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Abstract

Several countries have shown an increased prevalence of drug resistance in animal production
due to the indiscriminate use of antibiotics and antiparasitics in human and veterinary medi-
cine. This article aims to review existing methods using naturally occurring essential oils (EOs)
and their isolated compounds (EOCs) as alternatives to antimicrobials and antiparasitic com-
pounds in animal production and, consequently, to avoid resistance. The most-reported
mechanism of action of EOs and EOCs was cell membrane damage, which leads to the leakage
of cytoplasmic content, increased membrane permeability, inhibition of metabolic and genetic
pathways, morphologic changes, antibiofilm effects, and damage to the genetic material of
infections. In parasites, anticoccidial effects, reduced motility, growth inhibition, and morpho-
logic changes have been reported. Although these compounds regularly show a similar effect
to those promoted by traditional drugs, the elucidation of their mechanisms of action is still
scarce. The use of EOs and EOCs can also positively influence crucial parameters in animal
production, such as body weight gain, feed conversion rate, and cholesterol reduction, which
also positively impact meat quality. The application of EOs and EOCs is enhanced by their
association with other natural compounds or even by the association with synthetic chemicals,
which has been found to cause synergism in their antimicrobial effect. By reducing the effect-
ive therapeutical/prophylactic dose, the chances of off-flavors – the most common issue in EO
and EOC application – is greatly mitigated. However, there is very little work on the combin-
ation of EOs and EOCs in large in vivo studies. In addition, research must apply the
correct methodology to properly understand the observed effects; for example, the use of
only high concentrations may mask potential results obtained at lower dosages. Such correc-
tions will also allow the elucidation of finer mechanisms and promote better biotechnologic use
of EOs and EOCs. This manuscript presents several information gaps to be filled before the
use of EOs and EOCs are fully applicable in animal production.

Introduction

Bacterial resistance to antibiotics is increasingly widespread, with intensive antibiotic use in
human and animal health as a primary factor of diffusion, representing a serious problem
for the economy and public health (Corrêa et al., 2019; Evangelista et al., 2021). Such products
are widely used in livestock, and it has been shown that soil in the vicinity of animal produc-
tion contains microorganisms with a high prevalence of antibiotic-resistance genes (ARGs)
(Duan et al., 2019). This and other factors lead to the conclusion that the indiscriminate
use of antibiotics in intensive animal production may be one of the leading causes of resistance
among zoonotic microbial pathogens.

ARGs have been constantly found in Enteric commensal and pathogenic bacteria from pro-
duction animals. Escherichia coli has been largely studied (Lanz et al., 2003; Zhang et al.,
2017a, 2017b, 2020; Poirel et al., 2018; Li et al., 2019) and strains that cause diarrhea in
pigs have been identified as resistant to several classes of antibiotics, including colistin, an anti-
biotic used to control multi-resistant microorganisms (Le Devendec et al., 2018). Strains of
Salmonella Typhimurium isolated from humans and animals in China have presented genes
for resistance to a wide range of quinolones, aminoglycosides, and colistins (He et al.,
2020). Polymyxins, which belong to the colistin antimicrobial group, are still extensively
used in animal production and have been found ineffective against many enterobacteria iso-
lated from livestock (Giamarellou, 2016). Having ushered in a new era in medicine, the emer-
ging ineffectiveness of antibiotics puts health at risk across the world. It is estimated that the
United States spends $20 billion annually on treating antibiotic-resistant infectious diseases
(Dadgostar, 2019).
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In addition to antimicrobial resistance, antiparasitic resistance
in animal production has also been an emerging problem due to
the indiscriminate use of these compounds. Currently, the largest
classes of drugs used to control intestinal parasites – imidothia-
zoles, tetrahydropyrimidines, benzimidazoles, and avermectins –
have gradually lost effectiveness (Dey et al., 2020). Resistance to
anthelmintics is increasing; among the farms tested, no antipara-
sitic activity of albendazole or fenbendazole was found against
eggs of Haemonchus contortus, Teladorsagia circumcincta, and
Trichostrongylus spp. (Claerebout et al., 2020). This also repre-
sents a serious problem, and it is estimated that the economic
impact in Europe is about 38 million euros annually due to resist-
ant parasites (Charlier et al., 2020). Another reason for the
decreased effectiveness of these products is due to soil contamin-
ation by antiparasitic agents, as shown by de Oliveira Ferreira
et al. (2019), who identified avermectins and moxidectin residues
in Brazilian soils in concentrations close to 0.1 mg kg−1.

