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Abstract
Given a sequence of independent random vectors taking values in Rd and having common continuous distribution
function F, say that the nth observation sets a (Pareto) record if it is not dominated (in every coordinate) by any
preceding observation. Let pn (F) ≡ pn,d (F) denote the probability that the nth observation sets a record. There
are many interesting questions to address concerning pn and multivariate records more generally, but this short
paper focuses on how pn varies with F, particularly if, under F, the coordinates exhibit negative dependence or
positive dependence (rather than independence, a more-studied case). We introduce new notions of negative and
positive dependence ideally suited for such a study, called negative record-setting probability dependence (NRPD)
and positive record-setting probability dependence (PRPD), relate these notions to existing notions of dependence,
and for fixed d ≥ 2 and n ≥ 1 prove that the image of the mapping pn on the domain of NRPD (respectively, PRPD)
distributions is [p∗n, 1] (resp., [n−1, p∗n]), where p∗n is the record-setting probability for any continuous F governing
independent coordinates.

1. Introduction, background, and main results

1.1. Introduction, notation, and definitions

We begin with some definitions, including the Definition 1.2 of (multivariate) records as studied in this
paper. For x, y ∈ Rd , we write x ≤ y or y ≥ x to mean that xj ≤ yj for 1 ≤ j ≤ d, and we write x ≺ y or
y � x to mean that xj < yj for 1 ≤ j ≤ d. For x ∈ Rd , we use the usual notation ‖x‖1 :=

∑d
j=1 |xj |. We

use the standard notation =⇒ for weak convergence of probability measures in Euclidean spaces (or
their distribution functions).

Throughout this paper, X(1) , X(2) , . . . are assumed to be i.i.d. (independent and identically dis-
tributed) copies of a d-dimensional random vector X with distribution function F and law (or
distribution) denoted by L(X). Throughout the paper we restrict attention to continuous F, mainly
to avoid the complicating mathematical nuisance of ties, as explained in Remark 1.1(d).

Remark 1.1.

(a) As noted by a reviewer of a previous draft, a distribution function F on Rd is continuous if and
only if each of its d univariate marginals is. This is easy to prove from the observation in [4, Sect. 3
(only in first edition)] that F corresponding to random vector X is continuous at x ∈ Rd if and only
if F (x) = P(X ≺ x).
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(b) Specializing (a) to d = 1, the distribution function of a random variable Y is continuous if and only
if P(Y = y) = 0 for each y ∈ R.

(c) We note in passing, however, that, in contradistinction to (b), atomlessness of a random vector
does not imply continuity of the distribution function in dimensions 2 and higher; see, for example,
[6, Sect. 8.5].

(d) Combining (a)–(b), it follows that, if the d-dimensional random vector X has continuous distribu-
tion function F, then almost surely for every 1 ≤ j ≤ d there are no ties among X (1)

j , X (2)
j , . . ..

Definition 1.2.

(a) For n ≥ 1, we say that X(n) is a (Pareto) record (or that it sets a record at time n) if X(n) ≤ X(i)

fails for all 1 ≤ i < n.
(b) If 1 ≤ k ≤ n, we say that X(k) is a current record (or remaining record, or maximum) at time n if

X(k) ≤ X(i) fails for all 1 ≤ i ≤ n with i≠ k.
(c) For n ≥ 1 we let Rn denote the number of records X(k) with 1 ≤ k ≤ n and let rn denote the number

of remaining records at time n.

Remark 1.3. It is clear from Definition 1.2 that if X̃ = (g1 (X1), . . . , gd (Xd)) where g1, . . . , gd are
strictly increasing transformations, then the stochastic processes (Rn) and (rn) are the same for the i.i.d.
sequence X̃(1) , X̃(2) , . . . as for X(1) , X(2) , . . .. Further, since we assume that F is continuous, it follows
from Remark 1.1 that the distribution function F̃ of X̃ is also continuous.

Remark 1.4. We note that the expected number rn of maxima at time n is n times the probability
that X(n) sets a record. Thus our main Theorems 1.11–1.12 about record-setting probabilities also give
information about the expected number of maxima when i.i.d. vectors are sampled.

