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1. Introduction. If 4̂ is an Jï*-algebra, then the orthogonal complement 
of a closed right (left) ideal / is a closed right (left) ideal P. Saworotnow (7) 
considered Banach algebras which are Hilbert spaces and in which the closed 
right ideals satisfy the complementation property of an iï*-algebra. In our 
right complemented Banach algebras we drop the requirement of the existence 
of an inner product and only assume that for every closed right ideal / there 
is a closed right ideal P which behaves like the orthogonal complement in a 
Hilbert space (Definition 1). Thus our algebras may be considered as a 
generalization of Saworotnow's right complemented algebras. 

We show that a semi-simple right complemented Banach algebra A contains 
a primitive idempotent (Theorem 1) and that this leads to a determination of 
the structure of A in terms of its minimal closed two-sided ideals (Theorem 4). 
If A is a simple right complemented Banach algebra and / is a minimal left 
ideal in A, then an inner product can be introduced in / for which / is a Hilbert 
space (Theorem 5). If, in addition, A is a left annihilator algebra (Definition 3), 
then for every closed left ideal / there is a closed left ideal J' such that J C\ Jr 

= (0) and J + J' — A (Theorem 6). Moreover, A is continuously isomorphic 
to an algebra of completely continuous operators on a Hilbert space (Theorem 
7), and therefore is an annihilator algebra. From this it follows that a semi-
simple left annihilator right complemented Banach algebra is an annihilator 
algebra (Theorem 8). If A is a simple bicomplemented Banach algebra with 
the annihilator properties, then A is dual (Theorem 9). Finally, if a simple 
annihilator right complemented Banach algebra A has the minimal norm 
property, then A is equivalent to the algebra of all completely continuous 
operators on a Hilbert space (Theorem 10). 

In notation and terminology we follow (6) and (7). An idempotent will 
always be understood to be a non-zero element, and the radical is taken in 
the sense of Jacobson (3). If 5 is any set in a Banach algebra A, S will denote 
the closure of S in A. 

2. Right complemented algebras. Let i be a Banach algebra. We 
shall denote the lattice of all closed right (left) ideals in A by LT (Li). 

DEFINITION 1. Let A be a complex Banach algebra. We shall call A a right 
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complemented Banach algebra if there exists a mapping I —> P of Lr into LT 

such that: 

(1) If / 6 Lr, then I H P = (0) 

(2) If I e Lr, then (P)p = 7 

(3) If I e LT, then I 0 P = A 

(4) If Ii and 72 are in Lri I\ Q 72, then I2
P Q I\v. 

Analogously we define a left complemented Banach algebra. If A is both a left 
and a right complemented Banach algebra, we shall call A a bicomplemented 
Banach algebra. P will be called the complement of 7. 

It is clear that whatever statement we make about a right complemented 
Banach algebra also holds for a left complemented Banach algebra if we 
replace everywhere the word "right" by the word "left" and the word "left" 
by the word "right." From now on we shall call a right complemented (bicom
plemented) Banach algebra simply a right complemented (bicomplemented) 
algebra. 

For any set 5 in a Banach algebra A, let l(S) = {x £ A:xS = (0)} and 
r(S) = (xG A : Sx = (0)}. It is clear that l(S) and r(S) are closed left and 
right ideals respectively. A Banach algebra A is called an annihilator algebra 
if 1(A) = r(A) = (0), and if for every closed right ideal 7 and every closed 
left ideal J, 1(1) ^ (0) and r(J) ^ (0). If, in addition, r[1(1)] = I and 
l[r(J)] = / , then A is called a dual algebra. We shall also use It and Jr for 
1(1) and r(J) respectively. 

