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Abstract

We give a simpler and refined proof of some blow-up results of smooth solutions to the Cauchy problem
for the Navier–Stokes equations of compressible, viscous and heat-conducting fluids in arbitrary space
dimensions. Our main results reveal that smooth solutions with compactly supported initial density will
blow up in finite time, and that if the initial density decays at infinity in space, then there is no global
solution for which the velocity decays as the reciprocal of the elapsed time.
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1. Introduction

The compressible Navier–Stokes equations which govern the motion of a compressible
viscous and heat-conducting fluid, representing the conservation of mass, the balance
of momentum and energy, for (t, x) ∈ R+ × Rn (n ≥ 1), are as follows:

ρt + div(ρu)= 0, (1.1)

(ρu)t + div(ρu⊗ u)+∇ p = div S, (1.2)

(ρE)t + div(ρuE + pu)− k1θ = div(uS), (1.3)

where the unknown functions ρ = ρ(t, x), u= (u1, . . . , un), p and θ denote the
density, velocity, pressure and absolute temperature of the fluid, respectively. We write
E for 1

2 |u|
2
+ e, the total energy per unit mass, and e for the specific internal energy

per unit mass. The viscous stress tensor S is given by the Newtonian viscosity formula

S= µ(∇u+∇ t u)+ λ(div u)I, (1.4)
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where the constant viscosity coefficients satisfy

µ > 0, λ+
2
n
µ≥ 0, (1.5)

I is the identity matrix and∇ t u is the transpose of∇u. We denote by k ≥ 0 the constant
heat conductivity coefficient.

In this paper we will consider only polytropic ideal fluids, that is, the equations of
state for the fluid are given by

p = Rρθ, e = cvθ, p = AeS/Cvργ , (1.6)

where R > 0, A > 0 are the fluid constants, γ > 1 the ratio of specific heat, cv =
R/(γ − 1) the specific heat at constant volume and S is the entropy. Through the
algebraic relations (1.6), it is convenient to denote the solution of (1.1)–(1.3) by the
triplet (ρ, u, S). We complement the system (1.1)–(1.3), (1.6) with the initial data

(ρ, u, S)(t = 0, x)≡ (ρ0(x), u0(x), S0(x)) ∈ Hm(Rn), (1.7)

where m > b n
2c + 4. We refer to the initial value problem (1.1)–(1.3), (1.6), (1.7)

as (NS).
When the initial data are sufficiently close to a constant state, Matsumura and

Nishida [2] proved that there exists a global smooth solution to (NS) in Hm(Rn) and
that the velocity decays as (1+ t)−β , β = β(n). The essential point in [2] is that under
the assumptions the initial density is bounded far away from vacuum. Hence, a natural
question to ask is whether we can still obtain the global existence of small solutions
when there is a vacuum initially. Such a problem was considered by Xin [4], Cho
and Jin [1] for the case where the initial density has compact support. In particular,
Xin [4] proved that smooth solutions to (NS) with k = 0 will blow up in finite time.
The key points of his proof are the lower bound of the entropy and the time decay of
total pressure, but his proof seems hard to apply for the case k > 0. For the case k > 0,
but in a different way by estimating the quantity

∫
Rn ρ(t, x)|x |2 dx , Cho and Jin [1]

also showed that with the initial data compactly supported, the life span of smooth
solutions is finite. In this paper, we shall give a simpler and refined proof, by estimating
the time evolution of the quantity

∫
Rn ρ(t, x)xi dx , to obtain the blow-up phenomena

for smooth solutions to (NS) with k ≥ 0 and the initial data compactly supported; the
precise results are stated in Theorem 1.1. Theorem 1.1 implies in particular that (NS)
is not well posed in the presence of a vacuum, but compared with [2] it raises another
interesting question: whether we can obtain the global smooth solutions when there
is no vacuum but the density is not bounded away from vacuum. We discuss this in
Theorem 1.2.

