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SURFACES EMBEDDED IN M2 X S1 

WILLIAM JACO 

1. Introduction. In this paper we study incompressible and injective 
(see § 2 for definitions) surfaces embedded in M2 X S1, where M2 is a surface 
and S1 is the 1-sphere. We are able to characterize embeddings which are 
incompressible in M2 X S1 when M2 is closed and orientable. Namely, a 
necessary and sufficient condition for the closed surface F to be incompressible in 
M2 X S1, where M2 is closed and orientable, is that there exists an ambient 
isotopy hu 0 ^ t ^ 1, of M2 X S1 onto itself so that either 

(i) there is a non-trivial simple closed curve J C M2 and h\(F) = J X 51, or 
(ii) p\h±(F) is a covering projection of hi(F) onto M2, where p is the natural 

projection of M2 X S1 onto M2. 
This theorem is used to give an alternate proof for the classification of 

non-orientable, closed surfaces which can be embedded in M2 X S1, where 
M2 is closed and orientable. See Corollaries 5.4 and 5.5. These latter results 
were first obtained by Bredon and Wood [1, Theorem 4.8]. 

We show in § 6 that 3-manifolds fibred over S1 with fibre a surface F do not 
determine the fibre F uniquely. In fact, for M2 a surface and x ( ^ 2 ) = 0, we 
see that for any integer k > 0, M2 X S1 can be fibred over Sl with fibre a surface F 
and x(F) = kx(M

2). 
In § 4, and assuming no more about M2 than that it is a surface, we give 

sufficient conditions for a proper embedding of a surface F in M2 X Sl to be 
injective in M2 X S1. 

2. Definitions and notation. The term surface is used to mean a compact 
2-manifold with or without boundary. If we wish to emphasize that a surface 
M2 does not have boundary, we say that M2 is a closed surface. 

Dn and Sn are used to denote the n-cell and the w-sphere, respectively. We 
also use P2 to denote real projective 2-space. 

A manifold Nk is said to be properly embedded in the manifold Mn, n > k, if 
Nk C\ Bd Mn = Bd Nk. If the surface F is properly embedded in the 3-mani-
fold Md, we say F is injective in Mz if exactly one of the following cases holds: 

(i) If F = S2, then F does not bound a 3-cell in Mz; 
(ii) If F = D2, then either Bd D2 does not bound a disk in Bd M3 or 

whenever Bd D2 does bound a disk Di2 in Bd M3, then the 2-sphere 
D2 [U Di2 is injective in ikF; 
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(iii) If F ?± S2 or D\ then 

k e r f o ^ ) - » ^ ^ 3 ) ) 
is trivial, where 4 is induced by inclusion. 

If the surface F is properly embedded in the 3-manifold M3, then we say 
that F is incompressible in M3 if exactly one of the following cases holds: 

(i) If F = S2 or Z)2, then F is injective in M3; 
(ii) If F 7± S2 or D2, then there is no disk D in ikf3 where D Pi F = Bd D 

and Bd Z> is not contractible in F. 
If F is injective in M3, then F is incompressible in M3 ; however, the converse 

is not true in general. See [13] and the remark in this paper following Propo
sition 4.4. If F is two-sided in Mz, then F is injective in M3 if and only if F is 
incompressible in ikf3. 

We say that a simple closed curve / in the space X is trivial in X if / can be 
contracted to a point in X. Otherwise, we say that J is non-trivial in X. A 
3-manifold M is called irreducible if it contains no injective polyhedral 
2-spheres. 

The combinatorial terminology is consistent with that used in [17]. How
ever, we use the term regular enlargement of a polyhedron P in a manifold Mn 

along with that of a regular neighbourhood of a polyhedron P in a manifold ilfn. 
The submanifold iVw is called a regular enlargement of the polyhedron P in ikfw 

if iVw is a polyhedron in Afn and for some subdivision of Nn and some sub
division of P , Nn collapses to P (see [17]). 

Let F denote a surface which is properly embedded in the 3-manifold M3. 
Suppose that D is a disk in M3 so that D C\ F = Bd D. Then Bd D is a two-
sided simple closed curve in F. Furthermore, there is a 3-cell B (not unique) 
which is a regular enlargement of D in M3 where 

^ P i P = B d ^ O ^ = ^ , 

an annulus, which is a regular neighbourhood of Bd D in F. Let £>! and Z>2 
denote the closures of the components of Bd i? — A. The resultant (either 
one or two surfaces) of replacing A by Di KJ D2 is called an elementary surgery 
on F along D. 

We use the term map to mean continuous function. A m a p / of X into Y is 
said to be essential if and only if / is not nomotopic to a constant map. Other
wise, / is inessential. A map f oi X onto Y is called a covering projection if for 
each y Ç Y there is an open set U of Y with y £ U and / _ 1 ( U) can be written 
as a mutually exclusive collection of open sets {Ua\, where f/Ua is a homeo-
morphism of Ua onto [7 for each a. If / : X —•> F is a covering projection, we 
say that X covers Y. 

