A STUDY OF THE Pt-Al-Ru SYSTEM AT 600°C

S.N. Prins,* L.A. Cornish** and P.S. Boucher*

- * CSIR-National Metrology Laboratory, PO Box 395, Pretoria, 0001, South Africa
- ** Physical Metallurgy Division, Mintek, Private Bag X3015, Randburg, 2125, South Africa

The Pt-Al-Ru system is being studied as part of a larger project to develop and optimise Pt-based alloys for high temperature use [1]. These alloys are based on a two-phase microstructure of \sim Pt₃Al in a (Pt) matrix, analogous to the γ/γ microstructure of Ni-based superalloys. Work has been done on the Pt-Al-Ru system [2,3] and the liquidus surface has been derived from as-cast alloys [3].

Six alloys were selected from the alloys so as to contain the phases of interest. The samples were sealed in silica tubes backfilled with argon and annealed at 600°C for 3 weeks. They were prepared metallographically and studied with a LEO 1525 SEM and Oxford INCA EDS. The phases were confirmed, as far as possible, using a Philips XRD with Cu K alpha radiation on solid samples.

The ~Pt₅₁:Al₂₁:Ru₂₈ sample comprised coarse needles of (Ru) in a binary eutectic of fine (Ru) needles and ~Pt₃Al. Compared to the as-cast sample, the fine needles had coarsened, and there were no traces of the (Pt) component. Thus the heat treatment had removed the ternary eutectic which appeared due to non-equilibrium cooling. There was precipitation of ~Pt₃Al in the coarse (Ru) needles; this indicated that the (Ru) solvus slopes to lower Ru contents at lower temperatures, and agrees with Obrowski's observations in the Al-Ru system [4].

The as-cast ~Pt₂₅:Al₄₆:Ru₂₉ sample comprised very cored ~RuAl dendrites in a matrix of ~PtAl + Pt₅Al₃ which had originated from solid state decomposition of the high temperature beta phase. The heat treated sample showed much reduced coring (Fig. 1) and coarsening in the matrix phases.

The \sim Pt₃₉:Al₅₂:Ru₉ sample in the as-cast condition had a complex structure that revealed primary formation of cored \sim RuAl followed by the formation of PtAl and Pt₂Al₃. The actual reactions were difficult to interpret since the PtAl and Pt₂Al₃ phases were extremely fine. Annealing at 600°C reduced the coring in \sim RuAl and coarsened the microstructure so that a eutectic between \sim RuAl and \sim PtAl was revealed. The \sim PtAl within the eutectic had a higher Ru content, and so had a slightly darker contrast as indicated by the arrow in Fig. 2.

As-cast \sim Pt₁₄:Al₅₄:Ru₃₂ was another complex sample and was not at equilibrium since it contained four phases: \sim RuAl, \sim RuAl₂, \sim PtAl₂, and \sim Ru₁₂Pt₁₅Al₇₃, a new ternary phase [3]. The annealed sample only had three phases: \sim RuAl, \sim RuAl₂ and \sim PtAl₂. In addition, there was precipitation of \sim RuAl₂ within \sim PtAl₂

The as-cast \sim Pt₂₈:Al₆₄:Ru₈ specimen contained dendrites of \sim Ru₁₂Pt₁₅Al₇₃ surrounded by \sim PtAl₂, in a eutectic comprising \sim PtAl₂ and \sim Ru₁₂Pt₁₅Al₇₃. In the annealed condition, there was much less of the \sim Ru₁₂Pt₁₅Al₇₃ phase and the eutectic had coarsened.

In the as-cast condition, the \sim Pt₈:Al₈₅:Ru₇ alloy had two distinct microstructures locally and the primary phase was different in each: \sim Ru₁₂Pt₁₅Al₇₃ and \sim Pt₅Al₂₁ respectively. The other phases were

 \sim RuAl₆ and (Al). Although the annealed sample contained regions which appeared different, the \sim Pt₅Al₂₁ phase had disappeared, and the \sim RuAl₆ phase was not discerned. However, since the \sim Ru₁₂Pt₁₅Al₇₃ phase still showed coring, it is likely that the \sim RuAl₆ phase was still present and was in local equilibrium with the less Pt-rich composition of \sim Ru₁₂Pt₁₅Al₇₃, but too fine to detect.

The phase and alloys' EDS analyses were plotted and compared to the as-cast values. The alloys suffered minimal aluminium loss on annealing. Pt_3Al had lost all discernible Ru, which agrees with other work [2]. Similarly, $RuAl_2$ had negligible Pt after annealing, showing that the solubility for Pt decreases with temperature. The composition of $\sim Ru_{12}Pt_{15}Al_{73}$ moved to slightly lower Pt contents at lower temperatures. Two samples exhibited a similar and a higher Ru composition for the $\sim PtAl_2$ phase than in the as-cast samples, indicating that the solubility increased with temperature. Both the PtAl and Pt_2Al_3 phase compositions shifted to more stoichiometric values after annealing, indicating a contraction in phase width at lower temperatures. At 600°C, the penetration of the $\sim RuAl$ phase was reduced compared to the as-cast samples: from ~ 26 at. % Pt to ~ 22 at. % Pt. In addition, the phase width narrowed at lower temperatures.

Annealing the samples at 600°C equilibriated them to some degree; no sample had more than three phases, and the compositions had changed to more stoichiometric values. The only unexpected result was that the ~PtAl₂ phase extended to higher ruthenium contents.

References

- [1] L.A. Cornish, J. Hohls, P.J. Hill, S.N. Prins, R. Süss and D.N. Compton, 34th International October Conference on Mining and Metallurgy Proceedings, Ed. Z.S. Markovic and D.T. Zivkovic, 545-550, 30 September 3 October 2002, Bor Lake, Yugoslavia.
- [2] T. Biggs, P.J. Hill, L.A. Cornish and M.J. Witcomb, J. Phase Equilibria, 22 (2001) 214-215.
- [3] S.N. Prins, L.A. Cornish, P.S. Boucher and W.E. Stumpf, submitted to J. Alloys and Compounds.
- [4] W. Obrowski, Metallwissenschaft und Technik (Berlin), 17 (1960) 108-112.
- [5] This research was supported by the PDI and the DS&T, South Africa.

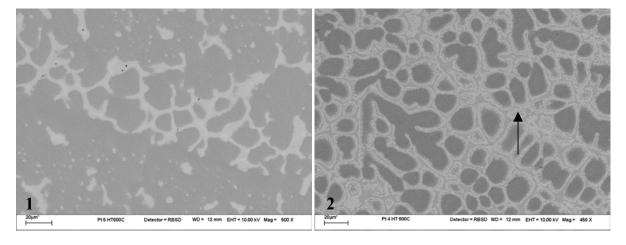


Fig. 1. ~Pt₂₅:Al₄₆:Ru₂₉: BSE image showing ~RuAl (dark) in a matrix of ~PtAl + Pt₅Al₃ (light). Fig. 2. ~Pt₃₉:Al₅₂:Ru₉: BSE image showing ~RuAl (dark), ~PtAl (light) and Pt₂Al₃ (medium grey).