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Abstract

Let G be a finite group that acts on a finite group V, and let p be a prime that does not divide the order
of V. Then the p-parts of the orbit sizes are the same in the actions of G on the sets of conjugacy classes
and irreducible characters of V. This result is derived as a consequence of some general theory relating
orbits and chains of p-subgroups of a group.
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1. Introduction

Whenever a finite group G acts via automorphisms on a finite group V, there are two
natural permutation actions of G that have equal degrees: one on the set cl(V) of
conjugacy classes of V and one on the set Irr(V) of irreducible characters of V. We
ask what can be said about the numbers and sizes of the orbits in these two actions.
Consider, for example, the situation where G is the alternating group As. Let
M be the natural 5-dimensional permutation module for G over the field of order 5
and take V to be the submodule of codimension 1 in M, consisting of all vectors
with coordinate sum equal to 0. Then G acts via automorphisms on the group V of
order 5* = 625, and it is not too hard to compute that the action of G on the classes
(elements) of V has 27 orbits: one of size 1, four of size 5, four of size 10, two of
size 12, six of size 20, six of size 30 and four of size 60. Similarly, one finds that the
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action of G on the irreducible (linear) characters of V also has 27 orbits: five of size
1, ten of size 20, ten of size 30 and two of size 60.

It is, of course, no surprise that the numbers of orbits in the two actions are equal;
that is always true. (See Theorem 6.32 and Corollary 6.33 of [2] for this result of
Brauer.) It should also not be a surprise that the sizes of the orbits in the two actions are
quite different. Although it is known that in the case where |G| and | V| are coprime,
the actions of G on the classes and irreducible characters of V are permutation
isomorphic, this is certainly not true in general. (The existence of the permutation
isomorphism in the coprime case is a consequence of the Glauberman-Isaacs character
correspondence. See Theorem 13.24 of [2] and the discussion following that result.)

A closer scrutiny of our example shows that the sizes of the orbits in the two actions
are not totally unrelated. Of the 27 orbits in each action, for example, exactly 22 of
them have size divisible by 2, exactly 12 have size divisible by 4 and exactly 12 have
size divisible by 3. (But note that the numbers of orbits with size divisible by 5 are
not equal in the two actions and neither are the numbers of orbits with size divisible
by 12.) One of the main results of this paper explains these ‘coincidences’.

THEOREM A. Let G act via automorphisms on V, where G and V are arbitrary
finite groups, and let p be any prime not dividing |V|. Then for each integer e > 0,
there are equal numbers of orbits of size divisible by p° in the actions of G on cl(V)
and on Irr (V).

We shall obtain Theorem A as an application of the elementary theory that we
develop in this paper. Motivated by an analogy between the orbits of a permutation
action of a group G and the irreducible representations of G, we present some connec-
tions between the set of orbits and the p-local structure of G, where p is some prime
that we hold fixed throughout our discussion. Our orbit results are easy, however,
while the corresponding representation theoretic assertions appear to be deep, or are
as yet only conjectures.

Suppose that G acts on some set 2 and let X be an orbit of this action. We define
the defect of X (with respect to our fixed prime p) to be the integer d > 0 such that
p? is the exact p-part of the integer |G|/|X|, and we refer to a Sylow p-subgroup of
the stabilizer in G of any point in X as a defect group of X. Clearly, then, the defect
groups of an orbit X (of the action of G on 2) form a uniquely determined conjugacy
class of p-subgroups of order p¢ in G, where d is the defect of X. We can now state
a stronger form of Theorem A, which is the version we will prove.

THEOREM B. Let G act via automorphisms on V, where G and V are arbitrary
finite groups, and let p be a prime not dividing |V|. Then for each p-subgroup P of
G, there are equal numbers of orbits having P as a defect group in the actions of G
oncl(V) and on Irr (V).
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We need to introduce some notation. Recall that a section of a group G is a factor
group of the form K /L, where L « K € G. (In particular, since we allow L = 1,
all subgroups of G are sections.) We will say that a sectional function on G is any
real-valued function f (-) whose domain is the set of all sections of G. A fairly trivial
example of a sectional function is given by the formula f (K/L) = |K/L|, but a
more interesting example, and one that is vital for our purposes, is the orbit counting
function orb(:), which we are about to describe.