Using the terminology of [2; 14], we say that the 3-manifold M3 is fibred 
over Sl with fibre a surface F if M3 is the identification space obtained from 
F X I by identifying F X 0 and F X 1 with a homeomorphism rj oî F onto 
itself. Generally, if M3 is fibred over S1 with fibre a surface F, then ilf3 is 
written F X //??. 
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We use the notation x(K) to stand for the Euler characteristic of a complex 
K. If M2 is a closed and orientable surface, we use g(M2) to denote the genus 
of M2. 

The following lemmas are well known. 

LEMMA 2.1. If M2 ^ S2 and Mz can be fibred over Sl with fibre M2, then Mz 

is irreducible. 

LEMMA 2.2. If Mz can be fibred over S1 with fibre S2, then a polyhedral 2-sphere S 
in Mz is infective if and only if S does not separate Mz. 

3. Surfaces separating products. Let Mz = M2 X / , where M2 is a 
surface. Let p: Mz —* M2 denote the natural projection of Mz onto the 
factor M2. 

PROPOSITION 3.1. Suppose that F is an incompressible surface in Mz with 
Bd F C M2 X {0}. Then there is an ambient isotopy ht, 0 ^ t ^ 1, of Mz so 
that for each t the map ht is fixed on Bd Mz and p\h\(F) is a homeomorphism 
into M2. 

Proof. Since Bd F is contained in M2 X {0}, each component of Bd F is a 
two-sided curve in M2 X {0}. The proof now follows directly from the 
techniques of Waldhausen in proving [16, Proposition 3.1]. 

PROPOSITION 3.2. Let M2 denote a closed surface. If F is a closed surface in 
M2 X I separating M2 X 0 from M2 X 1, then X(F) è x(M2). 

Proof. The conclusion follows vacuously if M2 = S2. Hence, assume that 
M2 5* S2. Since M2 X I is irreducible and F separates M2 X 0 from M2 X 1, 
the surface F ^ S2. It will be shown that there is an injective (hence, incom
pressible) closed surface G C M2 X I with x(F) ^ x(G). 

Suppose that G' is a closed surface in M2 X I separating M2 X 0 from 
M2 X 1 and x(^) ^ x(G'). H 

ker(T1(G')-+Ti(M*Xl)) = {1}, 

then let G = Gf. Otherwise, there is a disk D C M2 X I s o t h a t Z ^ H G ' = BdZ> 
and Bd D is not trivial in G' (see [13, § 6]). 

Perform an elementary surgery on G along the disk D. If Bd D separates G', 
we obtain two surfaces G\ and G2', where x(G') < x(G/) , i = 1, 2. Further
more, either GV or G/ separates M2 X 0 from M2 X 1. If Bd D does not 
separate G', we obtain a surface G" which separates M2 X 0 from M2 X 1 and 
x(G') < x(G"). 

In either case, there is a closed surface G" in M2 X I separating M2 X 0 
from M2 X 1 and x(G') < x(G"). Since there is an upper bound on the 
Euler characteristic of a closed surface and G" z£ S2 (G" separates M2 X 0 
from ikf2 X I ) , the desired injective surface G may be obtained. 
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To complete the proof apply Proposition 3.1 with G the Foi that proposition. 
Since G is closed, G is homeomorphic to M2 and therefore 

x(F) ^ x(G) = x(M2) . 

The next lemma is a technical lemma which is used later. Its proof is 
straightforward. 

LEMMA 3.3. Suppose that Ji, . . . , Jk is a mutually exclusive collection of 
simple closed curves in Bd D2 X I C D2 X / . Then there is a mutually exclusive 
collection of 2-cells Di2, . . . , Dk

2 in D2 X I so that for each i = 1, . . . , k, 

Dt
2 H Bd(D2 X I) = Bd I V H (Bd D2XI) = Jt. 

COROLLARY 3.4. If M2 is a surface and F is a surface in M2 X / separating 
M2 X Ofrom M2 X 1, then X(F) ^ x(M2). 

Proof. If Bd M2 = 0, then this is just Proposition 3.2. Hence, assume that 
Bd M2 j* 0. Let k ^ 1 denote the number of components of Bd M2. Let M+

2 

denote the closed surface obtained from M2 by attaching a copy of D2 to each 
component of Bd M2. Then M2 X I C M+2 X J. 

Let k' denote the number of boundary components of F. Since F separates 
M2 X 0 from M2 X 1 in M2 X I, we have &' ^ ^. Each component of Bd F 
is contained in (Bd M2 X I ) . Applying Lemma 3.3, the surface F may be 
expanded to a closed surface F+ which separates M+2 X 0 from M+2 X 1 and 
X(F+) = x(F) + V. 

From Proposition 3.2 it follows that x(^+) ^ x (^+ 2 ) - Hence, 

x(F) S x(F) + (V - k) ^ x(M2). 

PROPOSITION 3.5. Let M2 denote a surface. If F is infective in M2 X Sl and 
x(F) 9^ 0, then F does not separate M2 X S1. 

Proof. Case 1. X(F) = 2. Then F = S2 and M2 = 52. If F separates S2 X S1, 
then F is not injective. 