As an alternative to the treatment of both bacteria and resist-
ant parasites, the use of essential oils (EOs), which can also be
later processed into purified compounds, has been evaluated
(Shen et al., 2021; Zhang et al., 2021). For instance, in vitro
tests using 1 mgml−1 of Ruta chalepensis (fringed rue) flower
EO showed positive effects (87.5% efficacy) leading to the death
of H. contortus larvae, whilst 1 mg ml−1 albendazole had relatively
lower beneficial effects (75% of efficacy) (Akkari et al., 2015).
Cuminum cyminum oil (cumin) was responsible for 99% ovicidal
activity in Fasciola hepatica, using a concentration of 0.03 mg
ml−1 (Silva et al., 2020), which is a parasite that has been found
resistant to albendazole (Ceballos et al., 2019). For bacteria, tested
EOs also show good results against human and animal pathogens,
such as Melaleuca alternifolia (tea tree) (Silva et al., 2019),
Syzygium aromaticum (clove), Cinnamomum cassia (Chinese cin-
namon) (Khaleque et al., 2016), Cinnamomum zeylanicum (true
cinnamon tree), Origanum vulgare (oregano), Thymus vulgaris
(thyme) (Mazzarrino et al., 2015), and Brassica nigra (black mus-
tard) EO – composed mainly of allyl isothiocyanate, that has one
of the greatest antimicrobial potentials among the essential oil
compounds (EOCs) studied (Clemente et al., 2016;
Reyes-Jurado et al., 2019).

To be able to consider their use in animals, there must be little
or no interference in the beneficial animal microbiota (Ambrosio
et al. (2017). Understanding of EO mechanisms of action is still
lacking, but in general, some of the reported effects are the
impairment of cell membrane integrity (e.g., cinnamaldehyde,
present in cinnamon EO); the inhibition of protein synthesis
(e.g., thyme EO); and the inhibition of genetic material repair
(e.g., the effect observed in E. coli through phenolic compounds
and terpenes, which can also affect the transfer of electrons in cel-
lular respiration) (Ju et al., 2019).

This review aims to compile information about EO and EOC,
covering their use as alternatives to antimicrobials and antiparasi-
tics, evaluating their mechanisms of action, critically analyzing the
information available about this topic, as well as to identify
knowledge gaps in the available literature.

EO and EOC mechanisms of action as antiparasitic and
antimicrobial agents

Mechanisms of action differ among EOs and EOCs (Table 1). In
general, scientific studies found in the literature show that the
main bactericidal activity occurs through plasmic membrane
damage with extravasation of intracellular content, or an increase

in its permeability (Lin et al., 2000; Bischoff et al., 2009;
Hemaiswarya and Doble, 2009; Bassolé et al., 2010; Tyagi and
Malik, 2012; Shen et al., 2015; Xu et al., 2016; Wang et al.,
2017; Zhang et al., 2017a, 2017b; Bouyahya et al., 2019; Cui
et al., 2019; Hu et al., 2019; Churklam et al., 2020; Liu et al.,
2020, 2021). Other effects observed were the inhibition of meta-
bolic and genetic pathways and damage to genetic material (Cui
et al., 2019; Hu et al., 2019; Wang et al., 2020; Liu et al., 2021),
morphological changes (Clemente et al., 2016), antibiofilm effects
(Bouyahya et al., 2019; Liu et al., 2021), and anti-quorum sensing
activity (Clemente et al., 2016). The accumulation of monoter-
penes and phenylpropanoids (compounds present in many
EOs) in the lipid part of the plasma membrane was responsible
for destabilizing the structure of the phospholipid bilayer,
depolarizing it, and increasing its permeability, compromising
its proper functioning, and eventually causing cell death
(Hammer and Heel, 2012).

