kerϕ∗) is an incompressible vector field, and hence LUΩ = 0, where Ω is a
volume form of the fiber. Therefore, the volume form of the fiber is invariant under the
flow of U.

PROOF. By the Ricci soliton equation, for U, V ∈ Γ(kerϕ∗),

1
2 (L∇ f g)(U, V) + Ric(U, V) = λg(U, V).

Using Proposition 7.2 in the above equation yields

1
2 (L∇ f g)(U, V) + R̂ic(U, V) = (r‖ ∇ f ‖2 + λ)g(U, V).

Thus,

1
2 d̂iv(L∇ f g)(U) + d̂ivR̂ic(U) = 0.

Applying Theorem 6.10 in the aforementioned equation, we affirm

1
2 div(∇2 f )(U) = −d̂iv R̂ic(U).

This implies

‖ ∇ f ‖2divν(U) = 2 d̂iv R̂ic(U) = 0

by (7-3). Thus, LUΩ = divν(U) Ω = 0, where Ω is the volume form of the fiber of ϕ.
Hence, the corollary follows. �
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THEOREM 7.7. Let ϕ : (M, g)→ (M′, g′) be a conformal Riemannian map between
Riemannian manifolds. Suppose that (M, g) admits a Ricci soliton with the potential
vector field ∇ f ∈ Γ(kerϕ∗)⊥. Then for X, Y ∈ Γ(kerϕ∗)⊥,

1
2 ∇XS(kerϕ∗)⊥(p) = r (1 − r)X( f )‖ ∇ f ‖2 − (1 − r) Ric(kerϕ∗)⊥(X,∇ f )

− (1 − r) ∇XΔ f + r traceh(L(·)(d f ⊗ d f ))(X, (·)). (7-5)

Also, S(kerϕ∗)⊥ = λ(m − r) + r‖ ∇ f ‖2 + (r − 1)Δ f . Therefore, if (kerϕ∗)⊥ is integrable,
then S(kerϕ∗)⊥ denotes the scalar curvature of the leaves of (kerϕ∗)⊥.

PROOF. We have, by the Ricci soliton equation, for X, Y ∈ Γ(kerϕ∗)⊥,

1
2 (L∇ f g)(X, Y) + Ric(X, Y) = λg(X, Y).

This implies

∇2 f (X, Y) + Ric(kerϕ∗)⊥(X, Y) +
r∑

i=1

g(R(Ui, X)Y , Ui) = λg(X, Y).

Using [13, Lemma 2.2],

∇2 f (X, Y) + Ric(kerϕ∗)⊥(X, Y) +
r∑

i=1

g((∇Ui A)XY , Ui)

−
r∑

i=1

g((∇XT)Ui Y , Ui) −
r∑

i=1

g(TUi X, TUi Y) = λg(X, Y). (7-6)

As
r∑

i=1

g((∇Ui A)XY , Ui) =
r∑

i=1

g(∇Ui AXY − A(∇Ui X, Y) − A(X,∇Ui Y), Ui)

=

r∑
i=1

g(∇Ui AXY , Ui) = divν(AXY), (7-7)

clearly,

r∑
i=1

g((∇XT)Ui Y , Ui) =
r∑

i=1

g(∇XTUi Y − T(∇XUi, Y) − T(Ui,∇XY), Ui).

As TUX = X( f )U, the above expressions reduce to

r∑
i=1

g((∇XT)Ui Y , Ui) =
r∑

i=1

g(∇X(Y( f )Ui) − Y( f )ν∇XUi − h(∇XY)( f )Ui, Ui)

= g(Y ,∇X ∇ f ) r, (7-8)
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and
r∑

i=1

g(TUi X, TUi Y) =
r∑

i=1

g(−X( f )Ui,−Y( f )Ui) = rX( f )Y( f ). (7-9)

Employing (7-7), (7-8), and (7-9) in (7-6) yields

∇2 f (X, Y) + Ric(kerϕ∗)⊥(X, Y) + divν(AXY)

− g(Y ,∇X ∇ f ) r − rX( f )Y( f ) = λg(X, Y). (7-10)

Equivalently,

(1 − r)(∇2 f )(X, Y) + Ric(kerϕ∗)⊥(X, Y)

+ divν(AXY) − rX( f )Y( f ) = λg(X, Y).