Case 2. x(^) = 1. Then either F = D2 or F = P2. H F = D2, then M2 ^ S2 

and therefore, M2 X S1 is irreducible. If F separates M2 X Sl, then by 
van Kampen^ Theorem [9], 7n(Af2 X S1) can be expressed as a non-trivial 
free product [8]. This is a contradiction to -K\{M2 X 51) having non-trivial 
centre. 

If F = P2, then M2 = P2. Hence, F does not separate since P2 does not 
bound a 3-manifold. 

Case 3. x ( f ) < 0. If F does separate M2 X S1, then it follows from 
van Kampen's theorem that 

7n(M2 X S1) « Gi * G2 
7Tl(F) 

is a non-trivial free product with amalgamation along in(F). But x(^) < 0 
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implies that m (F) does not have centre [3; 6]. Thus iri(M2 X S1) could not 
have centre [8, Vol. II, p. 32]. This is a contradiction to TTI(M2 X S1) having 
an infinite cyclic group in its centre. 

Remarks. (1) If M2 is a closed surface and x ( ^ 2 ) < 0, then there is an injec-
tive surface F C M2 X S\ where x(^) = 0 and F separates M2 X S1. (See 
Proposition 4.4.) 

(2) It would seem natural to expect that a surface F in M2 X S1 which does 
not separate M2 X S1 to have the property x(^) = 0 or x(F) S x{M2). 
However, this is not the case. In fact, if x(^f) = 0, there is a non-separating 
surface F in M2 X S1 with X(F) = -2ft for any ft ^ 0. 

4. Existence of injective surfaces in products. 

LEMMA 4.1. Let F denote a surface different from the Klein bottle or the torus. 
If G is a group and iri(F) embeds in G X Z, then TTI(F) embeds in G or in Z. 

Proof. If F is a surface different from the Klein bottle or the torus, x and y 
are elements of TI(F) and xy = yx, then there is an element z £ TT\(F) and 
integers m and n so that x — zm,y = zn (see [3; 6] for the closed case; otherwise 
TI(F) is a free group). 

Consider the diagram 

G 

T±(F) —^-> G X Z 

Z 

where i* is injective and pi, p2 are the natural projections. If ker (p2i*) = {1}, 
then our proof is complete. Hence, assume that ker(p2i*) ^ {1}. 

Suppose that x Ç ker(pii*). Let y 6 ker(p2i*) be chosen so that y ^ 1. It 
follows that i*(x) 6 ker(pi) a,ndi*(y) € ker(p2). Let (1, xr) and (y'f 1) G G X Z 
represent i*(x) and i*00, respectively. Thus i*(xy) = i*(yx). Since the 
homomorphism i* is injective, xy = 3>x. Let integers m, n be chosen so that 
x = zm, y = zn. 

We shall show that x = 1; hence, ker(pii*) = {1}. Let (zi, s2) = i*(z). 
Then Zim = 1 and z2

n = 1. It follows that z2 = 1 since y 9e 1 and i* injective 
imply that n ^ 0. Thus 

*,(*) = **(zw) = (**, 1) = (1, 1) 

and i* injective^yields x = 1. 

PROPOSITION 4.2. L ^ ikf2 denote a surface. If F is injective in M2 X S1, Jftew 
fftere « a i ^ O swcft that x(F) = kx(M2). 

y 
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Proof. Case 1. x(F) = 2. Whenever M2 ^ S2, M2 X S1 is irreducible; hence, 
both M2 = S2 and F = S2. Let ife = 1. 

Case 2. x ( / 0 = 1. Then F = D2 or F = F2. 
Suppose that F = D2. Since M2 X S1 is irreducible (If2 ^ S2 by Bd M2 ^ 0) 

and each component of Bd(M2 X S1) is a torus, M2 = £>2. Let ife = 1. 
Suppose that F = F2. If M2 ^ P2 , then no element of Tn(ikP) X Z is of 

finite order. Hence, M2 = P2. Let k = 1. 

Cased. x(F) = 0. Let k = 0. 

Case 4. x(^) < 0- Then by Lemma 4.1, iri(F) embeds in 7ri(AT2). It follows 
that F covers M2 and x(^) = kx(M

2) for some k ^ 1. 

Remark. In Theorem 5.2 we will prove that if M2 is closed and orientable 
and F is incompressible in M2 X 51, then F is orientable and there is an integer 
k ^ 0 such that 

gCF) = k(g(M2) - 1) + 1. 

PROPOSITION 4.3. Let M2 denote a closed surface {orientable or not) different 
from the Klein bottle. Then there is no infective embedding of the Klein bottle in 
M2 X SK 

Proof. Suppose that F C M2 X S1 is injective, where F is the Klein bottle. 
There are elements x j* 1, y 7* 1 in TTI(F) such that x2y2 = 1 in in(F) and 
x 7* y~1. Let (xi, X2) and (3*1, y2) denote the representations of x and y} 

respectively, in -KX{M2 X S1) « in(M2) X Z, where xuyx G TTI(M2) and 
#2, ^2 G Z. It follows that 

( x i W , (x2y2)
2) = (1, 1). 