Carvacrol, the major compound from oregano EO, caused the
disruption of the cell membrane and increased transmembrane
permeability (Cui et al., 2019). This is supported by the presence
of free genetic material in the culture medium of treated groups
and the increased concentration of carvacrol in the cytoplasm.
Anti-quorum sensing activity and inhibition of peptidoglycan
synthesis, which avoids repair and maintenance of the cell wall
structure, were also reported (Bouyahya et al., 2019; Ni et al.,
2021). Similar to carvacrol, Zingiber officinale (ginger) EO presented
a membrane-related effect against E. coli and Staphylococcus aureus.
The EO also caused metabolism disturbance, compromising the cit-
ric acid cycle, and inhibiting DNA repair and replication mechan-
isms (Wang et al., 2020).

The diversity of compounds present in EOs is extremely high.
As an example, Pinus spp. (pine) EO was identified with 116 con-
stituents, mostly belonging to the terpene class (Mitić et al., 2018).
In the EO of some plants, the prevailing terpene is limonene, a
compound that has anthelmintic activity on H. contortus and is
bactericidal for Salmonella Paratyphi A and Pseudomonas luteola,
with a moderate effect on Enterococcus faecalis. The mechanism
of limonene is still not fully understood, but studies show that
it can destroy cell integrity and cell wall structure of bacteria
through an increase in conductivity and the leakage of intracellu-
lar biomacromolecules (nucleic acids and proteins) (Squires et al.,
2010; Han et al., 2019; Yazgan et al., 2019).

The action of EO depends on different mechanisms inherent
to each compound present or the association of mechanisms
from the distinctive compounds, making it difficult to elucidate
the exact pathways in which these complex solutions work. The
resolution of this knowledge gap is of utmost importance, due
to the growing need for alternatives to antimicrobial compounds.
Another aggravating factor is the lack of adequate methodologies
for identifying mechanisms of antimicrobial activity. Many stud-
ies use minimal inhibitory concentrations (MICs) and neglect
effects that may not even have been documented because they
appeared before the MIC was reached and the occurrence of mor-
phologic alterations occurred in a way in which metabolic dys-
functions and genomic alterations become less noticeable.

EOs and EOCs are also used to control parasites (Table 2).
Cinnamaldehyde, for example, had its mechanism of action
against Caenorhabditis elegans – a free-living nematode used as
a model organism – based on an interference of several genes
that regulate the expression of glutathione, inhibiting the metab-
olism of xenobiotics, and leading to death of the organism (Lu
et al., 2020).

2 Eduardo Henrique Custódio Matté et al.

https://doi.org/10.1017/S1466252322000093 Published online by Cambridge University Press

https://doi.org/10.1017/S1466252322000093


Table 1. Effects of essential oils and isolated compounds on bacteria of relevance to animal production

Effects Bacteria
Inhibitory

concentrations
Bactericidal

concentrations References

Compounds isolated from essential oils

Carvacrol Damage to the cell membrane, inhibition of cellular
respiration, and synergism with nisin

Listeria monocytogenes 250 μgmL−1 500 μg ml−1 Churklam et al. (2020)

Cinnamaldehyde Disintegration and separation of cell wall and
membrane

Escherichia coli and Staphylococcus
aureus

0.31 mgml−1 ND Shen et al. (2015)

Eugenol Damage to the cell membrane and synergism with
antibiotics

E. coli, Pseudomonas aeruginosa and
Salmonella Typhimurium

10mM ND Hemaiswarya and Doble
(2009)

