ON A NORMAL FORM OF THE ORTHOGONAL
TRANSFORMATION II

Hans Zassenhaus

§ 3. Indecomposable matrix pairs II. In this section we
continue to study the indecomposable matrix pairs adopting the
same notation as in part I of this paper.

LEMMA 2. If the matrix A is regular and if it is symmetric
or anti-symmetric such that

(3.1) AT = ga (g =+1)

and if the matrix pair (X,A) is indecomposable then the corres-
ponding representation space either is indecomposable or it is
the direct sum of two indecomposable invariant subspaces.
These-are operator isomorphic if and only if the minimal poly-
nomial my of X is equal to (x-§ y# where

(3.2) §*' +E=0, § =x1;

at any rate there is even a decomposition of the representation
space into the direct sum of two isotropic indecomposable in-
variant subspaces provided the characteristic of F is not 2.

Proof. From (3.1) it follows that
(3.3) f(u,v) = £ f(v,u) for u,vof M

so that f is symmetric if € = 1 and f is anti-symmetric if

€ = -1. Since A is regular, it follows that the linear subspace
m' orthogonal to a given r-dimensional subspace m is obtained
by solving a system of r independent linear homogeneous equa-
tions, hence dim m' = d-r, dimm + dim m' = dim M. If m and
m' have only 0 in common then M is the direct sum of m and m"'.
Since M is orthogonally indecomposable and since m' is invariant
if m is invariant, it follows that for each invariant subspace m
that is neither 0 nor M, alsom . ~m!' # 0.
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There is a decomposition (1.13) of M into the direct sum
of non-vanishing indecomposable invariant subspaces M;, ... ,
Mr' If r=1 then we are finished. Letr > 1. Hence Mir\Mi'#O
for i= 1,2,...,r. The characteristic polynomial of the linear
transformation 0’1 induced by ¢ on M is equal to its minimal
polynomial, namely to P, M where P, 1s an irreducible polynomial
with highest coefficient 1 and with degree d.. Hence there is
precisely one minimal invariant subspace # 0 of Mi viz. m, =
R(¢)*4~t M; and therefore m, is contained in M;'." Let i, » Mi
for i=1,2,...,r. Since dimm;'=d - dim mj < d it follows that
f(m M;) # 0 for some i > 1. Say f(ml,MZ) # 0. Hence by Lemma
1 one has P, = P *, moreover f(P,(ad Y% u,v) # 0 for some u
ofMl,VofMZandf(d’P( ) Mt udv)—f(P(o‘)VTiuv)
# 0, hence xP| (%)~ _#_ 0 l""‘- ), x££ 0(Py), hence x and P, are
mutually prime. Therefore also the polynomials x and P{* are
mutually prime and hence the congruence xU = I(Pl""- ) is solvable
by a polynomial U(x) of F[x] so that by the argument used in the
proof of Lemma 1 it follows that

(3.4)  £(u, R(d")v) = £( R(U(S ))u,V)

for u of M|, v of M, and for any polynomial R(x) of F[x] . In
particular

§a, Py (@) = 4P (U (& )u,v)
=(B""  (¢Huv) = 4" (v £ 0

for some u of M}, v of M,. Hence P, ot (d)M £ 0, Ha 2 ML
Poa= Poa= Ba.

P, # P * then P, # P,* and by Lemma 1 both M, and M,
are isotropic. Moreover m;, m, are the only minimal subspaces
of Mj + M, and f(ml, MZ) # 0, also f(M,, mZ) # 0 as shown
above, hence f(mz, Ml) = {(M;y, mz) # 0 and therefore (Ml + M,)
A (M + M,)' =0 ,M=M; + M,.

IfP, = Pl* then the polynomials P‘2 and P, are equal to
the same polynomial P of degree n. Every minimal invariant
subspace m # 0 of M1 + M, is contained inm) + my. If m #m
thenm+ m, =m, + m, and hence f(m, M,) = f(rn+m1 M )-—
f(m; + m,, l) = f(m;, M) # 0, (M + Mz)r\ (M + MZ)

M = M1 + MZ.

1

Any element u of M is contained in an indecomposable
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invariant component G of M and the intersection G~ G' does not
vanish hence we have identically

(3. 5) f(u, P(e)* 49 y) = 0

for u of M and any integer j. It follows that for any two elements
u, vof M

0 = futv, P(AP- 18 (wv) = £(u, P(Q)* ™ 8Iv) » £(v, P(OH-Id]u)

and according to (3.4)

f(P(e 1 P lgdv,u).