Examples. An annihilator i3*-algebra is a right complemented algebra. In 
fact, let A be an annihilator 5*-algebra. Let 7 be a proper closed right ideal 
in A and Ii be the left annihilator of 7. Then (7Z)* is the complement of 7, 
that is, P = (70*. From (1, p. 157) we know that (7,)* ® I = A, (/,)* ^ I 
= (0) and that if 7 and J are proper closed right ideals in A, I Q J, then 
(JÙ* C (7Z)*. We shall show now that (PY = ([(!,)*]i)* = 7. Clearly (/,)* 
= (7*)r for xl = (0) if and only if 7*x* = (0). Therefore (P)v = ((P)i)* 
= ((P)*)r = ([(7z)*]*)r = 7. In particular, the algebra of all completely 
continuous operators on a Hilbert space is a right complemented algebra (6). 
In fact, all annihilator J3*-algebras are bicomplemented algebras. 

LEMMA 1. Let A be a right complemented algebra such that r(A) = (0). If 
I is a closed two-sided ideal, then 1(1) — r(I) — P. Moreover, every closed 
two-sided ideal in A is a right complemented algebra. 

Proof. For any closed two-sided ideal 7, we have PI C P r\ I = (0). Let 
J = ir\ 1(1). Then AJ = (J 0 J*)J = (0), and so / • = (0), 7 Pi 1(1) = (0). 
Similarly I C\r(I) = (0) and therefore 1(1) = r(I). Also, since A = I © P, 
P C 1(1) and I C\l(I) = (0), it follows that P = 1(1). Now let R be any 
closed right ideal in 7. Then R is a closed right ideal in A and Rf = Rp P\ 7 
is the complement of R in 7. 
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COROLLARY. If A is a right complemented algebra such that r(A) = (0), then 
1(A) = (0). 

LEMMA 2. Let I be a proper closed modular right ideal in a right complemented 
algebra A. Then P contains a left identity modulo I. If e is a left identity modulo 
I that belongs to P, then e is an idempotent, I = [x — ex \ x ^ A\ and P = eA. 

Proof. If e is a left identity modulo / and e £ P, then e2 = e (7, p. 50), 
Let u be a left identity modulo / . Then u = d + e with u £ I and e Ç P, 
and we have ex = x for all x Ç P, in particular, e2 = e. Also el = (0) and 
therefore I = {x — ex : x £ A}. 

LEMMA 3. Let J be a left ideal in a Banach algebra A such that every element 
of J is right quasi-regular. Then J is contained in the radical of A. 

Proof. Let R be the right ideal generated by the elements of J. Since left 
(right) quasi-regularity for (a + x)y is equivalent to left (right) quasi-
regularity for y (a + x), where a is a complex number (6, p. 17), R is a quasi-
regular right ideal. Thus J belongs to the radical of A. 

THEOREM 1. If A is a non-radical right complemented algebra, then A contains 
a primitive idempotent. 

Proof. Let z 6 A be such that z is not right quasi-regular. Then Q = 
) X — uX . X (z A} is a proper modular right ideal. Let M be a maximal 
modular right ideal containing Q. Then z = d + e with d Ç M and e G Mp, 
and by Lemma 2, e2 = e. Since Mv is a minimal closed right ideal, e is primi
tive. Also we have ez = e and (ze)2 = z(ez)e = ze\ ze ^ 0, otherwise e Ç M 
C\MV = (0). 

COROLLARY. If A is a semi-simple right complemented algebra, then every 
proper left (right) ideal in A contains a primitive idempotent. 

Proof. Let / b e a proper left ideal. By Lemma 3, / contains an element z 
which is not right quasi-regular. As in the proof of Theorem 1, ez = e Ç / 
and e is a primitive idempotent. If / is a proper right ideal, then ze £ I and 
since Ae is a minimal left ideal, ze is a primitive idempotent. 

From Lemma 2 it follows that every maximal modular right ideal M in a 
right complemented algebra A is of the form M = {x — ex : x Ç. A) where 
e is a primitive idempotent. If a right complemented algebra A is such that 
r(A) = (0) we shall say that A is proper. We end this section with the following 
theorem. 