Allyl isothiocyanate Damage to the cell membrane (a similar mechanism
to polymyxin B)

E. coli, S. Typhimurium and L.
monocytogenes

1 μg ml−1 ND Lin et al. (2000)

Morphological changes and cell cycle arrest
(resulting in filamentation)

E. coli, Salmonella enterica, P. aeruginosa
and S. aureus

100 μgml−1 (EC)
100 μgml−1 (SE)
12.5 μgml−1

(PA)
100 μgml−1 (SA)

200 μg ml−1 (EC)
200 μg ml−1 (SE)
25 μgml−1 (PA)
800 μg ml−1 (SA)

Clemente et al. (2016)

Linalool Damage to the cell membrane and inhibition of
cellular respiration

P. aeruginosa 431 μgml−1 862 μg ml−1 Liu et al. (2020)

Thymol Damage to the cell membrane, DNA damage by
intercalation, reduced motility, and antibiofilm effect

P. aeruginosa 0.125 mgml−1 0.25 mgml−1 Liu et al. (2021)

Essential oils

Cinnamon zeylanicum Morphological changes and self-aggregation E. coli, S. enterica, P. aeruginosa and S.
aureus

200 μgml−1 (EC)
200 μgml−1 (SE)
400 μgml−1 (PA)
200 μgml−1 (SA)

400 μg ml−1 (EC)
400 μg ml−1 (SE)
400 μg ml−1 (PA)
800 μg ml−1 (SA)

Clemente et al. (2016)

Cymbopogon citratus Damage to the cell membrane E. coli 0.288 mgml−1 ND Tyagi and Malik (2012)

Dodartia orientalis Damage to the cell membrane and reduced
adhesion

S. aureus, E. coli and Salmonella
Enteritidis

0.5 μl ml−1 (SA)
1 μl ml−1 (EC)
2 μl ml−1 (SE)

1 μl ml−1 (SA)
2 μl ml−1 (EC)
4 μl ml−1 (SE)

Wang et al. (2017)

Lippia multiflora Damage to the cell membrane S. aureus and S. enterica 1.2 mgml−1 (SA)
4.2 mgml−1 (SE)

ND Bassolé et al. (2010)

Litsea cubeba Damage to the cell membrane, reduced ATPase
activity, inhibition of β-galactosidase activity,
inhibition of the hexose monophosphate pathway by
decreasing the glucose-6-phosphate dehydrogenase
enzyme, and structural change in DNA

Methicillin-resistant S. aureus (MRSA) 0.5 mgml−1 1 mgml−1 Hu et al. (2019)

Origanum compactum Damage to and increase in cell membrane
permeability and anti-biofilm effect

E. coli 0.62 mgml−1 0.62 mgml−1 Bouyahya et al. (2019)

Origanum vulgare Damage to the cell membrane, metabolism
inhibition by tricarboxylic acid cycle enzymes,
structural alteration of DNA, and inhibition of PVL
toxin gene expression

MRSA 0.4 mgml−1 0.4 mgml−1 Cui et al. (2019)
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Many compounds were studied, but only a few had proven
antiparasitic effects (Tavares-Dias, 2018), and little is known
about their mechanisms of action against these pathogens.
Although many studies have shown effectiveness (Camurça-
Vasconcelos et al., 2007; Ji et al., 2012; De Aquino Mesquita
et al., 2013; De Moraes et al., 2013; Godinho et al., 2014; Qi
et al., 2015; Fabbri et al., 2020), some compounds may exhibit
an in vitro effect but have little or no activity in vivo. For example,
artemisinin, derived from Artemisia annua (sweet wormwood)
EO, was tested in rodents to evaluate its action against H. contor-
tus, where it showed no beneficial effects (Squires et al., 2011).
Even though it does not affect this parasite, the possibility of pre-
senting effects against other species was not excluded, requiring
further in vivo research.