Omitting, for now, any dependence on F or d from the notation, the probability pn that X(n) sets a
record is given by

pn =

∫
P(X ∈ dx) [1 − P(X ≥ x)]n−1 =

∫
dF (x) [1 − H (−x)]n−1

=

∫
dH (y) [1 − H (y)]n−1 = E[1 − H (−X)]n−1, (1)

where H denotes the distribution function corresponding to −X.

Remark 1.5. For fixed d and n, the mapping from F (equivalently, from H) to pn is many-to-one; recall
Remark 1.3. In particular, pn has the same value for all continuous F such that the coordinates of X are
independent.

1.2. RP equivalence classes, RP ordering, and the main results

We see from (1) that the sequence (pn)n≥1 of record-setting probabilities is determined by L(H (−X)).
Conversely, since the distribution of a bounded random variable is determined by its moments,
L(H (−X)) is determined by (pn)n≥1. We are thus led to define an equivalence relation on (continu-
ous) d-dimensional distribution functions F (for each fixed d) by declaring that F ∼ F̃ if H (−X) and
H̃ (−X̃) have the same distribution, where F, F̃, H, and H̃ are the distribution functions of X, −X, X̃,
and −X̃, respectively; we call this the record-setting probability (RP) equivalence.
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We are now prepared to define a partial order on the RP equivalence classes.

Definition 1.6. Let C and C̃ be RP equivalence classes with (arbitrarily chosen) respective represen-
tatives F and F̃. We say that C ≤ C̃ in the RP ordering (or, by abuse of terminology, that F ≤ F̃ in the
RP ordering) if H (−X) ≥ H̃ (−X̃) stochastically.

Remark 1.7. From (1) it follows immediately that if F ≤ F̃ in the RP ordering, then pn ≤ p̃n for every n.

Let C∗ denote the RP equivalence class corresponding to independent coordinates. We next introduce
new notions of negative dependence and positive dependence; we relate these notions to more standard
notions later, in Section 4.

Definition 1.8. We will say that F is negatively record-setting probability dependent (NRPD) if its RP
equivalence class C satisfies C ≥ C∗ in the RP ordering.

Definition 1.9. We will say that F is positively record-setting probability dependent (PRPD) if its RP
equivalence class C satisfies C ≤ C∗ in the RP ordering.

Remark 1.10. Thus any F having independent coordinates is both NRPD and PRPD.

We can now state our two main results. For both, let pn(F) ≡ pn,d (F) denote the probability that
the nth observation X(n) from the (continuous) distribution F sets a record, and let p∗n denote the value
when F ∈ C∗.

Theorem 1.11 For each fixed d ≥ 2 and n ≥ 1 the image of the mapping pn on the domain of NRPD
distributions is precisely the interval [p∗n, 1].

Theorem 1.12 For each fixed d ≥ 1 and n ≥ 1 the image of the mapping pn on the domain of PRPD
distributions is precisely the interval [n−1, p∗n].

Remark 1.13.

(a) For d = 1 and n ≥ 2 the conclusion of Theorem 1.11 is false, since then pn,1(F) ≡ n−1.
(b) For n= 1 the results of Theorems 1.11–1.12 are trivial, since we have p1,d (F) ≡ 1; so in proving

the theorems we may assume n ≥ 2.

Corollary 1.14. For fixed d ≥ 2 and n ≥ 1 the image of the mapping pn on the domain of all continuous
distributions F is precisely the interval [n−1, 1], irrespective of d.

We outline here the strategy, as illustrated in Figure 1 and carried out in Section 7, for proving
Theorems 1.11–1.12 (and subsequently Corollary 1.14). Let RN and RP denote the respective images.
It is immediate from our definitions that RN ⊆ [p∗n, 1] and RP ⊆ [0, p∗n], and by considering just first
coordinates (see Lemma 2.2) we quickly narrow the latter to RP ⊆ [n−1, p∗n]. To show the reverse
containments, we then fill the interval [p∗n, 1] with elements of RN by choosing distribution func-
tions F from a certain class of marginalized-Dirichlet distributions and their weak limits, and we fill
the interval [n−1, p∗n] with elements of RP by choosing distribution functions F from a certain class of
distributions with positively associated (PA) coordinates (more specifically, certain scale mixtures of
i.i.d. Exponential distributions) and their weak limits.
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Figure 1. The strategy for proving Theorems 1.11–1.12; here the random variable “PAa” has the PA
distribution F̂a described in Section 6.