Thus Xi23>i2 = 1 and #2^2 = 1. This states that x2 = y2~
l-

We wish to obtain a contradiction to the choice of y 7^ x~
l by showing that 

oci = yi~l. There are two subcases to consider. 
The first subcase is when x(Af2) < 0. Consider the group G generated by 

Xi, y\ in wi(M2). Then G is a free subgroup of TI(M2) [6, Corollary 2]. If 
G = 1, then Xi = y{~1, and the desired contradiction is obtained. Otherwise, 
G is free on Xi and y± or G is infinite cyclic. The former does not occur since 
%i2yi2 = 1. Hence, there is a z Ç TI(M2) and integers m and w such that 
zm = Xi and zw = ^1. That is, JS2W+2W = 1. Hence, if m 7^ 0, then m •= —n and 
s~~w = xi or 3/r"1 = (zn)~l = xi. If m = 0, then n = 0 and #1 = 1 = ^f1. 

The second subcase is when xC^f2) ^ 0. In this case TI(M2) X Z is Abelian 
and does not admit an embedding of iri(F). 

PROPOSITION 4.4. Let M2 denote a surface distinct from P2. If J is a non-
trivial simple closed curve in M2, then J X S1 is injective in M2 X S1. 

Proof. This follows from the fact that a non-trivial element of 7ri(lf2) has 
infinite order. 

https://doi.org/10.4153/CJM-1970-063-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1970-063-x


SURFACES 559 

Remark. In the case ikf2 = P 2 and J is a non-trivial simple closed curve 
in ikf2, we see that J X S1 is not injective in M2 X S1; however J X 5 1 is 
incompressible in ikf2 X 51. This case offers another counterexample to a 
conjectured extension of the Loop Theorem (see [13, p. 18]). 

PROPOSITION 4.5. Let M2 denote a surface distinct from D2 and let p denote the 
natural projection of M2 X S1 onto M2. If F is a surface in M2 X S1 and p\F is 
a covering projection of F onto ikf2, then F is injective in M2 X S1. 

Proof. Case 1. M2 ^ S2 or P2. Then F ^ S2 or D2 since neither can cover 
any manifold distinct from D2, S2, and P2. Hence it is sufficient to show that 

ker(7ri(P) ->7n(Af2 X 5 1 ) ) 
is trivial. 

Suppose that 
x G ker(7ri(/0->7ri(ikT2 X 5 1 ) ) . 

Then p\x is a trivial loop in 7ri(ikf2). Since p\F is a covering projection of 
F onto ikf2, this contraction can be lifted to P; i.e. x is trivial in TTI(F). 

Case 2. M2 = S2. Then F = S2. The 2-sphere F is not injective in S2 X S1 

if and only if F separates S2 X S1. In this case there is an ambient isotopy 
ht, 0 g / g 1, of S2 X S1 such that p\hx(F) is wo* onto S2. Hence, the map p\F 
is inessential from F to S2. This contradicts p\F is a covering projection. 

Case 3. ikf2 = P2 . Then P F^ S2. For p\F is an essential map of P onto P 2 

and since P 2 X S1 is irreducible there would be a natural extension of p\F 
to a 3-cell if P = S2. The proof that P is injective in P 2 X S1 now follows as 
in Case 2. 

The following theorem shows that in a sense Proposition 4.2 was a best 
possible result. 

PROPOSITION 4.6. Let M2 denote a surface where x(ikf2) ^ 0. Then for each 
integer k ^ 0, there is a two-sided surface F in M2 X S1 such that F is injective 
in M2 X Sl and X(P) = kx(M

2). 

Proof. Consider M2 X S1 as the identification space [4] obtained from 
M2 X I by setting (x, 0) in ikf2 X 0 equal to (x, 1) in M2 X 1. 

Cas£ 1. & = 0. Since x(ikf2) ^ 0, there is a non-trivial simple closed curve 
/ C M2. By Proposition 4.4, P = J X 5 1 is injective in If2 X S1. Furthermore, 
x(P) = 0. 

Ca^e 2. & > 0. There are two situations to consider. The first is when M2 

does not contain a two-sided, non-separating simple closed curve. In this 
situation there is an arc a in M2 such that a C\ Bd M = Bda and ikf2 — a is 
connected. Let A denote a regular neighbourhood of a in ikf2. Then A is a disk; 
and if if?2 is the closure of ikf2 - A, then ikf2 H 4 = ^4_1 U A1 where M si 
an arc f or j = - 1 or 1 a n d ^ " 1 H .41 = 0. It follows that x(M2) = x(ikf2)+ 1. 
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For 1 g n ^ k, define Fn = M2 X n/(k + 1). Let 

d:a X [ - 1 , 1 ] - + 4 

be a parametrization of A such that 6\a X 0 is the identity and for j = — 1 
or 1, 6\a X J is a homeomorphism onto ^4'. 