Encapsulated EO and EOC forms usually stand out over their
free forms, due to greater resistance to stomach acids and
increased bioaccessibility, which improves their absorption. In
addition, capsules can mask adverse sensory effects, improving
palatability characteristics (Lu et al., 2019; Amiri et al., 2020).

Most of the studies found in this literature review only present
the inhibitory activity of EOs against the parasites tested.
However, it is essential to improve the current knowledge of
how inhibition works to enhance parasite-control techniques
that use these compounds. Some of the works showed morpho-
logic changes, such as damage to the integument (Machado
et al., 2011; Ullah et al., 2017; Woolsey et al., 2019;
Dominguez-Uscanga et al., 2021), reduction in the numbers of
hatching of eggs (Macedo et al., 2010; Katiki et al., 2011;
Carvalho et al., 2012; Ribeiro et al., 2013; Zhu et al., 2013a,
2013b; Oliveira et al., 2014; Gaínza et al., 2015; Qi et al., 2015),
inhibition or reduction of motility (Singh et al., 2009; Zhu
et al., 2013a, 2013b; Ullah et al., 2017), and changes in the genetic
material and inhibition of metabolic pathways (Machado et al.,
2011; Ullah et al., 2017; Dominguez-Uscanga et al., 2021;
Khamesipour et al., 2021), but there is a lack of research that
addresses in vivo tests and different application techniques for
the use of these compounds, which are needed before they
become feasible techniques for animal management.

The development of EO resistance is improbable, due to the
multifactorial nature of their mechanisms caused by this diversity
in substances. This is an advantage in opposition to EOCs which
are more susceptible to the development of resistance and have a
higher cost of production and purification. On the other hand,
EOCs usually require lower concentrations for bacterial inhibition
in comparison to EOs, which reduces sensory alterations in ani-
mal feed or drinking water and improves palatability (Janz
et al., 2007; Franz et al., 2010). When animals are treated with
either EOs or EOCs, they must be closely monitored during the
initial administration to assess the efficacy of these treatments
and to promote a healthy transition from conventional drugs.

Zootechnical benefits of EOs and EOCs

The beneficial effects of EOs and EOCs, in addition to promoting
the biosafety of breeding stock, are also reflected in the zootech-
nical indexes and may act to replace performance-enhancing
additives. Moreover, Hernández-Coronado et al. (2019) showed
improved sensory evaluation of chicken meat when EO extracted
from Poliomintha longiflora (rosemary-mint) (400 mg l−1) was
used as an additive to chicken feed.

The addition of nanoencapsulated cumin EO with chitosan at
a concentration of 200 mg kg−1 in broiler feed resulted in betterTa
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Table 2. Effects of essential oils and isolated compounds on parasites of relevance in animal production

Effects Parasite
Optimal inhibition
concentration

Type of
test References

Compounds isolated from essential oils

Carvacrol Inhibition of muscle contractions and synergism with
gamma-aminobutyric acid

Ascaris suum 300 μM In vitro Trailović et al. (2015)

Anticoccidial Cryptosporidium spp. 1 mgml−1 In vitro Tanghort et al. (2019)

Cinnamaldehyde Increased production of specific antibodies A. suum 1000 mg kg−1 In vivo Williams et al. (2017)

Activity against larvae, subcuticular muscle injury, and intestinal
injury

A. suum 236 μM In vitro (Williams et al., 2015)

Curcumin Morphological changes in the tegument, reduced motility, inhibition
of cathepsin L gene, reduced glutathione levels, inhibition of
superoxide dismutase activity, oxidative damage by protein
carbonylation, and inhibition of glutathione S-transferase

Fasciola gigantica 60 μM In vitro Ullah et al. (2017)

Eugenol Anticoccidial Cryptosporidium spp. 0.5 mgml−1 In vitro Tanghort et al. (2019)

Thymol Membrane damage, inhibition of lipid metabolism, interference with
enzymes responsible for energy production, and free radical
production