1.3. Brief literature review

Let us mention some related literature concerning Pareto records; we continue to assume F is continuous
throughout this review. The book [1] is a standard reference for univariate records (the case d = 1).
For multivariate records in the case of independent coordinates, we have already remarked that the
record-setting probability pn = p∗n does not depend on the distributions of the individual coordinates,
but other aspects (such as the location of remaining records) do. Usually, as in [2] (see also the references
therein), the coordinates are taken to be i.i.d., either Uniform(0, 1) or standard Exponential. Bai et al. [2]
obtain, for fixed d and for both Rn and rn, asymptotic expansions as n → ∞ for the expected value and
variance and a central limit theorem with a Berry–Esseen bound. The main contributions of Fill and
Naiman [12] are localization theorems for the Pareto frontier—that is, the topological boundary between
the record-setting region and its complement when coordinates are i.i.d. standard Exponential—and
some of those theorems are substantially sharpened in [13]. An importance-sampling algorithm for
sampling records is presented, and partially analyzed, in [11]. A limiting distribution (again, for fixed d
as n → ∞) is established for the number rn−1+1−rn of remaining records broken by X(n) conditionally
given that X(n) sets a record, for d = 2 in [9] and for general d in [10].

An underlying theme of the present paper is that it is interesting to see how results (for example,
concerning asymptotics for moments and distributions for Rn and rn and localization of the fron-
tier) vary with F. When F is the uniform distribution on the d-dimensional simplex, Hwang and
Tsai [14] (see also the references therein, especially Bai et al. [3]) proceed in a fashion similar to
that in [2] to obtain analogues of the asymptotic results of that earlier paper. It is worth noting that
the computations are more involved in the simplex case than in [2], in part because results about
rn no longer translate immediately to results about Rn since the use of so-called concomitants (see
Remark 3.1) becomes more involved, and that the results are enormously different; indeed, for exam-
ple, as noted in the last line of the table on p. 1,867 of [14], we have E rn ∼ (ln n)d−1/(d − 1)!
for independent coordinates while E rn ∼ Γ(1/d) n(d−1)/d for uniform sampling from the
d-simplex.

1.4. Organization

In Section 2, we record two simple but very useful general observations about the record-breaking
probability pn. In Section 3, we briefly review the special case of independent coordinates. In Section 4,
we relate the notions of NRPD and PRPD to existing notions of negative and positive dependence.
In Section 5, we introduce and treat a class of examples of NRPD distributions F closely related to
Dirichlet distributions and in Section 6 we introduce and treat a class of PRPD examples that are
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scale mixtures of i.i.d. Exponential coordinates. Finally, in Section 7 we prove Theorems 1.11–1.12
and Corollary 1.14 and make a few additional remarks concerning the variability of pn.

1.5. Manifesto

In light of Theorems 1.11–1.12 (see also Figure 1 and the proof strategy discussed at the end
of Section 1.2), we regard the marginalized-Dirichlet NRPD distributions and the scale-mixture PRPD
distributions we will use to prove the theorems, if not as canonical examples, then at least as standard
examples worthy of thorough consideration—in particular, to study how the behaviors of these exam-
ples vary with their associated parameter values. Accordingly, we regard this paper as a pilot study of
sorts, and we are presently working to extend (most of) the results of references [2], [14], [12]–[13],
[11], [9], and [10] to these two classes of examples.

2. The record-breaking probability pn: general information

To carry out our proof strategy for Theorems 1.11–1.12, we first need a result that pn is continuous as a
function of L(X) at any continuous distribution on Rd . For this result (Proposition 2.1), we do not need
to assume that the distributions of the random vectors X(m) are continuous.

Proposition 2.1. Fix d ≥ 1 and n ≥ 1. If X(m) converges in distribution to X having a continuous
distribution, then the corresponding record-setting probabilities satisfy pn(m) → pn as m → ∞.

Proof. The distribution functions Hm of −X(m) and H of −X satisfy Hm =⇒ H. Moreover, H is
continuous, so Hm (y) converges to H (y) uniformly in y [4, Problem 3 in Sect. 3 (only in first edition)]
and hence (recalling that n here is fixed) [1 − Hm (y)]n−1 converges to [1 − H (y)]n−1 uniformly in y. It
follows that as m → ∞ we have

pn(m) =
∫

dHm (y) [1 − Hm (y)]n−1 →
∫

dH (y) [1 − H (y)]n−1 = pn.
�

Our next result exhibits the smallest and largest possible values of pn.