For 1 ^ n < k, let 

0n: [ - 1 , 1] -> [*/(* + 1), (n + l)/{k + 1)] 

be the linear function 

" " W ~ 2(* + l ) • 
Define 

4 . = {(«(*, 0 , 4 . ( 0 ) : (*,0 € aX [ - 1 , 1 ] } . 

Notice that 4̂„ is a disk in 

If2 X [n/(k + 1), (» + l)/(k + 1)] C M2 X / 

and ^4n meets FB in -4 - 1 X n/(k + 1) while 4̂„ meets Fn+i in 

4 i X (» + ! ) / ( * + ! ) . 

ni ni + 1 

U +1 ' * +1J 

For i = 0, 1, let 

0 , : [ -* , 1 - • ] - * 

be the linear function 

6t{t) ~ k + 1 ' 
and define 

Aik = {(«(*, 0 , 0 , ( 0 ) : (*,0 € « X [—*, 1 - * ] } . 

Notice that 4̂ ,•* is a disk in 

M 2 X 
in in + 1 

and A lk meets Ft„ in 
in + 1 

U + l ' * + l 

0(a X (1 - *)) X 

C M2X I 

k + 1 ' 

Let F be the image in M2 X S1 of the natural projection [4] of the surface 

( U Fn) U ( U A J . 

Then by Proposition 4.5, F i s an injective surface in M2 X S1 (see Figure 1). 
It follows that 

x(F) = k(x(M
2) + 1) + (k + 1) - 2(k + 1) + 1 = &x(M2). 

Now consider those surfaces M2 which contain a two-sided, non-separating 
simple closed curve J". Let A denote a regular neighbourhood of J in M2. 
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i l f 2 X 1 

Fk 

Fk-, 

F* 

Fx 

i - ' X O a X 0 i ' X O M2X 0 

FIGURE 1 

Then yl is an annulus and if M2 is the closure of M2 — A, then M2 r\ A = 
J - 1 U J 1 where J1 is a simple closed curve for j = — 1 or 1 and J - 1 H J 1 = 0. 
Also, x(M2) = x(M2). 

The construction of F in this situation is analogous to the construction of F 
above; only, here A is an annulus rather than a disk. The equation for x (^) 
in this situation turns out to be 

x(F) = kx(M
2) = kx(M

2). 

COROLLARY 4.7. If M2 is a closed and orientable surface distinct from S2
f then 

for each integer k ^ 0 there is an infective surface F in M2 X S1 with 
g(F) = k(g(M2) - 1) + 1. 

5. Necessary and sufficient conditions for incompressible surfaces. 
In this section the conclusions of § 4 are improved for the case that M2 is a 
closed and orientable surface. 

LEMMA 5.1. Let G denote an orientable surface. Suppose that {Gi, . . . , Gn\ is 
a mutually exclusive collection of incompressible surfaces in G X I such that 

(a) for each i = 1, . . . , », Bd Gt C G X 0 U G X 1, and 
(b) if Kt is a component of Bd Gu Kj is a component of Bd Gjt and 

p(Kt) C\ p(Kj) T ^ 0 , then p(Ki) = p(Kj), where p is the natural 
projection of G X I onto G. 

Then there is an isotopy ht,Q ^ / g 1, of G X I onto itself, ht is fixed on 
Bd(G X I) for each t and for i = 1, . . . , n either 
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(i) There is a non-trivial simple closed curve Jt C Gandhi{Gt) = Jt X I 
or 

(ii) p\hi(Gi) is a local homeomorphism of hiÇd) into G. 

Proof. The proof of this lemma parallels the proof in [16, p. 65, proof of 
Proposition 3.1]. There are, however, three noteworthy observations. 

The first observation is that the theorem is true for G = S2 and in fact 
p\hi(Gi) is a homeomorphism of hi{Gi) onto G. The second observation is 
that the point set U ip(J$d Gi) is either void or a mutually exclusive collection 
of simple closed curves in G. This enables the considerations of Waldhausen 
in the case that G is a disk, annul us, or 2-sphere with three holes. Furthermore, 
in the general case, it enables a curve to be found in G so that the induction 
hypothesis of Waldhausen goes through. 

The third observation is that in the situation of Lemma 5.1 the best possible 
result is that either hid is vertical, i.e. hi(Gt) = p~lp{h\(Gt)), or p\hi(Gt) is 
a local homeomorphism. This is due to hi(Gt) possibly having boundary on 
both G X 0 and G X 1. 

THEOREM 5.2. Let M2 denote a closed, orientable surface. The surface F is 
incompressible in M2 X S1 if and only if there is an isotopy ht, 0 ^ t ^ 1, of 
M2 X S1 onto itself such that either 

(i) there is a non-trivial simple closed curve J C M2 and h\(F) = J X S1 

or 
(ii) p\hi(F) is a covering projection of hi(F) onto M2, where p is the natural 

projection of M2 X S1 onto M2. 

Proof. That conditions (i) and (ii) are sufficient for F to be incompressible 
(in fact, injective) in M2 X S1 follows from Propositions 4.4 and 4.5. Hence, 
we shall show that conditions (i) and (ii) are also necessary. 