Suppose that G acts on some set £2. (We find it helpful to think of §2 as some large
set, containing many orbits of different sizes, but at the opposite extreme, we also
want to allow the possibility that €2 is empty, in which case, of course, it contains no
orbits at all.) Now let K/L be a section of G. Given the action of G on 2, there
is a uniquely determined induced action of the section K /L on the (possibly empty)
set of L-fixed points in €2, and we write orb(K /L) to denote the number of orbits
of this action. Similarly, we can define the sectional function zer(-), which counts
the number of orbits of K /L that have p-defect zero. (We assume that p is some
particular prime that we are holding fixed.) Thus zer(K /L) is the number of orbits of
K /L whose size is divisible by the full p-part of |K/L|.

We can now state a fundamental formula, which, as we shall see, is very easy to
prove.

THEOREM C. Let G act on S2. Then

orb(G) = iZCT(NG(P)/P)’
P

Where the sum runs over a set of representatives for the conjugacy classes of p-
subgroups P of G.

Although Theorem C is nearly trivial, it is interesting to note that it bears a striking
formal resemblance to the Alperin Weight Conjecture. Recall that the simplest (block-
free) form of the AWC is just the formula of Theorem C, where we replace orb(G)
by I(G), which is the number of p-regular conjugacy classes of G, and we replace
zer(K /L) by z(K /L), which is the number of p-defect zero irreducible characters of
K/L.)

A fundamental result of Knorr and Robinson in [4] shows that the Alperin Weight
Conjecture can be restated in an alternative form, in terms of certain chains of p-
subgroups of G. (The corresponding restatement of the much more elementary block-
free version of the conjecture also appears in the expository paper [3].) A similar
restatement of Theorem C is an essential ingredient of our proof of Theorem B.

We consider normal p-chains in G, which are, by definition, totally ordered (and
possibly empty) collections o of nonidentity p-subgroups of G such that all of the
members of o are normal in the largest one. We observe that G acts by conjugation
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on the set of normal p-chains in G and we write G, to denote the stabilizer of the
chain o in G. Also, if ¢ is a nonempty normal p-chain, we write M(¢) to denote the
largest member of ¢, and if o is empty, we write M(o') = 1. For all normal p-chains
o, therefore, we see that M(o) is a normal p-subgroup of G,, and M(s) > 1 if and
only if o is nonempty.

The Kno6rr-Robinson restatement of the block-free form of the AWC is the formula

2(G) =Y (-G,

where ¢ runs over a set of representatives for the G-orbits of normal p-chains in G.
Our analogous restatement of Theorem C is the following.

THEOREM D. Let G act on Q2. Then

zer(G) = ) (1) orb(G,/M(0)),

Where o runs over a set of representatives for the G-orbits of normal p-chains in G.

The analogy between the Knorr-Robinson fermula and the formula in Theorem D
may seem imperfect because the latter requires that we evaluate the function orb(-)
on the section G,/M(c), whereas in the Knorr-Robinson formula, the function I(-)
is evaluated at the subgroup G,. But this imperfection is only illusory since, in fact,
1(G,/M(0)) = I(G,). (In general, it is easy to see that [(N/P) = [(N) whenever P
is a normal p-subgroup of a group N.) Our derivation of Theorem D from Theorem C
exactly parallels the derivation of the Kndrr-Robinson formula from the AWC, and
we present this argument in a general form that we call ‘Knorr-Robinson inversion’.

We mention that Glauberman and Kiilshammer have found a completely different
proof of our Theorem B, independent of Theorem C and Theorem D. Their argument
depends on the observation that if p does not divide | V| and F is a suitable field of
characteristic p, then the F G-permutation modules corresponding to the actions of G
on cl(V) and Irr(V) are isomorphic. We discuss this approach in the final section of
this paper.

2. Theorem C

We are assuming that G acts on a set §2 and that p is some given prime.

LEMMA 2.1. Let P € G be a p-subgroup. Then the number of G-orbits in
having defect group P is exactly zetr(Ng(P)/P).
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PROOF. Write N = Ng(P) and let A be the (possibly empty) set of P-fixed points
in Q. To prove the result, we construct a bijection 6 from the set of G-orbits in € that
have defect group P onto the set of defect-zero orbits of the action of N/P on A.