Lemma 2.2. Fix d ≥ 2 and n ≥ 1. We always have pn ∈ [n−1, 1], and pn = n−1 and pn = 1 are both
possible.

Proof. If X (n)
1 sets a one-dimensional record (which has probability n−1), then X(n) sets a d-dimensional

record. Thus pn ≥ n−1, and equality holds if Y has any continuous distribution onR and X = (Y , . . . , Y).
At the other extreme, if d ≥ 2 and (for example) X ≥ 0 has any continuous distribution (such as any

Dirichlet distribution) satisfying ‖X‖1 = 1, then X(1) , X(2) , . . . form an antichain in the partial order ≤
on Rd , so pn = 1. �

For further general information about pn (in addition to Theorems 1.11–1.12, of course), see
Remark 7.1.

3. Independent coordinates: p∗n
This brief section concerns the case where the coordinates of each observation are independent. As
noted in Remark 1.5, pn doesn’t otherwise depend on F in this setting, so we may as well assume that
the coordinates are i.i.d. Exponential(1). Then (writing p∗n for pn in this special case)
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p∗n =

∫
P(X ∈ dx) [1 − P(X ≥ x)]n−1 =

∫
0≤x∈Rd

e−‖x‖1
(
1 − e−‖x‖1

)n−1
dx

=

∫ ∞

0

yd−1

(d − 1)!e
−y (1 − e−y)n−1 dy

= n−1
n∑

j=1
(−1)j−1

(
n
j

)
j−(d−1) =: n−1Ĥ (d−1)

n (= n−1 when d = 1).

Alternatively, as pointed out by a reviewer of a previous draft, the same expression can be obtained for
p∗n by applying the principle of inclusion–exclusion to P

(⋃n−1
i=1 {X(n) ≤ X(i) }

)
.

The numbers

Ĥ (k)
n =

n∑
j=1

(−1)j−1
(
n
j

)
j−k

appearing in the expression for p∗n are called Roman harmonic numbers, studied in [17], [18], and [20].
This Ĥ (k)

n can be written as a positive linear combination of products of generalized harmonic numbers
H (r)

n :=
∑n

j=1 j−r . In particular, Ĥ (1)
n = H (1)

n .

Remark 3.1.

(a) In obvious notation, the numbers E r∗n,d = np∗n,d = ER∗
n,d−1 increase strictly in n for fixed d ≥ 2, with

limit ∞ as n → ∞. (Note: The equality in distribution of the random variables rn,d and Rn,d−1 for
general continuous F follows by standard consideration of concomitants: Consider X(1) , . . . , X(n)

sorted according to the value of the d th coordinate.) Further, the numbers p∗n,d increase strictly in d
for fixed n ≥ 2, with limit 1 as d → ∞; and decrease strictly in n for fixed d ≥ 1, with limit 0 as
n → ∞.

(b) For fixed d we have

p∗n,d ∼ n−1 (ln n)d−1

(d − 1)! as n → ∞.

Bai et al. [2] give a more extensive asymptotic expansion.

4. Negative dependence (including NRPD) and positive dependence (including PRPD)

In this section, we review existing notions of negative and positive dependence in Subsections 4.1–4.2
and relate our new notions of NRPD and PRPD to them in Subsection 4.3.

4.1. Negative dependence

For a discussion of several notions of negative dependence, see [15]. The first two notions in the next def-
inition can be found there, with focus on the first notion (NA); we have created the third by interpolating
between the first two.

Definition 4.1.

(a) Random variables X1, . . . , Xk are said to be negatively associated (NA) if for every pair of disjoint
subsets A1 and A2 of {1, . . . , k} we have

Cov{f1(Xi : i ∈ A1), f2(Xj : j ∈ A2)} ≤ 0

whenever f1 and f2 are nondecreasing (in each argument) and the covariance is defined.
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(b) Random variables X1, . . . , Xk are said to be negatively upper orthant dependent (NUOD) if for all
real numbers x1, . . . , xk we have

P(Xi > xi, i = 1, . . . , k) ≤
k∏

i=1
P(Xi > xi).

