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Abstract

In this article we localize the zeros of some polynomials and the derivatives of some entire functions of
finite genus. If we put m = 1 in the condition of Theorem 1 we obtain the famous Obreshkoff Theorem
which can be regarded as a 'complex version' of a well-known theorem due to Laguerre. The nonreal
zeros of the derivative of the real entire function of Theorem 3 must belong to circles Vk which are similar
to the Jensen circles for polynomials.

1991 Mathematics subject classification (Amer. Math. Soc): primary 30D20.

DEFINITION. By 'real entire function' will be meant an entire function whose
Maclaurin-series expansion has only real coefficients.

Further all sequences {z*}!£i will satisfy limJt_00 |z*| = oo.

DEFINITION. We will write nPk = n\/(n - &)!, (£) = nPk/k\.

THEOREM 1. Let the zeros ak, k = 1 , . . . , n, of the polynomial p{z) satisfy \ak\ < 1.
Then the zeros z of the polynomial q (z) = yp (z) + X]™=i z*P W (z)/« ft satisfy \z\ <0,
where Rey > -m/2, 1 < m < n, and 9 = (21/m - I)"1.

PROOF. Let z be such that q(z) = 0 and p(z) # 0. Then

A

A = n

nP,m

+ ••• +
z -an\

. 1
(z - tfi) • • • (z - am)
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Let us consider the last term sm in this sum. The estimates for the other terms are
analogous. Define

y l

= ( Um = - - + ••• + : ,
(z-ax)---(z-am) (z - an.m+l) • • • (z - an)

Then

z z 1 z + a
(,zm-a) 2 2(zm - a)'

D = Re = =

zm — a \zm — a\2 \zm — a\2

\a\ < |a, + • • • + am\ \Zrl + • • • + |a, • • • aam\ <

Thus

|z|" - Ml > 2|z|" - (\z\m + m\zrl + (£)\z\m-2 + • • • +

If \z\ > 0 = (21/m - I)-1 we obtain D > 0, that is Resm > 1/2. Finally if we
note that 6m = (21/m - I)"1, then obviously 1 = 9X < 02 < • • • < 9m and therefore
Re A — Re(y + S\ + • • • + sm) > 0 which proves the theorem. •

REMARK. We can formulate Theorem 1 in the following form: Let the zeros ak, k =
1, . . . , n, of the polynomial p (z) satisfy \ak\ < 1. Then the zeros z of the polynomial
qiz) = yp(z) + ELizV^Cz) satisfy \z\ < 6, where Rey > - l / 2 £ t , n A ,
1 < m < n, and 9 = (21/m - I)"1.

THEOREM 2. Letf(z) = exp(d + czm + bzm+i + azm+2) UZi Em(z/zk) be a real
entire function, where m is a positive integer, a, b, c, d 6 R, a > 0, b < 0, c > 0, and
the Weierstrass factors are

EM) = (1 - ?) exp (i; + fli + ••• + r/m).

Let all zeros zt off (z) satisfy Arg(zt) 6 ( - n/[2m + 2], n /[2m + 2]). Then all zeros
z of f'(z) satisfy Re(z) > 0.
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PROOF. Let z be such that/'(z) = 0, and write z = x + iy, where x, y e R,x < 0.
Then

\)bzm + (m + 2)azm+x

t = 1 |_Z - Zk Zk Z"k Zk \Zk

— + (m-
-zk

Let

If / (zk) = 0 then / (zt) = 0, since / (z) is real entire function. Let zk = xk + iyk,
zk = xk — iyk, where xk,yk e K. Then

C = 2B- f ^ ^ + 2(m + \)b + 2(m + 2)az
L Ul

|z-zt|
2 |z-zt|

2 j

" ^ l 2 + z*"(z - zt)\z - zk\
2} /Dk,

k=l

where Dk = \z^\2\z - zk\
2\z - zk\

2.
Let r = x — xk, q = y — yk, s = y + yk and zk = pk(cos(pk + i sin#>t), and

A4 = [zt"(F^z0lz - lk\
2 + zf(z - z*)|z - zk\

2] Ivm
k

= [cos(m^) - i sin(nupk)](r - iq) (r2 + q2)

+ [cosCmv?*) + i sin(m<pk)](r — is) (r2 + s2) ,

and

Re At = [r cos(m<pk) — q sin(m<pk)] ( r 2 +

= rcos(m<pk) (2r2 + s2 + q2) + sin(m(pk) (r2s + q2s — r2q — s2q)
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= 2r cos(m<Pt) (r2 + y2 + y2
k) + 2yk sin(m^) (r2 - y2 + y2

k)

= 2(r2+y2) [rcos(m<pk)+yksin{m(pk)]+2y2[rcos(m(pk)-yksm(m<pk)].