Let A € Q be a G-orbit with defect group P. By definition, P is a Sylow p-
subgroup of G,, for some pointa € A. Then P fixes @, andsoa € A, and we let Y be
the (N / P)-orbit containing «z. We want to set 6(A) = Y, and so we must show that Y
depends only on A and not on the choice of the particular point &. Suppose then that
P is also a Sylow p-subgroup of G4, where 8 € A. Since A is a G-orbit, we can write
B = a-g for some element g € G, and thus P®¢ C (G,)* = G4. But P ¢ SylP(Gﬂ),
and thus by Sylow’s theorem, (P#)* C P for some element x € Gg. It follows that
P# = P, and thus gx € N and we have a-gx € Y since Y is the N-orbit containing
a. Buta-gx = (@-g)-x = B-x = B, and thus Y is the (N /P)-orbit containing 8. We
can thus set 8(A) = Y, and 0 is a well defined function.

We claim that Y has defect zero as an N/ P-orbit. To see why this is so, let Q/P
be a Sylow p-subgroup of the point stabilizer (N/P),. Then Q is a p-subgroup of
G that fixes @ and we have P C Q € G,. But P ¢ Sylp(Ga), and thus P = Q
and Q/P is the trivial subgroup of N/P. Since Q/P is a defect group for Y as an
(N/ P)-orbit, it follows that Y has defect zero, as desired.

To see that € is injective, suppose also that 8(B) = Y, where B C Q is some
G-orbit having defect group P. Let 8 € B be a point such that P € Syl,(Gpg). Then
B € Y and since Y is an N-orbit, it follows that a-n = B, for some element n € N.
But then & and B lie in the same G-orbit, and thus A = B, as required.

Finally, we must prove that & maps onto the set of defect-zero (N/ P)-orbits in A,
and so we suppose that Z is any such orbit and we let y € Z. Since y € A, we know
that P stabilizes y,andthus P € G,. Let P € Q ¢ Sylp(Gy) and note thatif Q > P
then QNN > P, and thus (Q N N)/P is a nontrivial p-subgroup of (N/P),. This
is impossible, however, since we assumed that v lies in the defect-zero (N/P)-orbit
Z. It follows that Q = P, and thus P is a defect group for the G-orbit C containing
y. We conclude that (C) = Z, and thus 8 is surjective, as required. O

PROOF OF THEOREM C. We can count the total number orb(G) of G-orbits on
by summing the numbers of G-orbits having defect group P, where P runs over a set
of representatives for the conjugacy classes of p-subgroups of G. The result is now
immediate from Lemma 2.1. O

It is somewhat more convenient to use a modified version of Theorem C, where
we sum over all p-subgroups of G and not just over a set of representatives for the
conjugacy classes of p-subgroups. To correct for the resulting overcount, we must, of
course, divide the term corresponding to a p-subgroup P by the number |G : Ng(P)|
of subgroups in the class of P. A bit of algebraic simplification yields the following.
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COROLLARY 2.2. Let G act on 2. Then

|G| orb(G) = Y " INg(P)| zer(Ng(P)/P),
P

where P runs over the set of all p-subgroups of G.

Of course, since Corollary 2.2 is valid for every permutation action of every group,
it can also be applied to an arbitrary section K /L of G in its induced action on the
set of L-fixed points in 2. In particular, if we limit ourselves to sections where L is a
p-group, we obtain the following.

COROLLARY 2.3. Let G act on 2 and suppose that Q is a p-subgroup of G and
that Q< K C G. Then

|K{ orb(K/Q) = Z INk (P)| zer(Nx (P)/ P),
P

where P runs over the set of p-subgroups such that Q € P C K.