THEOREM 2. Let A be a proper right complemented algebra, and R be the radical 
of A. Then Rp is a semi-simple right complemented algebra. 

Proof. Let A' = Rv. Since by Lemma 1 l(A') = R, every idempotent 
e G A belongs to A' and thus every maximal modular right ideal M' in A' 
is given by M' = M C\ Af, where M is a maximal modular right ideal in A. 
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Hence if R' is the radical oîA',R'ÇR and since R H A' = (0), R' = (0). 
By Lemma 1, A ' is a right complemented algebra. 

3. Semi-simple right complemented algebras. 

DEFINITION 2. An idempotent e in a right complemented algebra A is called a 
left projection if the complement Rv of R = {x — ex : x Ç A} is eA. If e is 
primitive we shall say that e is a primitive left projection. 

If A is a non-radical right complemented algebra, then A contains a proper 
closed modular right ideal and by Lemma 2, A therefore contains a left pro
jection. Moreover, if A is a semi-simple annihilator right complemented 
algebra, then every proper closed right ideal contains a primitive left pro
jection. This follows from the fact that every proper closed right ideal I is 
contained in a maximal modular right ideal. If e and / are primitive left pro
jections in I and P respectively, then ef = fe = 0. By Zorn's Lemma there 
exists a maximal family {ea:ot (z 3} of orthogonal primitive left projections 
in a semi-simple annihilator right complemented algebra. 

THEOREM 3. If {ea:a £ 31 is a maximal family of orthogonal primitive left 
projections in a semi-simple annihilator right complemented algebra A, then the 
ideals 

J2 eaA 

and 

<*G3 

are dense in A. 

Proof. Let 

and 

/ = n Ma, 
<*G3 

where Ma = { 00 (s@(pC • 00 € A}. Then eaA C I for all a Ç 3 implies that 
P C / . But J C Ma, hence P D eaA for all a Ç 3 and therefore P = 7, 
J = 7P. If I is proper, then P contains a primitive left projection e, and 
eae = eea = 0 for all a Ç 3», a contradiction. Hence 7 = ^4. Let 

Then 
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l(L) C O Ma 

and since I = A, l(L) = (0) and so L = A. 
Let A be a semi-simple right complemented algebra and £2 = {ea :a Ç A} 

be the set of all primitive idempotents in A. It is easy to see that the sum 

J2eaA 
ath. 

is a two-sided ideal in A. This follows from the fact that if e is a primitive 
idempotent in A, then the ideal aê 4 (or Aea) is either (0) or minimal for 
every a £ A (1, p. 158 or 6, p. 45). The ideal 

Z) eaA 
atA 

(which is equal to the ideal 

o«A 

is called the socle of A and we denote it by ©. 

LEMMA 5. If A is a semi-simple right complemented algebra, then the socle © 
is dense in A. 

Proof. Let 

aeA 

If x € P , then by Lemma 1, X£« = 0 for all a £ A. Thus P is contained in the 
intersection of all the maximal modular right ideals. Since A is semi-simple, 
P = (0) and we have I = A. 

THEOREM 4 (structure theorem). A semi-simple right complemented algebra A 
is the direct topological sum of its minimal closed two-sided ideals, each of which 
is a simple right complemented algebra. 

Proof. Let K be the topological sum of all the minimal closed two-sided ideals 
in A. Since a closed two-sided ideal [i] generated by a minimal right ideal / 
is a minimal closed two-sided ideal (1, p. 158) and since by Lemma 5 the socle 
is dense in A, it follows that K = A. By the proof of Theorem 6 in (1 ), K is 
also a direct topological sum. 

For further analysis of semi-simple right complemented algebras we turn 
now to simple right complemented algebras. 

4. Simple right complemented algebras. Unless otherwise stated, A 
will stand for a simple right complemented algebra in the following discussion. 