We will consider the solutions in the space C1([0, T ]; Hm(Rn)) for T > 0, so if the
initial density ρ0(x) has compact support we can deduce from the mass equation (1.1)
that the density ρ(t, x) always has compact support in space, thus

R(t)≡ inf{r | supp ρ(t, x)⊆ Br }
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is well defined and finite for all t ∈ [0, T ]. Here we denote by Br = Br (0) the ball
in Rn centered at the origin with radius r . Our analysis is based on some average
quantities, similarly to those in Sideris [3], Xin [4], Cho and Jin [1], given by

m(t)=
∫

Rn
ρ(t, x) dx ‘total mass’,

E i (t)=
∫

Rn
ρ(t, x)xi dx ‘i th component of expectation’,

M(t)=
∫

Rn
ρ(t, x)|x | dx ‘first moment’,

Ai (t)=
∫

Rn
ρ(t, x)ui (t, x) dx ‘i th component of momentum’.

(1.8)

We are now in a position to state the main results of this paper.

THEOREM 1.1. Let T > 0, assume that µ, λ, k satisfy

µ > 0, λ+
2
n
µ≥ 0, k ≥ 0, (1.9)

and let (ρ, u, S)(t, x) ∈ C1([0, T ]; Hm(Rn)) be a solution to (NS). We also suppose
that the initial density ρ0(x) has compact support so that there exists a positive
constant R0 such that

supp ρ0(x)⊆ BR0,

and assume that

Al(0) 6= 0 for some l ∈ {1, 2, . . . , n}. (1.10)

If either (i) the support of the density grows sublinearly in time, that is, there exist
constants C1 (C1 > 0) and α (0≤ α < 1), independent of T , such that

R(t)≤ C1(1+ t)α, ∀t ∈ [0, T ], (1.11)

or (ii)

λ+
2
n
µ > 0, (1.12)

then the life span T of the solution (ρ, u, S) is finite.

The key step in the proof of Theorem 1.1 is to establish inequalities (2.5) and
(2.6). These two inequalities may suggest that one expect the life span of the smooth
solution T =∞ for the case where the density is positive on the whole space, the
positive result is obtained in Matsumura and Nishida [2] for the density bounded far
away from vacuum. However, if the initial density decays at infinity in the sense that
M(0) <∞ (this implies that the initial density is not bounded away from the vacuum
but is allowed to be positive everywhere), then there are no global solutions for which
u decays as the reciprocal of the time as time increases.
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THEOREM 1.2. Let (ρ, u, S)(t, x) ∈ C1([0, T ]; Hm(Rn)) be a solution to (NS), and
assume that

Al(0) 6= 0 for some l and M(0) <∞. (1.13)

Then there are no global solutions with T =∞ such that

lim sup
t→∞

∥∥∥∥ t

1+ |x |
u(t, x)

∥∥∥∥
L∞(Rn)

< 1. (1.14)

The rest of this paper is devoted to proving our results. Our proof is based on
fairly elementary calculus, and the key point is to control the lower bound of the time
evolution of the ‘i th component of expectation’ E i (t) or the ‘first moment’ M(t) by
their initial value and the initial momentum. Finally, some generalizations will be
stated as remarks.

2. Proof of theorems

2.1. Proof of Theorem 1.1. We first prove part (i). For this, in view of the mass
equation (1.1) and the assumptions of the theorem, we can simply compute

d

dt

∫
Rn
ρ(t, x)xi dx =

∫
Rn
ρt (t, x)xi dx =−

∫
Rn

div(ρu)xi dx

=

∫
Rn
ρ(t, x)ui (t, x) dx .

Thus by the definitions in (1.8), we obtain

d

dt
E i (t)= Ai (t). (2.1)

Integrating (1.1) and (1.2) respectively over Rn , we obtain

d

dt

∫
Rn
ρ(t, x) dx = 0=

d

dt

∫
Rn
ρ(t, x)ui (t, x) dx .

Thus

m(t)= m(0), Ai (t)= Ai (0). (2.2)

Then integrating (2.1) directly over (0, t) and using (2.2), we deduce that

E i (t)= E i (0)+
∫ t

0
Ai (s) ds = E i (0)+ Ai (0)t. (2.3)

On the other hand, by (1.11) we can estimate E i (t) as

|E i (t)| =

∣∣∣∣∫
Rn
ρ(t, x)xi dx

∣∣∣∣
=

∣∣∣∣∫
R(t)