PROOF. In order to apply Corollary 2.2 to the induced action of K/Q on the set
A of Q-fixed points in 2, we must consider p~subgroups P/Q of K/Q. We need
to evaluate the quantity zer(Ng,o(P/ Q)/(P/ Q)), where here, the sectional function
zer(-) refers to the action of the group K/Q on the set A and the induced actions
of appropriate sections of K/ Q. But Ng,o(P/Q) = Ng(P)/Q, and so the group
Nk,o(P/Q)/(P/ Q) is naturally isomorphic to the group N« (P)/ P, which, of course,
is asection of G. Moreover, the (P/ Q)-fixed points in A are exactly the P-fixed points
in €, and so it follows that zer(Ng,o(P/Q)/(P/Q)) = zer(Ng(P)/P). Finally, we
observe that since we are assuming that Q is a p-group, the p-subgroups of K/ Q are
exactly the subgroups of the form P/ Q, where P runs over all p-subgroups of K that
contain Q.

If we now apply Corollary 2.2 to K/ Q, we obtain the formula:

LY

g oK/ = Y INk(P)/ Q| zer(Nx(P)/P),
P

where P runs over the set of p-subgroups such that 0 € P € K. Multiplication of
both sides by | Q] yields the desired result. a

We mention that if we apply similar reasoning, starting with the formula given by
Alperin Weight Conjecture in place of Theorem C, and if we assume that the AWC is
valid for all sections K/ Q of G, where Q is a p-subgroup, we obtain a formula that is
formally identical to that in Corollary 2.3, except that the functions orb(-) and zer(-)
are replaced by the functions /() and z(-), respectively.
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Finally, we consider what happens if we try to replace the prime p by some set
7 of primes. If we assume that G is w-separable, or more generally that G and its
subgroups satisfy all of the Sylow-like theorems for m, and if in addition, we assume
that a Hall 7-subgroup of G is nilpotent, then the m-analogs of Theorem C and the
other results of this section remain valid, with proofs that are essentially unchanged.

3. Knorr-Robinson inversion

Let us refer to a section K/ Q of G, where Q is a p-subgroup, as a p-normal section
of G. (Note that in the formula of Corollary 2.3, the section K/ Q appearing on the
left side and all of the sections Ng (P)/ P on the right side are p-normal.) We can view
Corollary 2.3 as a system of linear equations, one for each p-normal section K/ Q of
G, where the ‘unknowns’ are the quantities zer(X/P), as X/ P runs over all p-normal
sections of G. Since each of the sections X /P appearing on the right side of the
equation whose left side is |K| orb(K/ Q) satisfies the inequality |X/P| < [K/Q]|,
it follows that the (square) matrix of this linear system is actually upper (or lower)
triangular. Also, if we take P = Q on the right side, then since [N (Q)| = | K| # 0,
we see that the diagonal entries of this matrix are nonzero. Itis thus easy to solve these
equations for the quantities zer(X /P), and in particular, we can compute zer(G). We
do this in a little greater generality.

THEOREM 3.1. Suppose that f (-) and g(-) are arbitrary functions defined on the
set of p-normal sections of a group G. Assume for every p-normal section K / Q of
G, that these the two functions are related by the formula

(%) IKIf (K/Q) =) INc(P)| g(Nk(P)/P),
P

where P runs over all p-subgroups such that Q C P C K. Then

1Glg(G) =) (=1)"!|G, | f (G, /M(0)),

where 6 runs over the set of all normal p-chains in G.

PROOF. It clear that the result holds when G is the trivial group, and so we assume
that G > 1 and we proceed by induction on |G|. If we use equation (*) in the case
0 =1 and K = G and we separate the term corresponding to P = [ on the right, we
obtain

6)) IGIf (G) = |Glg(G) + Y ING(P)| g(NG(P)/P).

P>1
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Let us consider the term of the sum in equation (1) corresponding to the nonidentity
p-subgroup P € G. For simplicity of notation, we write N = Ng(P). Note that
the p-normal sections of the group N /P can be identified with appropriate p-normal
sections of G, and thus the functions f (-) and g(-) naturally define functions on
the set of p-normal sections of N/P. Furthermore, using this identification, we see
that equations (*) are valid for the group N/P, and thus we can use the inductive
hypothesis to evaluate the quantity |N/P|g(N/P).