LEMMA 6. Let I be a minimal left ideal in A and let L be the lattice of all closed 
linear subspaces of I. Then there is a mapping S —• S? of L into L such that: 
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(a) If S t L, then S C\ Sp = (0) 

(b) If S£ L, then (Sp)p = S 

(c) If S e L, then S 0 Sp = I 

(d) If Su S2 are in L, Si Ç 52, then S2
P Q Sip. 

Proof. Let R be a closed right ideal in A, that is, 7? G L r. Then i f 7 = 4̂ g 
can be written in the form x = Xi + x2 with Xi Ç 7? and x2 G 7^p, and since 
x = xe we have Xie = Xi and x2e = x2. Thus Xi £ R (^ I and x2 £ Rp r\ I. 
If we let 5 = -R n / and 5P = ^ H 7, then 5 ^ 5 P = (0), (5P)P = 5 and 
S ® Sp = I. Moreover, if Ru R2 are in LT, Ri Q R2 and if St = Rt H 7, 
5 / = J V n / , i = l , 2 , then 5i ç S2 and S2

P C S? . Let LR be the set of all 
closed linear subspaces S in 7 such that S — R C\ I for some 7̂  Ç Lr. Then 
the mapping 5 —> Sp of L# into L# enjoys all the properties (a), (b), (c), and 
(d). Hence to complete the proof we need only show that LR = L. Let 5 be 
a proper closed linear subspace of 7, and let Rs be the right ideal 5^4. Let 
R = Rs. Then S Q R C\ I. If z Ç R C\ I then z is the limit of a sequence 
{zn\, zn £ Rs. Since 

2 == ££ = Urn £w£ 
ra-x» 

and Rse (ZS, it follows that s Ç 5. Thus S = R C\ I and 7? is a proper closed 
right ideal. We have LR — L. 

THEOREM 5. Let I be a minimal left ideal in a simple right complemented 
algebra A. Then an inner product (x, y) can be introduced in I for which I is a 
Hilbert space and the norm \x\ = (x, xY is equivalent to the given norm ||x|| 
in I. 

Proof. By Lemma 6, S —-> Sp is an involutory anti-automorphism of L onto L 
and therefore by Theorem 2 in (5) an inner product (x, y) can be introduced 
in 7 for which 7 is a Hilbert space and such that the corresponding norm 
|x| = (x, xY is equivalent to the given norm ||x||. With respect to this inner 
product 5 and Sv become orthogonal complements of each other. 

LEMMA 7. Let e be a left projection in a simple right complemented algebra A. 
Let I be a minimal left ideal with an inner product (x, 3;). Then {ex, y) = (x, ey) 
for all x, y in I. 

Proof. Let R = eA. Then Rp = {x — ex: x £ A j and if x, y are in 7 then 
x = Xi + x2 and y = yi + y2 with xi, Vi in 7? and x2, y2 in Rp. Hence (ex, y) 
= (xi, 3>i + ^2) = (* 1, yi) and (x, ey) = (xx + x2, yx) = (xi, yi) and therefore 
(ex, y) = (x, ey) for all x, y in 7. 

If e is a primitive idempotent in A then eAe is isomorphic to the complex 
number field, and therefore every O ^ a f eA gives rise to a unique non-zero 
bounded linear functional </>a on Ae. In fact ||c/>a|| < (||a||)/(|M|) (1, P- 161). 
Thus a —> 4>a is a continuous isomorphism of eA into (Ae)*, the dual of Ae. 
Let <£> be the set of all linear functionals in (Ae)* corresponding to the elements 
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of eA. Considering A e as a Hilbert space $ can be identified by way of Riesz' 
representation theorem with a subset of Ae, which we shall denote by 5$. 

LEMMA 8. Let Ae be a minimal left ideal in A, then $ is dense in (Ae)*. 