ρ(t, x)xi dx

∣∣∣∣≤ m(t)R(t)≤ m(0)C1(1+ t)α. (2.4)
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Therefore, (2.3) and (2.4), together with the triangle inequality, yield

|Ai (0)|t − |E i (0)| ≤ |E i (0)+ Ai (0)t | = |E i (t)| ≤ m(0)C1(1+ t)α,

hence

|Ai (0)|t ≤ |E i (0)| + m(0)C1(1+ t)α ∀i = 1, 2, . . . , n and t > 0. (2.5)

Consequently, (2.5), (1.10) and the inequalities C1 > 0 and 0≤ α < 1 together yield
that the life span T of the solution (ρ, u, S) should be finite. More precisely,

T ≤min{tl | Al(0) 6= 0, l ∈ {1, 2, . . . , n}},

where tl is the maximum time satisfying (2.5) for i replaced by l with l satisfying
(1.10). Here we have used the fact that |E i (0)|, m(0) are finite since the initial density
has compact support. This proves part (i).

To prove part (ii), we only have to prove that the support of the density will not
grow in time. Indeed, we shall prove that

R(t)= R(0)= inf{r | supp ρ0 ⊆ Br };

thus (ii) follows from (i) by taking (1.11) with C1 = R(0), α = 0. And the relationship
(2.5) between the size of initial density and the life span of the solutions becomes

|Ai (0)|t ≤ |E i (0)| + m(0)R(0) ∀i = 1, 2, . . . , n and t > 0. (2.6)

To this end, we denote by X(t; x0) the particle path starting at x0 when t = 0, that is,

d

dt
X(t; x0)= u(t, X(t; x0)), X(t = 0; x0)= x0,

and set
�(0)= supp ρ0(x), �(t)= {x = X(t; x0) | x0 ∈�(0)}.

It follows from the mass equation (1.1) that the density is simply transported along
particle paths, so that

suppx ρ(t, x)⊆�(t).

This means that
p(t, x)= θ(t, x)= 0 if x ∈�(t)c.

This can be deduced from the equations of state (1.6), γ > 1 and the assumption that
(ρ, u, S)(t, x) ∈ C1([0, T ]; Hm(Rn)), together with the Sobolev embedding theorem
Hm(Rn)⊂ L∞(Rn); see Ziemer [5]. Therefore we can deduce from (1.2) and (1.3)
that

div S= div(uS)= 0 if x ∈�(t)c.
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Meanwhile we can compute

div(uS)− u div S = 2µ
n∑

i=1

(∂i u
i )2 + λ(div u)2 + µ

n∑
i 6= j

(∂i u
j )2

+ 2µ
n∑

i> j

(∂i u
j )(∂ j u

i ). (2.7)

If λ≤ 0, then

0≥ (2µ+ nλ)
n∑

i=1

(∂i u
i )2 + µ

n∑
i 6= j

(∂i u
j )2 + 2µ

n∑
i> j

(∂i u
j )(∂ j u

i )

= (2µ+ nλ)
n∑

i=1

(∂i u
i )2 + µ

n∑
i> j

(∂i u
j
+ ∂ j u

i )2.

If λ > 0, then

0≥ 2µ
n∑

i=1

(∂i u
i )2 + µ

n∑
i 6= j

(∂i u
j )2 + 2µ

n∑
i> j

(∂i u
j )(∂ j u

i )

= 2µ
n∑

i=1

(∂i u
i )2 + µ

n∑
i> j

(∂i u
j
+ ∂ j u

i )2.

Both cases, together with (1.9) and (1.12), imply that{
∂i ui (t, x) = 0
∂i u j (t, x) = −∂ j ui (t, x) (i 6= j)

on {t} ×�(t)c. (2.8)

This implies again that

∇
2u(t, x)= 0 on {t} ×�(t)c.

Hence the assumption u ∈ Hm(Rn) immediately yields

u(t, x)= 0 on {t} ×�(t)c.

On the other hand, we observe from the definition of �(t) that

u(t, X(t; x0))= 0 if x0 ∈ ∂�(0).

Thus

X(t; x0)= x0 +

∫ t

0
u(s, X(s; x0)) ds = x0 if x0 ∈ ∂�(0),

hence
R(t)= R(0) ∀t.

This proves assertion (ii) and the proof of Theorem 1.1 is complete. 2

REMARK 2.1. The proof of part (i) can be applied to any equations of compressible
fluids such as the Euler equations, shallow water equations and Korteweg type
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equations to show that if the support of the density grows sublinearly in time then
the life span of smooth solutions is finite. Moreover, if C1 is sufficiently small, then
we can arrange for α ∈ [0, 1].