We need to consider the normal p-chains T of N/P, and we observe that these
are in natural bijective correspondence with the set of those normal p-chains o of
G for which the smallest member of ¢ is exactly P. (Under this correspondence,
for example, the empty chain t corresponds to the chain ¢ = {P}.) If r is any
normal p-chain of N/P and ¢ is the corresponding normal p-chain of G, we see that
(N/P), = G,/P. (This follows since P is a member of o, and thus every element
of G that stabilizes o must normalize P, and hence such an element lies in N.) Also
in this situation, we see that M(t) = M(o')/P and that o] =1 4 |7]|.

By the inductive hypothesis, we can now see that the term corresponding to P in
the sum appearing in equation (1) is

IN|g(N/P) = |P|IN/PIg(N/P) = |P| X_(=D"[(N/P)| f (N/P)/M(z))
=P Y_ —(=D"|G,/P| f (Go/M(0))
==Y (DG, | f (G,/M(a)),

where in the first sum, t runs over all normal p-chains in N/ P and in the second and
third sums, o runs over the set of normal p-chains in G for which P is the smallest
member.

If P is any nonidentity p-subgroup of G, we write € (P) to denote the set of normal
p-chains of G for which P is the smallest member. Then every nonempty normal
p-chain in G lies in exactly one of the sets €' (P). We can now return to equation (1),
which becomes the following:

IGIf(G)=1GIg(G) =) D (=D¥IG,|f(G,/M(0)).

P>10e€(P)

It follows that

1G1g(G) =1GIf(G)+)_ D (—D¥IG,|f(Go/M(o))

P>10€€(P)

= Z(—l)""lGalf (G,/M(0)),
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where in the final sum, o runs over the set of all normal p-chains in G. (Note that
the term in this sum corresponding to the empty chain is exactly |G|f (G).) This
completes the proof. a

COROLLARY 3.2. Let G act on 2. Then

Gl zer(G) = ) _(=1)![G,| orb(G,/M(0)),

where o runs over the set of normal p-chains in G.

Theorem D is now immediate since the right side of the equation in that theorem
can be rewritten by summing over all normal p-chains o and dividing each term by
|G : G,|, which is the size of the orbit containing the chain o.

Note that if we assume the Alperin Weight Conjecture for G and its p-normal
sections, and we apply Theorem 3.1 with the functions f (-) = I(-) and g(:) = z(-),
we obtain what is essentially the (block-free form of) the result of Knorr and Robinson.

Finally, we observe that as in Section 2, if we replace the prime p by a set &
of primes, and we make the appropriate assumptions on the structure of G, then
everything we have done goes through without essential change.

4. Actions on classes and characters

Suppose now that G acts on some group V and write orb,; (-) and orb,(-) to denote
the orbit-counting sectional functions corresponding to the actions of G on cl(V) and
on Irr( V), respectively. Similarly, let zer, (-) and zer,(-) be the sectional functions on
G that count defect-zero orbits in these two actions.

THEOREM 4.1. Let G act on V, and suppose that p does not divide |V|. Then
orb;(K/ Q) = orby,(K/ Q) and zer| (K / Q) = zer,(K/ Q) for every p-normal section
K/Qof G.

PROOF. To prove that orb, (K / Q) = orb,(K / Q) it suffices to show that the permu-
tation characters mr; and i, corresponding to the actions of K/ Q on the sets of Q-fixed
conjugacy classes of V and Q-fixed irreducible characters of V are equal.

Write C = Cy(Q) and note that the section K/ acts via automorphisms on the
group C. Since Q is a p-group and p does not divide | V|, it is well known that the
map X — X N C defines a bijection from the set of Q-fixed classes of V onto the set
cl(C) of all classes of C. (See Corollary 13.10 of [2], for example.) This bijection is
a permutation isomorphism between actions of K/ Q on the set of Q-fixed classes of
V and on the set cl(C), and in particular, it follows that these two actions yield equal
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permutation characters of the group K/ Q. The character 7, of K/ Q is thus equal to
the permutation character of the action of K/ Q on cl(C).

Similarly, the Glauberman correspondence is a natural bijection from the set of Q-
fixed irreducible characters of V onto the set Irr(C). (See Chapter 13 of [2]. Note that
in this case, where Q is a p-group, the Glauberman correspondence is especially easy
to describe: The Q-fixed irreducible character ¢ of V maps to the unique irreducible
constituent of {¢ that has multiplicity not divisible by p.) This defines a permutation
isomorphism between the actions of K/ Q on the set of Q-fixed irreducible characters
of V and on the set Irr(C), and thus the corresponding permutation characters are
equal. It follows that the character m, of K/(Q is equal to the permutation character
of the action of K/ Q on Irr(C).

