SURFAGES EMBEDDED IN $M^{2} \times S^{1}$

WILLIAM JACO

1. Introduction. In this paper we study incompressible and injective (see $\S 2$ for definitions) surfaces embedded in $M^{2} \times S^{1}$, where M^{2} is a surface and S^{1} is the 1 -sphere. We are able to characterize embeddings which are incompressible in $M^{2} \times S^{1}$ when M^{2} is closed and orientable. Namely, a necessary and sufficient condition for the closed surface F to be incompressible in $M^{2} \times S^{1}$, where M^{2} is closed and orientable, is that there exists an ambient isotopy $h_{t}, 0 \leqq t \leqq 1$, of $M^{2} \times S^{1}$ onto itself so that either
(i) there is a non-trivial simple closed curve $J \subset M^{2}$ and $h_{1}(F)=J \times S^{1}$, or
(ii) $p \mid h_{1}(F)$ is a covering projection of $h_{1}(F)$ onto M^{2}, where p is the natural projection of $M^{2} \times S^{1}$ onto M^{2}.

This theorem is used to give an alternate proof for the classification of non-orientable, closed surfaces which can be embedded in $M^{2} \times S^{1}$, where M^{2} is closed and orientable. See Corollaries 5.4 and 5.5. These latter results were first obtained by Bredon and Wood [1, Theorem 4.8].

We show in § 6 that 3 -manifolds fibred over S^{1} with fibre a surface F do not determine the fibre F uniquely. In fact, for M^{2} a surface and $\chi\left(M^{2}\right) \leqq 0$, we see that for any integer $k>0, M^{2} \times S^{1}$ can be fibred over S^{1} with fibre a surface F and $\chi(F)=k \chi\left(M^{2}\right)$.

In §4, and assuming no more about M^{2} than that it is a surface, we give sufficient conditions for a proper embedding of a surface F in $M^{2} \times S^{1}$ to be injective in $M^{2} \times S^{1}$.
2. Definitions and notation. The term surface is used to mean a compact 2 -manifold with or without boundary. If we wish to emphasize that a surface M^{2} does not have boundary, we say that M^{2} is a closed surface.
D^{n} and S^{n} are used to denote the n-cell and the n-sphere, respectively. We also use P^{2} to denote real projective 2 -space.

A manifold N^{k} is said to be properly embedded in the manifold $M^{n}, n>k$, if $N^{k} \cap \operatorname{Bd} M^{n}=\operatorname{Bd} N^{k}$. If the surface F is properly embedded in the 3 -manifold M^{3}, we say F is injective in M^{3} if exactly one of the following cases holds:
(i) If $F=S^{2}$, then F does not bound a 3 -cell in M^{3};
(ii) If $F=D^{2}$, then either $\operatorname{Bd} D^{2}$ does not bound a disk in $\mathrm{Bd} M^{3}$ or whenever $\mathrm{Bd} D^{2}$ does bound a disk $D_{1}{ }^{2}$ in $\mathrm{Bd} M^{3}$, then the 2 -sphere $D^{2} \cup D_{1}{ }^{2}$ is injective in M^{3};

[^0](iii) If $F \neq S^{2}$ or D^{2}, then
$$
\operatorname{ker}\left(i_{*}: \pi_{1}(F) \rightarrow \pi_{1}\left(M^{3}\right)\right)
$$
is trivial, where i_{*} is induced by inclusion.
If the surface F is properly embedded in the 3 -manifold M^{3}, then we say that F is incompressible in M^{3} if exactly one of the following cases holds:
(i) If $F=S^{2}$ or D^{2}, then F is injective in M^{3};
(ii) If $F \neq S^{2}$ or D^{2}, then there is no disk D in M^{3} where $D \cap F=\operatorname{Bd} D$ and $\operatorname{Bd} D$ is not contractible in F.
If F is injective in M^{3}, then F is incompressible in M^{3}; however, the converse is not true in general. See [13] and the remark in this paper following Proposition 4.4. If F is two-sided in M^{3}, then F is injective in M^{3} if and only if F is incompressible in M^{3}.