Suppose that F is incompressible in M2 X S1. Consider M2 X S1 as the 
identification space M2 X I/y obtained from M2 X I by the homeomorphism 
-q: M2-* M2 so that 77(x) =x and rj reverses orientation on M2. Let 
p: M2 X I -» M2 X S1 be the identification projection. 

With an isotopy gt1 0 S t ^ 1, of M2 X S1, make gi(F) in general position 
with p(M2 X 0) and gi(F) C\ p(M2 X 0) minimal. Let Gh . . . , Gn denote 
the components of p-^giiF)) in M2 X I. If M2 = S2, then F = S2 and 
P - 1(gi(^)) is a 2-sphere separating M2 X 0 from M2 X 1. If M2 ^ S2, then 
F y£ S2 and no component of p~1(^i(^7)) is the 2-sphere. Hence, in any case 
each component of p-1(&i(-F)) is incompressible in M2 X I. 

By Lemma 5.1, there is an isotopy h/, 0 ^ t ^ 1, of M2 X I onto itself with 
h I fixed on M2 X 0 U M2 X 1 and either 

(i) there is a non-trivial simple closed curve Jt C M2 and hi(Gt) = JtX I 
or 

(ii) if pf is the projection of M2 X I onto M2, then p'\hi(Gi) is a local 
homeomorphism of hi (Gt) into M2. 
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Since h/ is fixed on M2 X 0 U M2 X 1, it induces an isotopy h/, 0 ^ / g 1, 
on M2 X S1 so that the diagram 

h<' 
M2 X I • M2 X I 

i I' 
M2 X S 1 • M2 X S 1 

commutes for each t. Define 

, = [g%u 0 g tS 1/2, 
nt {hi^ 1/2 St g 1. 

It needs to be shown that hu 0 ^ 1 ^ 1, satisfies the conclusions of 
Theorem 5.2. 

Suppose that there is a non-trivial simple closed curve Jt C M2 and 
A/(G4) = JtXl. Then p*i'(G,) = / i X 5 1 and thus p(G,) = hx(F). It 
follows that hx{F) = Jt X S1. Having made this observation, it may be 
assumed that for no i is hi(Gi) vertical; i.e. 

Case 1. g(M2) = 0. Then F = S2 and r^giiF)) = 52. Furthermore, 
p-HGiiF)) separates ikf2 X 0 from M2 X 1 in ikf2 X i". It follows that p\h(F) 
is actually a homeomorphism of hi(F) onto ikf2. 

Ca56 2. g(ilf2) = 1. Then either p_1(^i(^)) is a torus and thus p\hi(F) is 
a homeomorphism onto M2 [16, Corollary 3.2] or each component Gt of 
P~l{gi(F)) is an annulus having one component of Bd Gt in M2 X 0 and the 
other in M2 X 1. (In general, an incompressible surface in M2 X I need not 
be orientable; however in this case Gt is an annulus. Again by [16, Corol
lary 3.2], if Bd Gt is contained in M2 X 0, then g±(F) H p(M2 X 0) is not 
minimal. Similarly if Bd d is contained in M2 X I . ) 

If p\hi(F) is not a covering projection, then there is a simple closed curve 
J C M2 such that J X 0 is a component of Bd G* for some i and / X 1 is 
a component of Bd G;- for some j (j may be equal to i) and p fails to be a local 
homeomorphism at each point of p(J X 0). 

Let U(J) denote a regular neighbourhood of J in ikf2 such that for each 
component of hi{Gt) C\ (U(J) X I) and each component of 

Ai ' (G , )n (£/(/) X I ) 

the projection onto M2 is a homeomorphism. The simple closed curve J 
separates U(J) into two components. Denote the closures of these as U+(J) 
and U"(J). It follows that both the component of hi (Gt) Pi (U(J) X I) 
containing J X 0 and the component of hi(Gj) r\ (U(J) X / ) containing 
J X 1 are contained in (say) U+(J) X I. 
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Suppose that i = j . Each component common to hi (Gi) and the closure of 
M2 XI— (U+(J) XI) is an annulus with a boundary component on each 
component of Bd(U+(J) X I). An analysis of the way that the boundary of 
these components would have to be spanned in U+(J) X I shows that this 
situation cannot happen. 

Suppose that i 9^ j . Then an analysis like that above for i = j shows that 
the projection of neither hi(Gt) nor hi(Gj) is onto M2. By the way that 
hi (Gi) and hi(Gj) meet U+(J) X I, it follows that either the projection of 
hi(Gi) is contained in the projection of hi(G3) or vice versa. Suppose that 
the projection of hi(Gi) is contained in the projection of hi(Gj). Then an 
analysis shows that either hi(Gj) cannot have boundary on M2 X 0 or the 
projection of hi(Gj) into M2 is not a local homeomorphism. Both of these 
conclusions give rise to a contradiction. 

Case 3. g(M2) > 1. In this case either p~1(gi(F)) is a closed surface with 
genus equal to g(M2) and p\hi(F) is a homeomorphism onto M2 or each 
component Gt of p~l(gi(F)) has boundary and Bd Gt meets both M2 X 0 
and M2 X 1. 