By the Brauer permutation lemma applied to the action of the group K/Q on
the group C, we know that the permutation characters of K/Q corresponding to its
actions on cl(C) and Irr(C) are equal, and it follows that 7r; = 7,, as desired, and thus
orb (K / Q) = orby(K/ Q).

Since the action of K/ Q on the set of Q-fixed classes of V is permutation iso-
morphic to its action on cl(C), we see that zer|(K/ Q) is equal to the number of
defect-zero orbits of the action of K/ Q on the set cl(C). Similarly, since we know
that the actions of K/ Q on the set of Q-fixed-irreducible characters of V and on the
set Irr(C) are permutation isomorphic, we see that zer,(K/ Q) is equal to the number
of defect-zero orbits of the action of K/ Q on Irr(C). To complete the proof of the
Theorem, therefore, it suffices to show that the numbers of defect-zero orbits of the
actions of K/Q on cl(C) and Irr(C) are equal. It suffices, therefore, to prove the
special case of Theorem B where P = 1, and to apply that result with K/ Q in place
of G and with C in place of V.

To prove Theorem B in the case where P = 1, we must show that zer,(G) =
zer(G). By Corollary 3.2, however, we see that zer, (G) can be expressed in terms of
the sectional function orb; (-) on G, evaluated at p-normal sections of G. Similarly,
Corollary 3.2 tells us that zer,(G) can be expressed in terms of the sectional function
orb,(-) on G, evaluated at p-normal sections of G. We have already seen, however,
that the functions orb,(-) and orb,(-) agree on all p-normal sections of G, and it
follows that zer; (G) = zer,(G). The proof is now complete. O

PROOF OF THEOREM B. By Theorem 2.1, the numbers of orbits of G with defect
group P on the sets cl(V) and Irr( V) are equal to the numbers of defect-zero orbits of
N/ P onthe P-fixed members of these two sets, where N = Ng(P). By Theorem 4.1,
however, we know that zer,(N/P) = zer,(N/P), and the result follows. ad

We remarked earlier that Theorem C and Theorem D and their related results
would remain true if we replace the prime p by a set 7 of primes, provided that we
assume that G and its subgroups satisfy all of the Sylow-like theorems for 7 and also
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that a Hall w-subgroup of G is nilpotent. The arguments of this section show that
Theorem B would also remain valid in this situation. (But note that the Glauberman
character correspondence is not so easy to describe when the group that is acting is
not a p-group.)

5. Permutation modules

In this section, we present an alternative proof of Theorem B that was suggested by
Glauberman and Kiilshammer. We mention that the referee has pointed out that most
of what follows can also be deduced from the theory of Scott modules, as presented
in [1].

LEMMA 5.1. Let G act on V, where | V| is not divisible by the prime p. Then there
exists a characteristic p field F such that the F G-permutation modules corresponding
to the actions of G on cl(V) and Irr(V) are isomorphic.

PROOF. Let X be the character table of V and let & and 2 be the permutation
representations of G (over the complex numbers) corresponding to the actions of G on
cl(V) and Irr(V), respectively. Then as in the proof of Brauer’s permutation lemma,
([2, Theorem 6.32]) we have the matrix equation 2(g)X = X 2(g), for all elements
geG. =

Now let R be the ring of integers in some algebraic number field chosen to be
large enough so that R contains all of the entries of the character table X. Let P be a
maximal ideal of R containing the prime number p, and let F be the field R/ P. By the
second orthogonality relation for characters, we know that X* X is the diagonal matrix
whose nonzero entries are the orders of the centralizers of elements representing the
conjugacy classes of the group V. (Here, of course, X* is the conjugate transpose of
the matrix X.) Since p does not divide | V|, we see that p does not divide the rational
integer det(X*X), and it follows that det(X*X) ¢ P, and thus also det X ¢ P. We
conclude that the image of X modulo P is invertible in the field F and therefore, when
& and 2 are viewed as F-representations of G, they are similar. O