We say that a simple closed curve J in the space X is trivial in X if J can be contracted to a point in X. Otherwise, we say that J is non-trivial in X. A 3-manifold M is called irreducible if it contains no injective polyhedral 2 -spheres.

The combinatorial terminology is consistent with that used in [17]. However, we use the term regular enlargement of a polyhedron P in a manifold M^{n} along with that of a regular neighbourhood of a polyhedron P in a manifold M^{n}. The submanifold N^{n} is called a regular enlargement of the polyhedron P in M^{n} if N^{n} is a polyhedron in M^{n} and for some subdivision of N^{n} and some subdivision of P, N^{n} collapses to P (see [17]).

Let F denote a surface which is properly embedded in the 3 -manifold M^{3}. Suppose that D is a disk in M^{3} so that $D \cap F=\operatorname{Bd} D$. Then $\operatorname{Bd} D$ is a twosided simple closed curve in F. Furthermore, there is a 3 -cell B (not unique) which is a regular enlargement of D in M^{3} where

$$
B \cap F=\operatorname{Bd} B \cap F=A
$$

an annulus, which is a regular neighbourhood of $\operatorname{Bd} D$ in F. Let D_{1} and D_{2} denote the closures of the components of $\mathrm{Bd} B-A$. The resultant (either one or two surfaces) of replacing A by $D_{1} \cup D_{2}$ is called an elementary surgery on F along D.

We use the term map to mean continuous function. A map f of X into Y is said to be essential if and only if f is not homotopic to a constant map. Otherwise, f is inessential. A map f of X onto Y is called a covering projection if for each $y \in Y$ there is an open set U of Y with $y \in U$ and $f^{-1}(U)$ can be written as a mutually exclusive collection of open sets $\left\{U_{\alpha}\right\}$, where f / U_{α} is a homeomorphism of U_{α} onto U for each α. If $f: X \rightarrow Y$ is a covering projection, we say that X covers Y.

Using the terminology of $[\mathbf{2} ; \mathbf{1 4}]$, we say that the 3 -manifold M^{3} is fibred over S^{1} with fibre a surface F if M^{3} is the identification space obtained from $F \times I$ by identifying $F \times 0$ and $F \times 1$ with a homeomorphism η of F onto itself. Generally, if M^{3} is fibred over S^{1} with fibre a surface F, then M^{3} is written $F \times I / \eta$.

We use the notation $\chi(K)$ to stand for the Euler characteristic of a complex K. If M^{2} is a closed and orientable surface, we use $g\left(M^{2}\right)$ to denote the genus of M^{2}.

The following lemmas are well known.
Lemma 2.1. If $M^{2} \neq S^{2}$ and M^{3} can be fibred over S^{1} with fibre M^{2}, then M^{3} is irreducible.

Lemma 2.2. If M^{3} can be fibred over S^{1} with fibre S^{2}, then a polyhedral 2-sphere S in M^{3} is injective if and only if S does not separate M^{3}.
3. Surfaces separating products. Let $M^{3}=M^{2} \times I$, where M^{2} is a surface. Let $p: M^{3} \rightarrow M^{2}$ denote the natural projection of M^{3} onto the factor M^{2}.

Proposition 3.1. Suppose that F is an incompressible surface in M^{3} with $\operatorname{Bd} F \subset M^{2} \times\{0\}$. Then there is an ambient isotopy $h_{t}, 0 \leqq t \leqq 1$, of M^{3} so that for each the map h_{t} is fixed on $\mathrm{Bd} M^{3}$ and $p \mid h_{1}(F)$ is a homeomorphism into M^{2}.

Proof. Since $\mathrm{Bd} F$ is contained in $M^{2} \times\{0\}$, each component of $\mathrm{Bd} F$ is a two-sided curve in $M^{2} \times\{0\}$. The proof now follows directly from the techniques of Waldhausen in proving [16, Proposition 3.1].