Cryptosporidium
parvum

500 μgml−1 In vitro Dominguez-Uscanga et al.
(2021)

Thymoquinone Morphological changes in the tegument, reduced motility, inhibition
of cathepsin L gene, reduced glutathione levels, inhibition of
superoxide dismutase activity, and oxidative damage by protein
carbonylation

F. gigantica 60 μM In vitro Ullah et al. (2017)

Essential oils

Allium sativum Irreversible paralysis F. gigantica 3 mgml−1 In vitro Singh et al. (2009)

Total trophozoite growth inhibition within 24 h Entamoeba
histolytica

0.4 mgml−1 In vitro Behnia et al. (2008a, 2008b)

Antiparasitic activity E. histolytica e
Giardia lamblia

0.2 μgml−1 In vitro Azadbakht et al. (2019)

Arisaema spp. Egg hatching reduction and inhibition of larval development and
migration

Haemonchus
contortus

10 mgml−1 In vitro Zhu et al. (2013a, 2013b)

Artemisia absinthium Reduction in the number of oocysts by 70% Eimeria sp. 4 mgml−1 In vitro Remmal et al. (2011)

Artemisia lancea Egg hatching reduction and inhibition of larval motility and
development

H. contortus 10 mgml−1 In vitro Zhu et al. (2013a, 2013b)

Cichorium intybus Growth inhibition, no cytotoxic effect Cryptosporidium
parvum

300 μgml−1 In vitro Woolsey et al. (2019)

Citrus sinensis Egg hatching reduction and possible inhibition of embryogenesis H. contortus 1.56 mgml−1 In vitro Gaínza et al. (2015)

Citrus spp. Reduction in fecal egg count by 71% and prevalence reduction by
68%

Ascaridia galli 1200 mg kg−1 In vivo Abdelqader et al. (2012)

Clausena anisata Inhibition of larval migration A. suum 1 mgml−1 In vitro Williams et al. (2016)

Cuminum cyminum Ovicidal activity Fasciola hepatica 0.016 mgml−1 In vitro Silva et al. (2020)

(Continued )
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Table 2. (Continued.)

Effects Parasite
Optimal inhibition
concentration

Type of
test References

Curcuma longa Activity against adult worms A. galli 100mgml−1 In vitro;
In vivo

Bazh and El-Bahy (2013)

Cymbopogon schoenanthus Egg hatching reduction, inhibition of larval development, and
inhibition of larvae feeding

H. contortus 0.27 mgml−1 In vitro Katiki et al. (2011)

Dracocephalum kotschyi Activity against tachyzoites and reduction in ATP levels Toxoplasma gondii 24.49 μgml−1 In vitro Khamesipour et al. (2021)

Eucalyptus globulus Antiparasitic activity E. histolytica e G.
lamblia

0.2 μgml−1 In vitro Azadbakht et al. (2019)

Eucalyptus staigeriana Egg hatching reduction and inhibition of larval development H. contortus 8 mgml−1 (in vitro)
500 mg kg−1 (in vivo)

In vitro
in vivo

Ribeiro et al. (2013)

Egg hatching reduction and inhibition of larval development H. contortus 5.4 mgml−1 (in vitro)
500 mg kg−1 (in vivo)

In vitro
In vivo

Macedo et al. (2010)

Lippia sidoides Egg hatching reduction and inhibition of larval development H. contortus 0.13 mgml−1 In vivo
in vitro

Carvalho et al. (2012)

Melaleuca alternifolia Reduction in the number of oocysts by 70% Eimeria sp. 4 mgml−1 In vitro Remmal et al. (2011)

Melaleuca quinquenervia Inhibition of larval development H. contortus 1.56 mgml−1 In vitro Gaínza et al. (2015)

Mentha longifolia Activity against trophozoites E. histolytica e
Giardia duodenalis

200 μgml−1 In vitro El-Badry and Al Ali (2010)