1]

f(v,P(¢ Y l1giw)

Because of the symmetry of P it follows that

P(¢ = ¢ " P(d)

0=f(u, ¢ PR ipept (g @t nl-lig)y,
0=¢ IR F gl (g2t Bl gy,

P(x) divides x 2j + n(n-1) + €

P(x) divides (x -1)x" n(pn-1) ,

P(x) divides x> — 1 ,

Px)=x-8 and (3.2).

If q=1 then Lemma 2 is proved already.

1
Ifa > 1 then P(o‘fw- M=M,=m + m, and hence dim
=2, dim Mp' =dim M - dim M = an, 1). On the other hand

it follows from P(d)u =0 accordmg to (3. 4) that f(u, P(a)v) =
f(P(c”~ ) u,v) = f{ ¢"P(¢’) u,v) = 0 so that Mp 2 P(¢) M. Since
dim P(¢ )M = 2(m - 1) it follows that MP' = P(¢)M.

If p=2 then there is a basis a;;, ajp of M such that P(d)all

=ai; f(a ) = 0 (i=1,2), f(a1 22) = O hence f(a. 22)
# 0 f(a. ) # & If the character1st1c of fis not 2 then set
b;;=a;, - 1 (a , a )f(a , a
11 11 2 11 11 ll 2 21
L f(aZI, aZl) f(a 21’ 21 a,; % = aZZ’ so tha%zM is the
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direct sum of the isotropic indecomposable invariant subspaces
Fby) +Fb,, (i=1,2).

Apply induction over a. Leta> 2. The given indecomposable
matrix pair induces on M ;«--1/Mp a matrix pair to which the
inductional assumption can be applied so that P(¢) M will be the
direct sum of two isotropic indecomposable invariant subspaces
Ly, L, each of dimension - 1. "Since d1m L ''= dim M. - dim L,
=m+ 1, but L' \P(¢)M = L, + P(g )M 2 Ly with i # k, it follows
that there is an element x; of L;' which does not belong to P(# )M
Since P(¢ ) M= M_! 1t follows that there is an element y. of M
for which f(x )Y, The element z; = x5 - —f(x Yy )'11 f(x Px)y,

belongs to L |but not to P(¢ )M so that f(zl,z ) vamshes and
therefore the invariant subspace Fld] z, = K generated by z; is
an isotropic indecomposable subspace of d1mens1on;a. for whlch
P(o )K belongs to L. ‘/\P(G‘)M and therefore P(¢) K belongs to
P(o‘)L so that K1 and K2 intersect in 0 and M = K, + K;, q.e.d.

For the following we remark that every matrix Y satisfying

- - _ L n-1 ——
(3.6) ’L(mY—Q(x)-x + ey, X +...+<>¢-o
is similar to the matrix - -
0o - e
1 0 - o,
1
Y = .
Q 0 —ol ey
1 _da

Moreover we define the matrix pairs

Y 0 0 I, :
(3.7 (X(Y,e ), A(Y,E)) = ( T) (€ =+ 1)
0 Y /7 \egL, 0 -

and we o}fserve that the matrix pairs (X(Y,€), A(Y,€)) and
(X(TYT  ",€), A(TYT'I, €)) are equivalent. Now we have

THEOREM 1. If the characteristic of the field of reference
is not 2 then

a) any indecomp'osable matrix pair with decomposable first
constituent and regular second constituent that is either symmetric
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or anti-symmetric is equivalent to the matrix pair (3. 7) where
the matrix Y satisfies (3.6) such that the polynomial Q(x) = P(x)'u"
is a power of an irreducible polynomial P(x) which is either
asymmetric or of the form x-8 where § satisfies (3.2), and
conversely; b) any matrix pair with indecomposable first cons-
tituent and regular second constituent that is either symmetric
or anti-symmetric, is equivalent to the matrix pair

(X, AY = (Xe)s (Ap)) = (XA (C) (k= 1,2,....0)
where
(3.8) X;, =8, 1 + 8§, ix+1%p (i,k=1,2, ...,n)
AC= (A ), Ay =7, C (i,k=1,2,...,u)

and either

¥k

i, v-i k
(3.Nm=2%79 4 =00 5 ) +CED G )
or
(3. 10) M= 2Y - 1’

Vi = DG+ HEDTHEED + (D -0 T

such that C is a regular matrix of degree n satisfying
T

(3.11) c = (-1/*lec,
T

(3.12) YPCY =C

and the polynomial P(x) is irreducible symmetric.