(c) We say that random variables X1, . . . , Xk are negatively upper orthant associated (NUOA) if for
every pair of disjoint subsets A1 and A2 of {1, . . . , k} and all real numbers x1, . . . , xk we have

P(Xi > xi, i = 1, . . . , k) ≤ P(Xi > xi, i ∈ A1) P(Xj > xj, j ∈ A2).

Remark 4.2.

(a) NA implies NUOA, which implies NUOD.
(b) Theorem 2.8 in [15] gives a way of constructing NA (X1, . . . , Xk), namely, if G1, . . . , Gk are

independent random variables with log-concave densities, then the conditional distribution of
G = (G1, . . . , Gk) given

∑k
j=1 Gj is NA almost surely.

4.2. Positive dependence

For a general discussion of various notions of positive dependence focusing on the one in the next
definition, see [8].

Definition 4.3. Random variables X = (X1, . . . , Xk) are said to be positively associated (PA) (or simply
associated) if

Cov{ f1(X), f2(X)} ≥ 0

whenever f1 and f2 are nondecreasing (in each argument) and the covariance is defined.

Remark 4.4. It is easy to show that if Z and G1, . . . , Gd are independent positive random variables,
then the scale mixture

X := (ZG1, . . . , ZGd)

is PA. The proof uses the law of total covariance (conditioning on Z), the fact [8, Thm. 2.1] that inde-
pendent random variables are PA (applied to the conditional covariance), and the fact ([8, Property P3],
due to Chebyshev) that the set consisting of a single random variable is PA (applied to the covariance
of the conditional expectations).

4.3. Relation with NRPD and PRPD

Our motivation for regarding NRPD and PRPD of respective Definitions 1.8 and 1.9 as notions
of negative and positive dependence, respectively, is the following observation. One might suspect
that NA implies NRPD and that PA implies PRPD; we are unable to prove either implication, but
we can prove the weaker results (recall Remark 1.7) that NA implies p2 ≥ p∗2 and PA implies
p2 ≤ p∗2.

To establish the claimed inequalities, in the following proof replace ∗ by ≤ if the observations are
PA, by = if they have independent coordinates, and by ≥ if they are NA. The claim is that p2 ∗ 1 − 2−d .
To see this, recall (1). We then have
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p2 =

∫
P(X ∈ dx) [1 − P(X ≥ x)] = 1 −

∫
P(X ∈ dx) P(X ≥ x)

∗ 1 −
∫
P(X ∈ dx)

d∏
j=1
P(Xj ≥ xj)

∗ 1 −
∫ d∏

j=1
[P(Xj ∈ dxj) P(Xj ≥ xj)]

= 1 −
d∏

j=1

∫
[P(Xj ∈ dx) P(Xj ≥ x)]

= 1 −
d∏

j=1

∫
[P(Xj ∈ dx) P(X∗

j ≥ x |Xj = x))]

where X∗
j is an independent copy of Xj

= 1 −
d∏

j=1

∫
[P(Xj ∈ dx) P(X∗

j ≥ Xj |Xj = x))]

= 1 −
d∏

j=1
P(X∗

j ≥ Xj) = 1 −
d∏

j=1
2−1 = 1 − 2−d .

5. Marginalized-Dirichlet distributions Fa: strict decreasing monotonicity in the RP ordering

The following is the usual definition of Dirichlet distribution, where the normalizing constant is the

multivariate beta-function value B(b) :=
∏k

j=1 Γ (bj )
Γ ( ‖b‖1 ) .

Definition 5.1. Let k ≥ 2 and b = (b1, . . . , bk) � 0. If Y = (Y1, . . . , Yk) � 0 satisfies ‖Y‖1 = 1 and
(Y1, . . . , Yk−1) has (k − 1)-dimensional density (with respect to Lebesgue measure)

1
B(b) yb1−1

1 · · · ybk−1
k 1 (y1 > 0, . . . , yk > 0)

with yk := 1 −∑k−1
j=1 yj, then we say that Y has the Dirichlet(b) distribution.

We will have special interest in taking X = (X1, . . . , Xd) to be the first d coordinates of
(Y1, . . . , Yd+1) ∼ Dirichlet (1, . . . , 1, a); we denote the distribution of X in this case by Dira and the
corresponding distribution function by Fa; we refer to the distributions Dira as marginalized-Dirichlet
distributions. We will have occasional interest in taking

X = (X1, . . . , Xd) ∼ Dirichlet(1, . . . , 1) =: Dir(1). (2)
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Remark 5.2.