Mentha piperita Egg hatching reduction and inhibition of larval development H. contortus 0.10 mgml−1 In vitro Carvalho et al. (2012)

Egg hatching reduction, inhibition of larval development, and
inhibition of larvae feeding

H. contortus 1 mgml−1 In vitro Katiki et al. (2011)

Ocimum basilicum Activity against trophozoites E. histolytica e G.
duodenalis

200 μgml−1 In vitro El-Badry and Al Ali (2010)

Origanum Vulgare Reduces post-infection oxidative stress and anticoccidial effect Eimeria spp. 12 mg kg−1 In vivo Bozkurt et al. (2016)

Anticoccidial Eimeria sp. 300 mg kg−1 In vivo Alp et al. (2012)

Coccidiostatic effect Eimeria spp. 0.5 mgml−1 In vivo Mohiti-Asli and
Ghanaatparast-Rashti
(2015)

Origanum compactum Anticoccidial Cryptosporidium spp. 1 mgml−1 In vitro Tanghort et al. (2019)

Pimpinella anisum Activity against trophozoites E. histolytica 5 mgml−1 In vitro Quintilde ones Gutieacute
rrez et al. (2013)

Piper aduncum Egg hatching reduction H. contortus 12 mgml−1 In vitro Oliveira et al. (2014)

Piper longum Irreversible paralysis F. gigantica 3 mgml−1 In vitro Singh et al. (2009)

Syzygium aromaticum Reduction in the number of oocysts by 70% Eimeria sp. 4 mgml−1 In vitro Remmal et al. (2011)

Growth inhibition, morphological changes, flagellum internalization,
and the presence of autophagic vacuoles

G. lamblia 300 μgml−1 In vitro Machado et al. (2011)

Anticoccidial Cryptosporidium spp. 1 mgml−1 In vitro Tanghort et al. (2019)
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body weight gain (BWG) and feed conversion ratio when com-
pared to flavomycin at 650 mg kg−1 (Amiri et al., 2020). The
use of Eucalyptus globulus (southern blue gum) EO, promoted
dose-dependent effects; for instance, it was able to promote the
growth of beneficial microbiota and reduce the E. coli population.
Moreover, it caused an increase in organic matter digestibility,
which can lead to an increase in the absorption of nutrients, a
decreased serum cholesterol, and increased superoxide dismutase
activity. All these factors improved BWG and feed conversion,
while cholesterol reduction enhanced the nutritional profile of
the meat produced, and antioxidant activity was enhanced by
superoxide dismutase inhibiting free radicals (Mohebodini et al.,
2021).

When fed to Japanese quail, S. aromaticum (clove) EO, at a
concentration of 1.5 ml kg−1, increased growth performance indi-
ces due to observed antioxidant effects and increased levels of
insulin, somatotropin (growth hormone), and thyroxine
(Hussein et al., 2019). In mammals, the effect of an oil blend
(300 mg kg−1 starter) composed of Rosmarinus officinalis (rose-
mary), Zataria multiflora (Shirazi thyme) and Mentha pulegium
(pennyroyal) (1:1:1) in calves showed an 11.5% body weight
increase compared to the control group (Jeshari et al., 2016). A
thymol and cinnamaldehyde blend (0.05 g kg−1 feed) was evalu-
ated in piglets, and the experiment revealed bactericidal and
immunomodulatory effects, a decrease in mucosal macrophages,
and a reduction in intestinal inflammation by the suppression
of interleukin expression (Jiang et al., 2015). Another experiment
was carried out in calves using a mix (300 mg day−1) of Thymus
kotschyanus (thyme), Lavandula angustifolia (lavender), Salvia
officinalis (common sage), and Capparis spinosa (caper bush)
EOs, and showed an optimization of the animals’ performance
(59.1 kg control group final body weight and 62.3 kg EO group
final body weight) due to the antioxidant and bactericidal effects
(Asghari et al., 2021).