Proposition 3.2. Let M^{2} denote a closed surface. If F is a closed surface in $M^{2} \times I$ separating $M^{2} \times 0$ from $M^{2} \times 1$, then $\chi(F) \leqq \chi\left(M^{2}\right)$.

Proof. The conclusion follows vacuously if $M^{2}=S^{2}$. Hence, assume that $M^{2} \neq S^{2}$. Since $M^{2} \times I$ is irreducible and F separates $M^{2} \times 0$ from $M^{2} \times 1$, the surface $F \neq S^{2}$. It will be shown that there is an injective (hence, incompressible) closed surface $G \subset M^{2} \times I$ with $\chi(F) \leqq \chi(G)$.

Suppose that G^{\prime} is a closed surface in $M^{2} \times I$ separating $M^{2} \times 0$ from $M^{2} \times 1$ and $\chi(F) \leqq \chi\left(G^{\prime}\right)$. If

$$
\operatorname{ker}\left(\pi_{1}\left(G^{\prime}\right) \rightarrow \pi_{1}\left(M^{2} \times I\right)\right)=\{1\},
$$

then let $G=G^{\prime}$. Otherwise, there is a disk $D \subset M^{2} \times I$ so that $D \cap G^{\prime}=\operatorname{Bd} D$ and $\mathrm{Bd} D$ is not trivial in G^{\prime} (see $[13, \S 6]$).

Perform an elementary surgery on G^{\prime} along the disk D. If $\operatorname{Bd} D$ separates G^{\prime}, we obtain two surfaces $G_{1}{ }^{\prime}$ and $G_{2}{ }^{\prime}$, where $\chi\left(G^{\prime}\right)<\chi\left(G_{i}{ }^{\prime}\right), i=1,2$. Furthermore, either $G_{1}{ }^{\prime}$ or $G_{2}{ }^{\prime}$ separates $M^{2} \times 0$ from $M^{2} \times 1$. If $\operatorname{Bd} D$ does not separate G^{\prime}, we obtain a surface $G^{\prime \prime}$ which separates $M^{2} \times 0$ from $M^{2} \times 1$ and $\chi\left(G^{\prime}\right)<\chi\left(G^{\prime \prime}\right)$.

In either case, there is a closed surface $G^{\prime \prime}$ in $M^{2} \times I$ separating $M^{2} \times 0$ from $M^{2} \times 1$ and $\chi\left(G^{\prime}\right)<\chi\left(G^{\prime \prime}\right)$. Since there is an upper bound on the Euler characteristic of a closed surface and $G^{\prime \prime} \neq S^{2}\left(G^{\prime \prime}\right.$ separates $M^{2} \times 0$ from $M^{2} \times 1$), the desired injective surface G may be obtained.

To complete the proof apply Proposition 3.1 with G the F of that proposition. Since G is closed, G is homeomorphic to M^{2} and therefore

$$
\chi(F) \leqq \chi(G)=\chi\left(M^{2}\right)
$$

The next lemma is a technical lemma which is used later. Its proof is straightforward.

Lemma 3.3. Suppose that J_{1}, \ldots, J_{k} is a mutually exclusive collection of simple closed curves in $\operatorname{Bd} D^{2} \times I \subset D^{2} \times I$. Then there is a mutually exclusive collection of 2 -cells $D_{1}{ }^{2}, \ldots, D_{k}{ }^{2}$ in $D^{2} \times I$ so that for each $i=1, \ldots, k$,

$$
D_{i}{ }^{2} \cap \operatorname{Bd}\left(D^{2} \times I\right)=\operatorname{Bd} D_{i}{ }^{2} \cap\left(\operatorname{Bd} D^{2} \times I\right)=J_{i}
$$

Corollary 3.4. If M^{2} is a surface and F is a surface in $M^{2} \times I$ separating $M^{2} \times 0$ from $M^{2} \times 1$, then $\chi(F) \leqq \chi\left(M^{2}\right)$.