(a) When a= 1, the vector X is uniformly distributed in the (open) d-dimensional unit simplex

Sd := {x = (x1, . . . , xd) : xj > 0 for j = 1, . . . , d and ‖x‖1 < 1}. (3)

This special case is the focus of [14].
(b) We find explicit computation (exact or asymptotic) of pn intractable for general Dirichlet distribu-

tions.

Dirichlet distributions exhibit negative dependence among the coordinates according to standard
notions [15]:

Remark 5.3.

(a) The distribution Fa is NUOA (recall Definition 4.1(c)) for every a ∈ (0,∞), by a simple calculation.
(b) The distribution Fa is NA if a ≥ 1. Indeed, as in Definition 5.1, let b = (b1, . . . , bk) � 0. The proof

(recall Remark 4.2(b)) that Dirichlet(b) is NA when bj ≥ 1 for every j relies on the following two
standard facts:
(i) If Gj ∼ Gamma(bj) are independent random variables ( j = 1, . . . , k), then ‖G‖1 ∼

Gamma(‖b‖1) and

Y :=
(

G1

‖G‖1
, . . . ,

Gk

‖G‖1

)
∼ Dirichlet(b)

are independent.
(ii) For any b ≥ 1, the Gamma(b) density is log-concave.

Consider F = Fa. The cases n= 1 (with pn ≡ 1) and d = 1 (where the choice of a is irrelevant) being
trivial, in the following monotonicity result we consider only n ≥ 2 and d ≥ 2.

Proposition 5.4. Fix d ≥ 2 and n ≥ 2, and let F = Fa, that is, X ∼ Dira. Then Fa is strictly decreasing
in the RP ordering and therefore the probability pn(a) := pn(Fa) that X(n) sets a record is strictly
decreasing in a.

Proof. By successive integrations one finds

P(X ≥ x) = (1 − ‖x‖1)d+a−1;

thus Ha(−X) = (1 − ‖X‖1)d+a−1. Further, 1 − ‖X‖1 ∼ Beta(a, d), so the first assertion is an immediate
consequence of Lemma 5.6 below, and the second assertion follows from Remark 1.7. �

Before proceeding to Lemma 5.6, we remind the reader of the definition of the likelihood ratio par-
tial ordering (specialized to our setting of random variables taking values in the unit interval) and its
connection to the well-known stochastic ordering.

Definition 5.5. Given two real-valued random variables S and T with respective everywhere strictly
positive densities f and g with respect to Lebesgue measure on (0, 1), we say that S ≤ T in the likelihood
ratio (LR) ordering if g(u)/f (u) is nondecreasing in u ∈ (0, 1).
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As noted (for example) in [19, Sect. 9.4], if S ≤ T in the LR ordering, then S ≤ T stochastically.

Lemma 5.6. Fix a real number d> 1, and let Za have the Beta(a, d) distribution. Then Wa := Zd+a−1
a

is strictly increasing in the LR ordering, and therefore also in the stochastic ordering, as a ∈ (0,∞)
increases.

Proof. By elementary calculation, Wa has density ga on (0, 1) given by the following expression, with
ca := (d + a − 1)B(a, d):

ga(w) = c−1
a w−(d−1)/(d+a−1)

(
1 − w1/(d+a−1)

)d−1

= c−1
a

(
w−1/(d+a−1) − 1

)d−1
.

Letting 0 < a < b < ∞ and setting v := w−1/(d+b−1) and

t := (d + b − 1)/(d + a − 1),

it then suffices to show for any fixed t > 1 that the ratio (v− 1)/(vt − 1) decreases strictly as v increases
over (1,∞).