According to the data presented, the use of EOs in the devel-
opment of biotechnological alternatives to conventional treat-
ments is largely plausible. In addition, EOs can also act as
immunomodulators, detoxifiers, performance enhancers, and
are highly versatile compounds (Lopes et al., 2020; Evangelista
et al., 2021).

EO and EOC use with conventional antimicrobial and
anthelmintic therapy

EOs present remarkable aromas and flavors, which can reduce
their feasibility as commercial products. To circumvent this prob-
lem, EO associations with traditional medicines or other bioactive
compounds can be used to reduce their recommended doses if
they have an additive or synergistic effect. This combination
can significantly reduce the necessary dosage of EOs, conse-
quently mitigating changes in sensory properties (Sharma et al.,
2020). Although research involving the combination of EOs
with conventional drugs still has unknown mechanisms of inter-
actions, the results have shown synergisms and reductions in the
appearance of antimicrobial/antiparasitic resistance (Lahmar
et al., 2017).

In vitro studies conducted by Ait Dra et al. (2017) showed a
synergistic effect between gentamicin or ciprofloxacin associated
with Periploca laevigata (cornicabra) EO against S. aureus and
E. coli. Combination of Foeniculum vulgare (fennel) and antibio-
tics (cefoxitin, mupirocin, cotrimoxazole, or ciprofloxacin)
showed synergism against S. aureus, with a significant increase
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in the inhibition zones, especially with mupirocin combination,
with an increase from 30 mm to approximately 42 mm of diam-
eter (Kwiatkowski et al., 2017). Ciprofloxacin combined with
Lavandula maroccana (lavender) EO resulted in a 4-fold MIC
decrease for E. coli, 16-fold for S. aureus, and 8-fold for
Pseudomonas aeruginosa (Soulaimani et al., 2019).

A multidrug-resistant strain of Acinetobacter baumannii was
exposed to polymyxin B at 1 μgml−1 and was able to grow during
the entire evaluation period (25 h) up to a maximum population of
∼10 log CFUml−1. When the strain was exposed to the same con-
centration of Polymyxin B with 0.5 μg ml−1 of Eucalyptus camaldu-
lensis (river red gum) EO, the population reached levels below the
experimental detection limit (2 log CFUml−1) in 6 h. In the same
period, the treatment with Polymyxin B alone presented a popula-
tion of over 7 log CFUml−1 (Knezevic et al., 2016).

Although EOs present antiparasitic effects, there is little infor-
mation about their association with classical drugs. The only article
found about this particular subject showed an association between
thymol and albendazole in vivo; nevertheless, this combination did
not obtain satisfactory results, even with in vitro data attesting to
the potential of the combination (Miró et al., 2020).

Most farmers have not adopted the use of natural alternatives
in countries where classical drugs are still allowed as growth pro-
moters. The well-known effect caused by antibiotics and antipara-
sitic drugs in animal production, their relatively low prices and
their ease to use are still stronger arguments to the producers
than the problems that they may cause to the environment and
public health (Ryan, 2019). Therefore, a gradual transition from
the current form of treatment to an approach that uses the associ-
ation of natural compounds may educate producers and build trust
that these molecules can improve zootechnical indices, enhance
feed palatability, and reduce the need for conventional drugs.

Conclusion

EOs and EOCs have great potential to be used in animal produc-
tion, with several benefits over conventional treatments. They
have provided reductions of antimicrobial and anthelmintic resist-
ance, a more effective treatment against resistant organisms, and
when used in combination with traditional products, several com-
pounds presented synergisms that substantially reduced the dose
required to achieve the desired effect.

The application is not limited to microbiological and parasitic
control, EOs and EOCs also show good results as performance-
enhancers in animal production. There is still a dearthof scientific lit-
eratureaboutanimalapplications complementary to invivo testing, as
well as further elucidation about mechanisms of action, recom-
mended doses, synergistic effects, and supplementation vehicles to
maximize their activities and thus reach their best potential.
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