Now let M be any right F G-module, where F is a field, and let K € G be a
subgroup. Let U denote the F-subspace of M consisting of the K -fixed points of M
and define the F-linear map Ty : U — M by the formula Tx(u) = ), ur, where r
runs over a set R of representatives for the right cosets of K in G. It should be clear
that Ty, which is called the relative trace map, carries U into the subspace consisting
of the G-fixed points in M. Also, Ty is independent of the choice of the set R of
coset representatives, and thus the nonnegative integer dimg(7Tx(U)) is an invariant,
depending only on the F G-module M and the subgroup K. We write t, (M) to denote
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this integer and we note that if M is the direct sum of F G-submodules X and Y, then
tx (M) = tx (X) + tx (Y).

The following fact about traces and permutation modules is surely known, but for
completeness, we present the elementary proof.

THEOREM 5.2. Let G act on §2 and suppose that M is the corresponding F G-
permutation module, where F is some field of characteristic p. Let P C G be a
p-subgroup. Then tp(M) is equal to the number of G-orbits on QQ that have defect
groups conjugate to subgroups of P.

PROOF. Since M is the direct sum of the F G-permutation modules corresponding
to the individual orbits of the action of G on £, it follows from the additivity of the
invariant #p(-) that it is no loss to assume that 2 is a single G-orbit. We need to show
that tp(M) = 1 if a defect group of Q is G-conjugate to a subgroup of P and that
tp(M) = 0, otherwise.

If X is any subset of 2, we will write X € M to denote the sum of the members of
X. Since G is transitive on £2, it follows that C,, (G) = F .Q, and since this fixed point
space has dimension 1, we see that in any case, 0 < tp(M) < 1. We need to show,
therefore, that ¢, (M) is nonzero precisely when P contains a defect group for .

The space U = Cy (P) is spanned by the vectors X , where X runs over the set of
P-orbits in 2. We know that Tp(X) = > . 3, xr, where x runs over X and r runs
over a transversal R for the right cosets of P in G. There are exactly |X|{G : P| terms
in this sum, and we know that each element of  occurs equally often (say m times)
among these terms. It follows that m|Q| = |X||G : P|, and we have Tp(X) = m<,
where m is the image of the natural number m in the field F. Thus ¢ (M) # 0 if and
only if there is some P-orbit X in €2 such that the integer m = [X||G : P|/|€?| is not
divisible by p.

To compute the number m, which depends on the P-orbit X, let x € X and note
that |X] = |P: PN G,|and |2] = |G : G,|. Thus

o _|XIG:P|_|P:PNG,G: P

=G, : PN Gy,
1€2] |G : Gil

and we see that m is not divisible by p if and only if P contains a full Sylow p-
subgroup of G,. Thus ¢p(M) # 0 if and only if P contains a full Sylow p-subgroup
of the stabilizer of some point of 2 or equivalently, if and only if P contains a defect
group for 2. ]

COROLLARY 5.3. Let G act on 2 and let P be a p-subgroup of G. Then the number

of orbits of G on Q2 that have defect group P is determined by G and the isomorphism
type of the F G-permutation module M corresponding to Q2.
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PROOF. Working by induction on | P|, we can assume that for each proper subgroup
Q of P, the number n, of orbits with defect group Q is determined. By Theorem 5.2,
we know that tp(M) = np + 3 _ , no, where the sum runs over a set of representatives
for those G-classes of p-subgroups of G that contain proper subgroups of P. Of
course, tp(M) is determined by the isomorphism type of M. By the inductive hypoth-
esis, all of the quantities n, are also determined, and it follows np is determined, as
desired. O

We see that Theorem B is an immediate consequence of Lemma 5.1 and Corol-
lary 5.3. It is interesting to note that unlike our proof in Section 4, this Glauberman-
Kiilshammer proof of Theorem B does not rely on the Glauberman character corre-
spondence.

We close with the remark that it is not clear whether or not some version of this
module-theoretic proof of Theorem B could be made to work in the case where the
prime p isreplaced by aset w of primes. As we mentioned earlier, however, Theorem B
is true in this greater generality provided that we impose suitable conditions on the
group G.
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