For this, we consider the log-ratio, whose derivative is h(v)/[(v − 1) (vt − 1)], where

h(v) := vt − 1 − tvt−1(v − 1); (4)

so we need only show that h(v) < 0 for v ∈ (1,∞). Indeed, since

h′ (v) = −t(t − 1)vt−2 (v − 1) < 0

for v ∈ (1,∞), we see that h(v) < h(1) = 0 for v ∈ (1,∞). �

6. Positively associated ̂Fa: strict increasing monotonicity in the RP ordering

Distributions on Rd with PA coordinates can be constructed in similar fashion to the marginalized-
Dirichlet distributions Fa (recall Remarks 4.4 and 5.3(b)). Given a> 0, let F̂a denote the PA distribution
of

X =

(
G1

G
, . . . ,

Gd

G

)
(scale mixture of i.i.d. Exponentials),

where the random variables G, G1, . . . , Gd are independent, G ∼ Gamma(a), and Gj ∼
Exponential(1) ≡ Gamma(1) for j = 1, . . . , d.

Remark 6.1.

(a) Scale mixtures of a finite number of i.i.d. Exponential random variables appear in a study of finite
versions of de Finetti’s theorem [7, (3.11)].

(b) We find explicit computation (exact or asymptotic) of pn intractable for general scale mixtures,
let alone for general PA distributions.
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Similarly to Proposition 5.4, in our positive-association example we have the following claim:

Proposition 6.2. Fix d ≥ 2 and n ≥ 2, and let F = F̂a. Then F̂a is strictly increasing in the RP ordering
and therefore the probability p̂n(a) := pn(F̂a) that X(n) sets a record is strictly increasing in a.

Proof. A simple computation for x ≥ 0 gives

P(X ≥ x) = (1 + ‖x‖1)−a

and thus Ha(−X) = (1 + ‖X‖1)−a. Further, (1 + ‖X‖1)−1 = G/(G + ‖G‖1) ∼ Beta(a, d), so the first
assertion is an immediate consequence of the following lemma, and the second assertion follows from
Remark 1.7. �

Lemma 6.3. Fix a real number d> 1, and let Za have the Beta(a, d) distribution. Then Ŵa := Za
a is

strictly decreasing in the LR ordering, and therefore also in the stochastic ordering, as a ∈ (0,∞)
increases.

Proof. By elementary calculation, Ŵa has density ĝa on (0, 1) given by the following expression, with
ca := aB(a, d):

ĝa(w) = c−1
a

(
1 − w1/a

)d−1
.

Letting 0 < a < b < ∞ and setting v := w1/a and t := a/b, it then suffices to show for any fixed t ∈ (0, 1)
that the ratio (1 − vt)/(1 − v) decreases strictly as v increases over (0, 1).

For this, we consider the log-ratio, whose derivative is

−h(v)/[(1 − v) (1 − vt)],

where we again use the definition (4), but now for v ∈ (0, 1] (and with t ∈ (0, 1)); so we need only show
that h(v) > 0 for v ∈ (0, 1). Indeed, since

h′ (v) = −t(1 − t)vt−2(1 − v) < 0

for v ∈ (0, 1), we see that h(v) > h(1) = 0 for v ∈ (0, 1). �

7. Proofs of Theorems 1.11–1.12 and Corollary 1.14

We are now prepared to prove Theorems 1.11–1.12 and Corollary 1.14 according to the outline provided
at the end of Section 1.2; see Figure 1.

Proof of Theorem 1.11 In light of Lemma 2.2, it suffices to show that the image of pn on the domain of
our marginalized-Dirichlet examples Fa is (p∗n, 1).

We can regard pn ≡ pn(a) as a function on the domain (0,∞) corresponding to our Dirichlet index a.
Since the density fa(x) corresponding to Fa at each fixed argument x is a continuous function of a, it
follows from Scheffé’s theorem (e.g., [5, Thm. 16.12]) that the corresponding distribution functions Fa
are continuous in a in the topology of weak convergence. It then follows from Propositions 2.1 and 5.4
that the image in question is (pn(∞−), pn(0+)).

But, as a → ∞, it is easy to see that the density of a times an observation converges pointwise
to the density for independent Exponentials. By Scheffé’s theorem and Proposition 2.1, therefore,
pn(∞−) = p∗n.
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To compute pn(0+), we first observe that the distribution of an observation X(a) from Fa is that of(
Y1

‖Y‖1 + Ga
, . . . ,

Yd

‖Y‖1 + Ga

)
,

where Y1, . . . , Yd are standard Exponential random variables, Ga is distributed (unit-scale) Gamma(a),
and all d + 1 random variables are independent. It follows easily that X(a) converges in distribution to
the distribution Dir(1) mentioned at (2) (for which pn = 1, as mentioned in the proof of Lemma 2.2) as
a→ 0. Thus, by Proposition 2.1, pn(0+) = 1. �

Proof of Theorem 1.12 In light of Lemma 2.2, it suffices to show that the image on the domain of our
PA examples F̂a is (n−1, p∗n).