Proof. Let (x, y) denote the inner product in Ae and let 5 be the orthogonal 
complement of the closed linear subspace $$. Since for each a 6 eA there is 
a unique ya Ç S$ such that ax = (x, ya)e, x £ Ae, it follows that if x Ç S 
then ax = 0 for all o f d ; that is, eAx = (0) for x Ç S. Hence 5 = (0), 
S$ is dense in Ae and so # is dense in (Ae)*. 

DEFINITION 3. Let A be a Banach algebra. If for every proper closed right 
ideal I in A, 1(1) 9e (0), we shall say that A is a left annihilator algebra. 

LEMMA 9. Let Ae be a minimal left ideal in a simple left annihilator right 
complemented algebra A. Then $ = (Ae)*. 

Proof. It suffices to show that every <t> Ç (Ae)* belongs to $, Let 0 ^ 0 
be an element of (Ae)* and let S be the null space of </>. Let u 6 Ae be such 
that <j>(u) = 1. Then S ® (u) = Ae and l(S) ^ (0) (1, p. 160). If 0 ^ a 
G /(5) C\ eA, then a5 = (0) and aw ^ o. Hence if we choose a £ l(S) C\ eA 
such that au — e, then #(x)e = ax and so #'G <£. Thus, $ = (^4^)* and it 
follows now that a —» <£a is a continuous isomorphism of ê 4 onto 04 e)*. 

COROLLARY 1. TAe isomorphism a-*<t>a is a homeomorphism of eA onto 
(Ae)*. 

COROLLARY 2. If I is a minimal right ideal in A, then an inner product (x, y) 
can be introduced in I for which I is a Hilbert space and the norm \x\ = (x, x)^ 
is equivalent to the given norm \\x\\ in I. 

THEOREM 6. Let J be a proper closed left ideal in a simple left annihilator 
right complemented algebra A. Then there is a left ideal J' in A such that J C\ J' 
= (0) and J + J' = A. Moreover, if J\ and J2 are closed left ideals, J\ Q Ji, 
then J J C J / . 

Proof. Let e b e a primitive idempotent in / . Let 5 = J C\ eA and Sv be the 
orthogonal complement of S in the Hilbert space eA. Then ASP is a proper 
closed left ideal in A. Let Jf = AS». Then J C\ J' = (0) and by the proof of 
Lemma 6, Sp = Jf C\ eA. Thus J + J' 3 eA and therefore J + Jf = A. 

THEOREM 7 (representation theorem). Let A be a simple left annihilator right 
complemented algebra. Then there is a continuous isomorphism of A onto an 
algebra B of completely continuous operators on a Hilbert space. B contains all 
the operators of finite rank. 

Proof. Let / = Aebea. minimal left ideal in A. We represent A as an algebra 
of operators on Ae as follows: for each a 6 A let the operator Ta be defined 
by Ta: a —> ax, x € Ae. Let B be the algebra of all operators Ta, a 6 A. It 
is clear that if a ^ 0, then Ta ?£ 0. Since 
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\Ta\ = sup \\ax\\ < | |a | | ,x G Ae, 
l!x|| = l 

a —* Ta is a continuous isomorphism of 4̂ onto 5 . Let F be the algebra of all 
operators of finite rank on Ae. Then by Lemma 9, F C B and by Lemma 5, 
F is dense in B. Let (x, y) denote the inner product in Ae and ||x||i = (x, x)^. 
Since the norms || || and || ||i are equivalent, a —» r a is thus a continuous 
isomorphism of A onto 7?, an algebra of completely continuous operators on 
the Hilbert space Ae. By (6, Theorem 2.8.23), B is also an annihilator algebra. 

COROLLARY. A simple left annihilator right complemented algebra is an 
annihilator algebra. 

THEOREM 8. A semi-simple left annihilator right complemented algebra A is 
an annihilator algebra. 

Proof. Since every minimal closed two-sided ideal 7 in A is a simple left 
annihilator right complemented algebra (1, Theorem 8), by Corollary to 
Theorem 7 and (6, Theorem 2.8.29) it follows that A is an annihilator algebra. 