If p\hi(F) is not a covering projection, then there is a simple closed curve 
J C M2 and components Gt and Gj as in Case 2. The component C of 
p'(hi(Gi)) f^p'(hi(Gj)) containing / is a surface in M2. To see this there 
are three considerations to make. If x G C and x is in 

p'ÇlnthSiGiiïrip'Çlntfa'iGj)), 

then x 6 Int C. If x 6 C and x is in either 

p'(Int fa'(Gt))np'(fid hSiG,)) 
or 

p'(Bd h'iG^np'(Int h'iGj)) 

but does not satisfy the first consideration, then x G Bd C. If x Ç C and x is in 

^ , ( B d A i , ( G < ) ) n ^ / ( B d A i , ( G i ) ) 

and x does not satisfy either the first or second consideration, then x G Bd C. 
Notice in the last situation that x G J', a simple closed curve in M2 and 
J ' X 0 along with J' X I are boundary components of hi(Gt>) and hi (Gr), 
respectively, where p\p(Jr X 0) is not a local homeomorphism when considered 
as a map of hi(F) into ikf2. 

Let C denote the component of C containing J X 0 and complementary to 

p'(Bd Mid) - / X 0 ) U / / (Bd fti'CG,) - J X 1). 

Since g (M2) > 1, there is a / C i^2 and Gt, Gj as before such that C is 
not an annulus. Hence there is a non-trivial simple closed curve / in C' based 
on J and / is not homotopic to J in Cr. 
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Since p1 is a local homeomorphism on each component of hip"1(g1(F)) 
and misses 

p'ÇBdfa'iGtïïVp'ÇBdfo'iG,)), 

except for J", the simple closed curve I lifts to a loop U in hi{Gt) based at 
J X 0 and a loop h in hi {Gf) based at / X 1. 

Consider the loop p(hh~l) in hi(F). The loop p(/o/i_1) is trivial in M2 X S1 

since p (Z0) ~p(l) ~p (h) in ikf2 X 51. There is a simple closed curve homo topic to 
pQolr1) in hx(F) which bounds a disk Din ikf2 X S \ where £> Pi Ai(F) = BdD. 
Since fti(-F) is incompressible in M2 X 51, the loop p(Wi_1) is trivial in hi(F). 
By choosing / neither trivial in C nor homotopic to / i n C, this leads to a 
contradiction. The projection p of the contraction p(Wi-1) in fti(-F) gives rise 
to either a contraction of I in C or a homotopy of I and J in C'. 

The proof of Theorem 5.2 will be complete if whenever hi(F) j* J X S1 

for some J, then p\h\(F) is onto ikf2. However, it has been shown that in this 
case p\hi(F) is indeed a local homeomorphism. Thus by invariance of domain 
for manifolds [5], the image of the projection p\hi(F) is both open and closed 
in M2. It follows that p\h(F) is onto M2. 

COROLLARY 5.3. Let M2 denote a closed and orientable surface. The closed 
surface F is infective in M2 X S1 if and only if F is incompressible in M2 X 51 . 

The next two corollaries have also been obtained by Bredon and Wood [1] 
using different techniques. 

COROLLARY 5.4. Let M2 denote a closed and orientable surface different from S2. 
The closed, non-orientable surface F can be embedded in M2 X S1 if and only if 
x(F) is even and F is not the Klein bottle. 

Proof. It is easy to see how to embed non-orientable surfaces with even, 
non-zero, Euler characteristic in M2 X S1. Namely, the surface M2 9e S2 has 
a non-separating simple closed curve J. Any simple closed curve meeting 
J X S1 in a single ''piercing point" will guide a non-orientable handle for 
attachment on J X 51 . Such an operation lowers the Euler characteristic by 
two. 

For F a non-orientable surface, let g(F) denote the maximal number of 
two-sided simple closed curves in F the union of which does not separate F. 
If | ( F ) = », then X(F) = 2 - 2n or 1 - 2n. 

If F is non-orientable and F can be embedded in M2 X S1, then F is not 
incompressible in M2 X S1. We shall show that if F is non-orientable and 
F C M2 X S\ then g(F) ^ 0 or 1. 

If g(F) = 0, then F = P2. But each embedding of P2 in a 3-manifold must 
be incompressible. If g(F) = 1, then F is either the Klein bottle or a non-
orientable surface with x(^) = — 1 . If F were the Klein bottle, then F admits 
an elementary surgery along some disk D in M2 X S1. Since M2 X S1 is 
irreducible (M2 9e S2), the result of such a surgery would lead to an embedding 
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of the solid Klein bottle in M2 X S1. This would contradict M2 X S1 being 
orientable. If x(F) = ~~ 1> then i7admits an elementary surgery along a disk D 
in M2 X 51 . The result of such a surgery would lead to an embedding of P2 in 
M2 X S1. Hence, again we arrive at a contradiction. 

The proof will proceed by an induction on g(F) ; namely, if g(F) — k, k ^ 2, 
and F can be embedded in M2 X S1, then X(F) = 2 - 2k. 