Proof. If $\mathrm{Bd} M^{2}=\emptyset$, then this is just Proposition 3.2. Hence, assume that $\operatorname{Bd} M^{2} \neq \emptyset$. Let $k \geqq 1$ denote the number of components of $\mathrm{Bd} M^{2}$. Let $M_{+}{ }^{2}$ denote the closed surface obtained from M^{2} by attaching a copy of D^{2} to each component of $\mathrm{Bd} M^{2}$. Then $M^{2} \times I \subset M_{+}{ }^{2} \times I$.

Let k^{\prime} denote the number of boundary components of F. Since F separates $M^{2} \times 0$ from $M^{2} \times 1$ in $M^{2} \times I$, we have $k^{\prime} \geqq k$. Each component of $\mathrm{Bd} F$ is contained in ($\mathrm{Bd} M^{2} \times I$). Applying Lemma 3.3, the surface F may be expanded to a closed surface F_{+}which separates $M_{+}{ }^{2} \times 0$ from $M_{+}{ }^{2} \times 1$ and $\chi\left(F_{+}\right)=\chi(F)+k^{\prime}$.

From Proposition 3.2 it follows that $\chi\left(F_{+}\right) \leqq \chi\left(M_{+}{ }^{2}\right)$. Hence,

$$
\chi(F) \leqq \chi(F)+\left(k^{\prime}-k\right) \leqq \chi\left(M^{2}\right)
$$

Proposition 3.5. Let M^{2} denote a surface. If F is injective in $M^{2} \times S^{1}$ and $\chi(F) \neq 0$, then F does not separate $M^{2} \times S^{1}$.

Proof. Case 1. $\chi(F)=2$. Then $F=S^{2}$ and $M^{2}=S^{2}$. If F separates $S^{2} \times S^{1}$, then F is not injective.

Case 2. $\chi(F)=1$. Then either $F=D^{2}$ or $F=P^{2}$. If $F=D^{2}$, then $M^{2} \neq S^{2}$ and therefore, $M^{2} \times S^{1}$ is irreducible. If F separates $M^{2} \times S^{1}$, then by van Kampen's Theorem [9], $\pi_{1}\left(M^{2} \times S^{1}\right)$ can be expressed as a non-trivial free product [8]. This is a contradiction to $\pi_{1}\left(M^{2} \times S^{1}\right)$ having non-trivial centre.

If $F=P^{2}$, then $M^{2}=P^{2}$. Hence, F does not separate since P^{2} does not bound a 3 -manifold.

Case 3. $\chi(F)<0$. If F does separate $M^{2} \times S^{1}$, then it follows from van Kampen's theorem that

$$
\pi_{1}\left(M^{2} \times S^{1}\right) \approx G_{1} \underset{\pi_{1}(F)}{*} G_{2}
$$

is a non-trivial free product with amalgamation along $\pi_{1}(F)$. But $\chi(F)<0$
implies that $\pi_{1}(F)$ does not have centre $[\mathbf{3} ; \mathbf{6}]$. Thus $\pi_{1}\left(M^{2} \times S^{1}\right)$ could not have centre [8, Vol. II, p. 32]. This is a contradiction to $\pi_{1}\left(M^{2} \times S^{1}\right)$ having an infinite cyclic group in its centre.

Remarks. (1) If M^{2} is a closed surface and $\chi\left(M^{2}\right)<0$, then there is an injective surface $F \subset M^{2} \times S^{1}$, where $\chi(F)=0$ and F separates $M^{2} \times S^{1}$. (See Proposition 4.4.)
(2) It would seem natural to expect that a surface F in $M^{2} \times S^{1}$ which does not separate $M^{2} \times S^{1}$ to have the property $\chi(F)=0$ or $\chi(F) \leqq \chi\left(M^{2}\right)$. However, this is not the case. In fact, if $\chi(M) \leqq 0$, there is a non-separating surface F in $M^{2} \times S^{1}$ with $\chi(F)=-2 k$ for any $k \geqq 0$.