Conversely, if P(x) is a symmetric irreducible polynomial
and if C is a regular matrix satisfying (3.11), (3.12) then by
means of (3.8), (3.9) and (3.10) a matrix pair ((X. k) (A. k)) is
defined with indecomposable first constituent and regular second
constituent that is either symmetric or anti-symmetric.

Proof of a). According to the two previous lemmas there
is a decomposition of any representation space M into the direct

sum of two isotropic indecomposable invariant subspaces My,
M, of equal dimension. Leét ajs ay, ra be an F-basis of
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M,. Since dim M;'=dim M - dim M, =dim M ,and M, is
contained in M;' it follows that My' = M;, M;'~ M2 = 0 and
therefore the equations f(ai’bk) =8 ik (i,k=1,2, ... , m) which
for fixed value of k can be transformed into a system of linear
equations for the coefficients of b, with respect to a basis of M_,

have precisely one solution in M,. Moreover the elements by,

bz, ... , b form an F-basis of M2 because any linear relation
¥ Aub; = 0implies that 0 = f(a,, = A b,) =T A f (@i, )=
Choosing the basis a, ays ee s am,kbl, e, bm of M we

obtain the matrix pair

Y o0 L
< ' (e=x1)
o z/ Y\egr o
m

T on account of (0.1).

where Z = Y~
The restrictions on P(x) mentioned in Theorem 1 a) follow
from Lemma 2. Conversely, for any polynomial Q(x) = P(x)’"with
highest coefficient 1 a matrix pair satisfying (3.6), (3.7) has a
second constituent that is regular and either symmetric or anti-
symmetric. If P(x) = x - § and if (3.2) holds then P(x) divides
the polynomial x2j + n(n-1) y ¢ for all non-negative integers so
that (3.5) is identically satisfied for the elements u of a repre-
sentation space M. Therefore for every indecomposable invariant
component of M the intersection with its orthogonal subspace
does not vanish so that M is orthogonally indecomposable. If
P(x) is an irreducible asymmetric polynomial with highest
coefficient 1 then the matrix pair defined by (3.6), (3.7) induces
a decomposition of M into the direct sum of two isotropic inde-
composable invariant subspaces that are neither orthogonal to
each other nor operator isomorphic. Hence there is no other
decomposition of M into the direct sum of indecomposable in-
variant subspaces and thus M is orthogonally indecomposable.

Proof of b). We define linear operators D,, D

=D, DZ’
.. of F[x} over F by

1

(3.13) DEupd) = () L™
J
satisfying the rules
+i
(3. 14) oD, = (%Y b, |
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(3. 15) D, "= (3R (n-Dh) 4

(h! )n-l nh
(3.16) D, =1
_n_d
D, =D=—
n'.Dn =d_n_ .
dx™

(3.17) D,(PQ) =L, 5 ) D, (@)
(3.18) D, (P") = Dy, (P) De, (P) ... Dy, (P)

od+ oy et hmyzh
o &l

Let m be a linear space,V be a linear transformation of
m, G be another linear transformation of m that is permutable
with v ,let 0. be an isomorphic mapping of m onto another linear
space 0i m, ]let

(3.19) M=Z'i:10im

be the direct sum of the linear spaces Oim, let ¢ be the linear
transformation of M that is defined by

YN % M
(3.20) (2, 0,u) = pa =10y, +2 12207y 1 (9, em)

and let O‘_H , g,u,+2’ ..... be the linear mapping of m onto the
zero element of M. Then

m _y m g jm, ~m-j
3.22 ¢ ) = Q...
(3.22) QA¢) (Bw) =L ;. (93,5(T'D,Qlv)u)

If P(v) = O then .
- P(v)...D
(3.23) Djpp, L = = ].Jqlp(v)DdZ (v) dﬁ—IP(V)
oy + Xy = Opamt =
0 ifj< m-1,

OP*! =
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(3.24) D) = 0if j & pl

(3.25) Pp'-l(o")(eiu) = zj.‘:' (‘CJD P* Ha)(a))

itj
=0 - L(GDP ()™ L ()

0 ifi> 1,

Op(rp'-l(DP(v))“'l(u)) ifi =1,
(3.26) pM«) = 0.