If g(-F) = 2, then x(^) ^ ""3. If this were true, then by an elementary 
surgery on F along a disk D in M2 X 51, there would result a closed surface 
F', where x(F') = 1 or — 1. We have seen that this cannot happen. 

If g(F) = k + 1, then by an elementary surgery on F along a disk D in 
M2 X S1, there would result either one closed surface F' with g(^ ' ) ^ & or 
two closed surfaces F\ and F2 with g(i^) ^ k, i = 1, 2. In the former, x(F') is 
even and hence, x(F) is even. In the latter, x(Ft) is even; hence, x(^) is even. 

COROLLARY 5.5. The closed non-orientable surface F can be embedded in 
S2 X S1 if and only if x(F) is even. 

Proof. This proof is analogous to the proof of Corollary 5.4. However, since 
S2 X Sl is not irreducible, it admits an embedding of the Klein bottle. Such 
an embedding can be obtained from a non-separating 2-sphere S in S2 X S1 

by adding a non-orientable handle guided by a simple closed curve "piercing" 5 
at precisely one point. 

6. N o n - u n i q u e fiberings over S1. 

THEOREM 6.1. Let F denote an incompressible, two-sided surface in M2 X S1 

where x(F) < 0. Then there is a retraction r of M2 X Sl onto a simple closed 
curve J in M2 X S1 and 

ker(/v TniM2 X S ^ Z ) 
is TTI(F). 

Proof. I t follows from Proposition 3.5 that F does not separate M2 X S1. 
Hence, there is a simple closed curve J C M2 X «S1 and / meets F in a single 
point q G F. Furthermore, locally about q the simple closed curve / is in 
different sides of F. Let U(F) denote a regular neighbourhood of F in M2 X Sl 

meeting J in a subarc A of J , where q G A. 
The Tietze Extension Theorem now yields a retraction of U(F) onto A. 

This retraction may be extended to a retraction r of M2 X 3 1 onto / by again 
applying the Tietze Extension Theorem to retract the closure of 
M2 X S1 — U(F) onto the closure oî J — A in J (see [7] for similar techniques 
of building retractions). 

The infinite cyclic covering space corresponding to the non-separating 
surface F and constructed in the fashion of Neuwirth [10] has as its funda
mental group ker^*). Since x(^) < 0, the group TI(F) does not have centre 
[3; 6]. Since 7n(M2 X S1) has an infinite cyclic subgroup in its centre, an 
argument like that in [15, the proof of Lemma 4.4] shows that TTI(F) ~ ker (r*). 
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THEOREM 6.2. Let M2 denote a surface where xC^f2) S 0. Then for any 
integer k > 0, M2 X S1 can be fibred over Sl with fibre a surface F and 
x(F) = kx(M

2). 

Proof. Case 1. x(M2) = 0. Then F = M2 satisfies the theorem. 

Case 2. x ( ^ 2 ) < 0- By Proposition 4.6, there is a two-sided surface F which 
is injective in M2 X S1 and x(F) = kx{M2). By Theorem 6.1, there is a 
retraction r of M2 X Sl onto a simple closed curve / so that the sequence 

1 -> in(F) % 7n(ikf2 X S1) ^> in (J) -> 1 

is exact, where i* is induced by inclusion. It now follows by [14] and the fact 
that M2 X S1 is irreducible that M2 X S1 can be fibred over S1 with fibre the 
surface F. This completes the proof of the theorem. 

COROLLARY 6.3. If M2 is a closed, orientable surface distinct from S2, then 
M2 X S1 admits a fibration over S1 with fibre F a closed, orientable surface and 
g(F) = k(g(M2) - 1) + 1, where k > 0. 

It is now clear that a result similar to Proposition 4.2 for M2 X Sl is not 
true for 3-manifolds which are non-trivial fibrations over Sl with fibre a 
surface F\ that is, we have the following. 

COROLLARY 6.4. If M is fibred over Sl with fibre a surface F, then for F' 
injective in M it is not necessarily true that x(Fr) ^ x(^)« 

Proof. Let F' be a closed orientable surface with g(F') = 2. Then F' X S1 

can be fibred over S1 with fibre a surface F where g(F) = k ^ 2. If k > 2, 
then x(F') $ x (F) ; yet, F' is injective in F' X S\ 

L e t / and g denote embeddings of the space X into the space Y. If there is a 
homeomorphism h of Y onto itself such that hf = g, t h en / and g are said to be 
equivalent. 

COROLLARY 6.5. There is a 3-manifold M fibred over Sl with fibre a surface F, 
where x(F) < 0 an^ a non-separating embedding f:F—>M such that f(F) is 
not equivalent to any injective embedding of F into M. 

Proof. Let M = F' X S\ where g(F') = 2. Let F denote a surface in 
F' X S1 so that g (F) = 3 and M can be fibred over S1 with fibre the surface F. 

If f(F) is the embedding of F in M obtained by adding a small handle to 
Ff in M, then f(F) is not equivalent to an injective surface in M ; in particular, 
f(F) is not equivalent to F. 
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