LEMMA 10. Let A be a simple right complemented algebra. Let R be a closed 
right ideal, I a minimal left ideal in A, and S — R C\ I. If an element a in A 
is such that ax G S for all x G 7, then a G R. 

Proof. Since a = ax + a2 with a± G R and a2 G Rp, ax = a,\X + a2x G 5 
for all x 6 7 implies that ad = (0). Thus a2 = 0 and a G R. 

COROLLARY. If Ri and R2 are closed right ideals in A with Si = Ri P\ 7 and 
S2 = R2 r\ 7, then S\ = S2 if and only if Ri = R2. 

THEOREM 9. A simple annihilator bicomplemented algebra A is dual. 

Proof. Let R be a proper closed right ideal and 7 = Ae be a minimal left 
ideal in A. Let Rt be the left annihilator of R, S = R H 7 and S* = Rt H eA. 
It is clear that Si 7e (0). Let (x, y) denote the inner product in Ae. Then for 
each y G Ae there is a unique by G eA such that (x, y)e = byx, x Ç Ae, and 
for each b G eA there is a unique yb in ^4e such that (x, yb)e = ôx, x G ,4 e. 
Since ax G 5 for a G R and x G -4 g, (ax, 3/)̂  = {bya)x implies that \i y ^ Sp 

then ^ G Sh Conversely, if b G Si then ;y& G ^4e belongs to Sp. Thus there is 
a one-one correspondence between Sp and SY Let 5Zr = RIr r\ I. Then 
S C Szr- If x G Szr then (x, y) = 0 for y G .Sp and therefore x G 5. Thus S Z) Sir 

and hence S = Sir. By the Corollary to Lemma 10, Rir = R. Similarly we 
can show that for every proper closed left ideal J, Jri = J- We use a minimal 
right ideal I = eA and the fact that (eA)* is equivalent to Ae. 

A Banach algebra A is said to have the minimal norm property if | | is 
a second norm with \a\ < ||a|| for all a G A, then | | = || ||. A Banach 
algebra A is a B* algebra if for each a G A there exists an element a* G A 
such that a* 9* 0 and lim || (a* a)n\\l,n = \\a*\\ \\a\\. Bonsall (2, Theorem 4) 

w-400 
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has shown that if A is an annihilates B* algebra, then A has the minimal norm 
property. We conclude this section with the following theorem. 

THEOREM 10. If a simple annihilator right complemented algebra A has the 
minimal norm property or is a B* algebra, then A is bicontinuously isomorphic 
to the algebra of all completely continuous operators on a Hilbert space. 

Proof. Let I = Ae be a minimal left ideal in A. We use the notation as given 
in the proof of Theorem 7. If A has the minimal norm property then | | = || || 
and since the norms || || and || ||i are equivalent, it follows that B is the 
algebra of all completely continuous operators on Ae. 

5. Conclusion. We conclude with the following observations: Let A be a 
semi-simple algebra such that for every closed right ideal / the complement P 
is a closed left ideal, then A is commutative. Indeed, since IP Ç_ I C\ P = (0) 
we have r(I) Z) P and l(P) Z) I- Since A is semi-simple I C\r{I) = (0) 
and P r\ l(P) = (0) ; r(I) = P and l(P) = I. Thus I and P are closed two-
sided ideals. Hence every minimal right ideal I is a minimal closed two-sided 
ideal. Thus I = eA = Ae and it follows that / is isomorphic to the complex 
number field. By Theorem 4, the sum ^1 of all minimal closed two-sided 
ideals is dense in A and since J^I is commutative, A is commutative. It also 
follows from Theorem 4 that if each minimal closed two-sided ideal in a semi-
simple right complemented algebra A is commutative, then A is commutative. 

The author is grateful to Professor F. F. Bonsall for his comments and 
suggestions which helped to bring this article to its present form. 
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