This can be rewritten as

(1 − r)(∇2 f ) + Ric(kerϕ∗)⊥ + divν(A) − r (d f ⊗ d f ) = λg.

Consequently,

(1 − r)divh(∇2 f )(X) + divh(Ric(kerϕ∗)⊥)(X)

+ divh(divν(A))(X) − r divh(d f ⊗ d f )(X) = λ divh(g)(X). (7-11)

We know that

divh(g)(X) = 0,

divh(divν(A))(X) = divh
( r∑

i=1

g(∇Ui A, Ui)
)
(X) = 0,

and

divh(d f ⊗ d f )(X) =
m∑

j=r+1

(∇Xj (d f ⊗ d f ))(X, Xj)

=

m∑
j=r+1

(∇Xj (d f ⊗ d f (X, Xj)) − (d f ⊗ d f )(∇Xj X, Xj))

=

m∑
j=r+1

(∇Xj (d f (X)d f (Xj)) − d f (∇Xj X)d f (Xj))

=

m∑
j=r+1

((LXj (d f ⊗ d f ))(X, Xj) − d f (Xj)d f (∇XXj))

=

m∑
j=r+1

(LXj (d f ⊗ d f ))(X, Xj),
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where {Xj}mj=r+1 is an orthonormal frame of (kerϕ∗)⊥ parallel at p. Then applying
Theorem 6.10 and Proposition 7.1 with the above expressions in (7-11), we obtain the
required proof of (7-5).

Further, (7-10) can be written as
1
2 (L∇ f g)(X, Y) + Ric(kerϕ∗)⊥(X, Y) + divν(AXY)

− rg(Y ,∇X ∇ f ) − rX( f )Y( f ) = λg(X, Y).

Tracing the above equation yields

divh(∇ f ) + S(kerϕ∗)⊥ − r
m∑

j=r+1

g(Xj,∇Xj ∇ f ) − r
m∑

j=r+1

Xj( f )Xj( f ) = λ(m − r),

where {Xj}mj=r+1 is an orthonormal frame of (kerϕ∗)⊥ parallel at p. Thus,

S(kerϕ∗)⊥ = λ(m − r) + r‖ ∇ f ‖2 + (r − 1)Δh f .

Hence, the assertion of the theorem follows. �

THEOREM 7.8. Suppose that (M, g) admits a Ricci soliton with the potential vector
field U ∈ Γ(kerϕ∗). Then the following statements hold.

(i) The fibers of ϕ, in fact, admit the almost Ricci soliton with the potential vector
vector field U.

(ii) Let R̂ic denote the Ricci curvature of the fibers of ϕ. Then,

R̂ic(U, U) = ‖ ∇νU‖2 − 1
2Δ
ν‖U‖2 + (r − 1)‖U‖2‖ ∇ f ‖2.

PROOF. Let {Ui}1≤i≤r be an orthonormal frame of kerϕ∗ around p that is parallel
at p. Since M admits the Ricci soliton U ∈ Γ(kerϕ∗) with constant λ, for U, V , W ∈
Γ(kerϕ∗),

1
2 (LUg)(V , W) + Ric(V , W) = λg(V , W). (7-12)

Using Proposition 7.2 in the above equation,
1
2 (LUg)(V , W) + R̂ic(V , W) = (r‖ ∇ f ‖2 + λ)g(V , W).

This implies that the fibers of ϕ admit the almost Ricci soliton U.
Further, by tracing the above equation,

d̂ivν(U) + Ŝ = (r‖ ∇ f ‖2 + λ) r.

This implies

∇̂U d̂ivν(U) + ∇̂UŜ = 0. (7-13)

By (7-12),

d̂iv(LUg)(U) + 2 d̂iv R̂ic(U) = 0. (7-14)
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Comparing (7-13) and (7-14) and applying Proposition 7.1,

∇̂U d̂ivν(U) = d̂iv(LUg)(U).

As d̂iv(LUg)(U) =
∑r

i=1(∇Ui LUg)(Ui, U), applying Lemma 6.1(iii) in the aforemen-
tioned equation proves item (ii). �
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