2.2. Proof of Theorem 1.2. Suppose that (ρ, u, S) ∈ C1([0,∞); Hm(Rn)) is a
solution to (NS) satisfying (1.14). Then there exist constants t0 > 0 and c < 1 such
that ∥∥∥∥u(t, x)

1+ |x |

∥∥∥∥
L∞(Rn)

≤
c

t
∀t ≥ t0. (2.9)

Writing M̃(t)=
∫

Rn ρ(t, x)(1+ |x |) dx , then it follows from (2.2) and (1.1) that

d

dt
M̃(t)=

∫
Rn
ρt (t, x)|x | dx =−

∫
Rn

div(ρu)|x | dx

=

∫
Rn
ρu ·

x

|x |
dx

=

∫
Rn
ρ(1+ |x |)

u
1+ |x |

·
x

|x |
dx

≤ M̃(t)

∥∥∥∥u(t, x)

1+ |x |

∥∥∥∥
L∞(Rn)

.

(2.10)

Thus (2.9) and (2.10) imply that

d

dt
M̃(t)≤ M̃(t)

c

t
∀t ≥ t0.

Integrating this inequality indirectly over [t0, t],

M̃(t)≤ M̃(t0)+ c
∫ t

t0

M̃(s)

s
ds,

hence the Gronwall lemma yields

M̃(t)≤ M̃(t0) exp
(

c log
(

t

t0

))
=

M̃(t0)

tc
0

tc. (2.11)

On the other hand, by (2.2) and (2.3) we can estimate M̃(t) bounded below as

M̃(t)≥
∫

Rn
ρ(t, x) dx +

∣∣∣∣∫
Rn
ρ(t, x)x dx

∣∣∣∣
≥ m(0)+ |E i (0)+ Ai (0)t |

≥ m(0)+ |Ai (0)|t − M(0).

(2.12)

Combining inequalities (2.11) and (2.12), we obtain

|Ai (0)|t ≤ M(0)− m(0)+
M̃(t0)

tc
0

tc
∀t ≥ t0 and all i = 1, 2, . . . , n. (2.13)
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Meanwhile,

M̃(t0)= M̃(0)+
∫ t0

0

d

ds
M̃(s) ds

= m(0)+ M(0)+
∫ t0

0

∫
Rn
ρu ·

x

|x |
dx ds

≤ m(0)+ M(0)+ sup
0≤t≤t0

‖u(t, x)‖L∞(Rn)m(0)t0.

(2.14)

Thus (2.13) and (2.14), together with the assumptions (1.13) on the initial data and
u ∈ C1([0,∞); Hm(Rn)), yield the contradiction to the hypothesis c < 1. This
completes the proof of Theorem 1.2. 2

REMARK 2.2. Similarly to Remark 2.1, Theorem 1.2 also holds for some other
equations of compressible fluids.

Acknowledgements

The authors are grateful to the referees and the editors whose comments greatly
improved the presentation of this paper.

References

[1] Y. Cho and B. J. Jin, ‘Blow-up of viscous heat-conducting compressible flows’, J. Math. Anal.
Appl. 320 (2006), 819–826.

[2] A. Matsumura and T. Nishida, ‘The initial value problem for the equations of motion of viscous
and heat-conductive gases’, J. Math. Kyoto Univ. 20 (1980), 67–104.

[3] T. C. Sideris, ‘Formation of singularity in three dimensional compressible fluids’, Comm. Math.
Phys. 101 (1985), 475–487.

[4] Z. Xin, ‘Blow-up of smooth solutions to compressible Navier–Stokes equations with compact
density’, Comm. Pure. Appl. Math. 51 (1998), 229–240.

[5] W. Ziemer, Weakly Differential Functions (Springer, Berlin, 1989).

ZHONG TAN, School of Mathematical Sciences, Xiamen University,
Fujian 361005, PR China
e-mail: ztan85@163.com

YANJIN WANG, School of Mathematical Sciences, Xiamen University,
Fujian 361005, PR China
e-mail: yj_wang1984@sohu.com

https://doi.org/10.1017/S144678871000008X Published online by Cambridge University Press

https://doi.org/10.1017/S144678871000008X