Hence for the matrix

(3.27) X=(8,Y +8 L IR S )
satisfying
(3.28) TYp = YT
we find

-1 _ ’_]__.l -1
(3.29) PP x) = ( S,;/,' au'r DP(YP)'“ )
(3.30) PMx) =

If P is a separable polynomial then there is a polynomial
equation A(x)P(x) + B(x)DP(x) = 1 from which it follows that
DP(Y_) is a regular matrix, hence pp-l (X) # 0if T is not
nilpotent. It follows that

(3. 31) mX=Xx—

if P(x) is irreducible with highest coefficient 1 and distinct from
xand if T = Yp. Moreover in this case we have

(3.32) P (%) =5, 8 (DP(Y Wl

klP

Hence in the case b) the given indecomposable matrix pair is
equivalent to a matrix pair ((Xik), (Aik)) satisfying (3.8).

If = 0,1 then the theorem is clear. Apply induction over
Mm. Leta > 1. Let M be a representation space of (X, A). Then
dim P(6)M = n(p-1), dim (P(¢)M)' = nu-n(n-1) = n, (P(d)M)' =
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p(c‘)p'- 1M, hence the given pair induces 3n indecomposable pair
with representation space P(¢’)M/P(d )F'-. M. By inductional
assumption the given matrix pair is equivalent to a matrix pair
(X, B) = ((Xik)’ (Bi )) satisfying (3.8), (3.11), (3.12) and the
equations B;j = A;) in the event that 1« i< m, 1< k<m. Moreover

(3.33) Bik=o if i=m, 14 kg por 1<is/u, k=m
and
4 B.., =Y T
(3.34) ik = Yp  (BidB; 1 1PBiv1, 1 Bis 1,k 1) Y p
if l¢igpm 1< ks u where by definition B;L-i—l, k= Bi,}&l = 0.
Hence
(3. 35) By, =Yg By Y, = -A =A
p P 2. a1 T

similarly Bp.l a Alu’1 .

The equation (3. 34) suggests considering relations of the

form
3.36 U=Y TUY A%
. = +
( ) p 9¥p
T
where YP VY =V.

It follows that %-T V =VYp¥p~-TU = Yp+VYp and by
induction over i it follows that (Yp'l)TU= UYP1+V(iYP1" ),
hence for any polynomial Q

(3.37) avp™) " U= va) + v(Day L)),

-1
0= P(YP)-P(YP )-UP(YP)+V(DP(YP))=V(DP(YP).
Since P is separable it follows from P(YP)=0 that DP(Y

)
is a regular matrix and hence V = 0, P

(3.38) U=Y: Uy,
-1.T
(3.39) QYp ) U=UQY)

so that (3. 34) splits into
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(3.40) By =Y5 B, Y

T
P ik* P
and

(3.41) 0=B (1€igp, 1€k<p).

Lk T B kT B e

Thus we obtain for all pairs i,k that are different from 1,1, the
relation A, =B. ik In order to make B, vanish, thus reaching
full comc1dence we replace the matrix pau' (X (B;y)) by the
equivalent pair (X, TTBT) where T = (§ . 8 Q(YP )
(i,k=1,2,...,u) and the polynomial Q(x)) sat1sfués tllxe equation

-1,T -1
(3. 42) By, + (-1 oY,")" c-cay, ) =o.

From (3.11) and (3. 39) we infer
-1 -1
(3.43) C Q(YP ) = Q(YP) C.

A special case of (3.40) is

T

(3.44) B P

11°-7

From (3.12) and (3. 44) it follows that

-1 -1 -1
(3.45) YL G B, Y =C By =

so that the matrix equation (3.42) is turned into
gl -1
(3.46) G=(-1) QAYL) + QY, ).
On the other hand it follows from the equation BT = B
that

T +1
(3.47) B, = B;,= CG=G cT=1e gTe.

The only matrices permutable with Yp are the polynomials
in Yp or, what amounts to the same, the polynomials in Y
so that G = R(Yp‘ ) with R(x) being a certain polynomial. Because
of (3.47) it satisfies the equation

- -1
-1 rivp™HT c=crivp ).

But from (3. 39) it follows that
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R(YI;I)T C = C R(Yp)

so that

(-1 R(Yy) - R(YP-I) =0

and (3.46) is solved by setting
(3.48) Qx) = (-1 IR(x), q.e.d.
Applications of Theorem 1 will be made in the last part of

this paper.
‘ (to be continued)

McGill University

CORRECTION TO PART 1
Page 32, line 16, For "e& ;" read " gik"~

Page 34, line 13, For "any x.in M'" read "any x in My, M.
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