Since, by hypothesis, <pk e (—n/[2m + 2], n/[2m + 2]), we have cos(m<pk) > 0,
and if we assume that [rcos(m<pk) — yk sin(m<pt)] > 0, then (x — xk)cos(m(pk) +
yk sin(m^t) < 0. Sincex < 0,xk = pkcos<pk andyk = pksin^*, we obtain

xk cos(m<pk) + yk sin(m<p*) < 0, or

cos <pk cos(m<pk) + sin <pk sin(m^) < 0,

that is cos[(m — l)<pk] < 0, which is impossible since ipk e (~n/[2m + 2], n/[2m +
2]). Therefore, [rcos(ni(pk) — yk sin(m^)] < 0. If we assume that [rcos(m(pk) +
yk sin(m^)] > 0, by the same way we obtain cos[(w + \)<pk] < 0, which is impossible
since cpk e (-n/[2m + 2], n/[2m + 2]). Therefore, [r cos(m(pk) + yk sin(w^)] < 0
and Re A* < 0, that is Re B < 0, because a > 0, b < 0, c > 0. But A = zmB = 0,
that is B = 0. The contradiction completes the proof. •

THEOREM 3. Letf(z) = exp(J + czm + bzm+l + azm+2) UZi Em{z/zk) be a real
entire function, where m is a positive integer and a, b, c, d e R, a < 0, c > 0. Let all
zeros Zk off (z) satisfy <pk e (—7t/[2m], n/[2m]), where (pk = Arg(zt). Let Vk be the
disk

Vk = \\z-Rezk\ < \lmzk\ — } ,
[ cos(m<pk) J

and let M = ( J ^ , Vk. Then iff'(z) has nonreal roots, they must belong to M.

PROOF. Let z be such that f'(z) = 0 and z i K, where z — x + iy, x, y e 1,
y > 0, z ^ zk and z & M. Let A = (log/ (z))' =f'(z)/f (z). As in Theorem 2 we
obtain:

A, = [ z 7 ( F ^ ) k - IA2 + z?{z - Zk)\z - zk\
2} lpm

k

= [cos(m<pt) - i sin(m<pk)](r - iq) (r2 + s2)

+ [cos(ni(pk) + i sm(m<pk)](r - is) (r2 + q2).

Thus

- Im At = [q cos(m<pk) + r sin(m^)] (r2 + s2) + [s cos(ni(pk) - r sin(m^)] (r2 + q2)

= 2>> (r2 + y2 - y2) cos(m<pk) + 4yykrsm(m(pk).

Let Ck = cos(m<pk) (r
2 + y2 — y2) + 2sin(m<pk)ykr and R = \z — Rezt|, so that

r2 + y2 = R2, and therefore r = e^/R2 — y2, where e = ±1. We have

Ck > cos(m<pk) (R2 - y\) - 2| sin(m(pk)\\yk\R
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= cos(m<pk)R
2 - 2| sm(m<pk)\\yk\R - cos(m<pk)yt

= cos(m<pk)(R - Ri)(R- R2),

where

\sm(m<pk)\-l \sin(m<pk)\

Because cpk € (—7t/[2m], n/[2m]), we have cos(mcpk) > 0. Then if R >
I sin(m^)|]/cos(m^), we obtain Ck > 0. Hence ImA* = — 2yCk < 0, that is
Im B < 0, because a < 0, c > 0, and from proof of Theorem 2 we know that

C = 2B- \?P£- + 2(m + \)b + 2(m + 2)az
L Izl2

where D t = Izf I 2 | z - z t I 2 I z - z t I 2 .
But A = zm B = 0, that is B = 0. This contradiction proves the theorem. •

REMARK. Theorem 3 remains true if we change the condition <pk e {—iz/[2ni\,
n/[2m]) to the condition cos(m<pt) > 0.

COROLLARY 1. Letf (z) = exp(d + czm + bzm+x +azm+2) UZi Em{z/zk) be a real
entire function, where m is a positive integer and a, b, c, d € R, a < 0, c > 0 and all
zeros zk off (z) are real and positive. Then all zeros off'(z) are real.
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