In this case we can regard pn ≡ p̂n(a) as a function on the domain (0,∞) corresponding to our
Gamma index parameter a. The value of the density of an observation at a given point x ≥ 0 in Rd is

Γ(d + a)
Γ(a) (1 + ‖x‖1)−(d+a) ,

which is a continuous function of a ∈ (0,∞). It follows from Scheffé’s theorem that the corresponding
distribution functions F̂a are continuous in the topology of weak convergence. It then follows from
Propositions 2.1 and 6.2 that the image in question is (p̂n(0+), p̂n(∞−)).

But, as a → ∞, it’s easy to see that the density of a times an observation converges pointwise to the
density for independent standard Exponentials. By Scheffé’s theorem and Proposition 2.1, therefore,
p̂n(∞−) = p∗n.

To compute p̂n(0+), we can without changing p̂n(a) take an observation X̂(a) to have coordinates
that are a times the logarithms of those described in our PA example. According to [16, Thm. 1] and
Slutsky’s theorem, X(a) converges in distribution to (Y , . . . , Y), where Y is standard Exponential. By
Proposition 2.1, therefore, p̂n(0+) = n−1. �

Proof of Corollary 1.14 The corollary follows immediately from Lemma 2.2 and Theorems 1.11–1.12.
For a considerably simpler proof, one can use the fact (from Lemma 2.2) that there are distributions F0
and F1 satisfying pn(F0) = n−1 and pn(F1) = 1 for every n. By defining Fq to be the (1 − q, q) mixture
of F0 and F1 for q ∈ [0, 1], we see from Proposition 2.1 (since Fq is clearly continuous in q in the weak
topology) and the intermediate value theorem that the image of pn on the domain {Fq : q ∈ [0, 1]}
contains (and therefore by Lemma 2.2 equals) [n−1, 1]. �

Remark 7.1. We have now learned from Theorems 1.11–1.12 information about how pn behaves as a
function of the (continuous) distribution of X. As a complement, we conclude this paper with general
(and rather more mundane) information about how pn behaves as a function of n and as a function of d.

(a) As already noted, from (1) it is apparent that pn is nonincreasing in n. By the dominated convergence
theorem,

pn ↓ p∞ :=
∫

x:P(X≥x)=0
P(X ∈ dx)

as n ↑ ∞. For each fixed d ≥ 2, the image of the mapping p∞ on the domain of all continuous
distributions on Rd is the entire interval [0, 1]. To see by example that q ∈ [0, 1] is in the image,
choose the distribution F of X to be the (q, 1 − q)-mixture of any Dirichlet distribution and any of
our marginalized-Dirichlet distributions Fa.

(b) To make sense of the question of how pn varies as a function of d ∈ {1, 2, . . .}, one should specify
a sequence of distributions, with the d th distribution being over Rd . It is rather obvious that if
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d′ < d and X(d′) is obtained by selecting any deterministic set of d′ coordinates from X(d), then
pn(d′) ≤ pn(d); in this sense, pn(d) is nondecreasing in the dimension d.

Fix n ≥ 1, and for any specified sequence (in d) of distributions of X(d) let pn(∞) :=
limd→∞ pn(d). The image of the mapping pn(∞) on the domain of all sequences of continuous
distributions is [n−1, 1]. This follows easily from Corollary 1.14. Indeed, given q ∈ [n−1, 1], one
can choose X = X(2) = (X1, X2) giving pn(2) = q and then take X(d) = (X1, X1, . . . , X1, X2) for
every d.

For all of our standard examples (independent coordinates, our marginalized-Dirichlet distribu-
tions Fa, and our PA examples F̂a) we have pn(∞) = 1. In light of our earlier results, it is sufficient
to prove this for the PA examples. For that, since the Beta(a, d) distributions converge weakly to
unit mass at 0 as d → ∞, it follows from the consequence

p̂n (a) = E(1 − Za
a,d)

n−1 where Za,d ∼ Beta (a, d) (5)

of the proof of Proposition 6.2 that pn(∞) = 1.
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