4. Existence of injective surfaces in products.

Lemma 4.1. Let F denote a surface different from the Klein bottle or the torus. If G is a group and $\pi_{1}(F)$ embeds in $G \times Z$, then $\pi_{1}(F)$ embeds in G or in Z.

Proof. If F is a surface different from the Klein bottle or the torus, x and y are elements of $\pi_{1}(F)$ and $x y=y x$, then there is an element $z \in \pi_{1}(F)$ and integers m and n so that $x=z^{m}, y=z^{n}$ (see $[\mathbf{3} ; \mathbf{6}]$ for the closed case; otherwise $\pi_{1}(F)$ is a free group).

Consider the diagram

where i_{*} is injective and ρ_{1}, ρ_{2} are the natural projections. If $\operatorname{ker}\left(\rho_{2} i_{*}\right)=\{1\}$, then our proof is complete. Hence, assume that $\operatorname{ker}\left(\rho_{2} i_{*}\right) \neq\{1\}$.

Suppose that $x \in \operatorname{ker}\left(\rho_{1} i_{*}\right)$. Let $y \in \operatorname{ker}\left(\rho_{2} i_{*}\right)$ be chosen so that $y \neq 1$. It follows that $i_{*}(x) \in \operatorname{ker}\left(\rho_{1}\right)$ and $i_{*}(y) \in \operatorname{ker}\left(\rho_{2}\right)$. Let $\left(1, x^{\prime}\right)$ and $\left(y^{\prime}, 1\right) \in G \times Z$ represent $i_{*}(x)$ and $i_{*}(y)$, respectively. Thus $i_{*}(x y)=i_{*}(y x)$. Since the homomorphism i_{*} is injective, $x y=y x$. Let integers m, n be chosen so that $x=z^{m}, y=z^{n}$.

We shall show that $x=1$; hence, $\operatorname{ker}\left(\rho_{1} i_{*}\right)=\{1\}$. Let $\left(z_{1}, z_{2}\right)=i_{*}(z)$. Then $z_{1}{ }^{m}=1$ and $\boldsymbol{z}_{2}{ }^{n}=1$. It follows that $z_{2}=1$ since $y \neq 1$ and i_{*} injective imply that $n \neq 0$. Thus

$$
i_{*}(x)=i_{*}\left(z^{m}\right)=\left(z_{1}^{m}, 1\right)=(1,1)
$$

and i_{*} injective_yields $x=1$.
Proposition 4.2. Let M^{2} denote a surface. If F is injective in $M^{2} \times S^{1}$, then there is a $k \geqq 0$ such that $\chi(F)=k \chi\left(M^{2}\right)$.

Proof. Case 1. $\chi(F)=2$. Whenever $M^{2} \neq S^{2}, M^{2} \times S^{1}$ is irreducible; hence, both $M^{2}=S^{2}$ and $F=S^{2}$. Let $k=1$.

Case 2. $\chi(F)=1$. Then $F=D^{2}$ or $F=P^{2}$.
Suppose that $F=D^{2}$. Since $M^{2} \times S^{1}$ is irreducible ($M^{2} \neq S^{2}$ by Bd $M^{2} \neq \emptyset$) and each component of $\operatorname{Bd}\left(M^{2} \times S^{1}\right)$ is a torus, $M^{2}=D^{2}$. Let $k=1$.

Suppose that $F=P^{2}$. If $M^{2} \neq P^{2}$, then no element of $\pi_{1}\left(M^{2}\right) \times Z$ is of finite order. Hence, $M^{2}=P^{2}$. Let $k=1$.

Case 3. $\chi(F)=0$. Let $k=0$.
Case 4. $\chi(F)<0$. Then by Lemma 4.1, $\pi_{1}(F)$ embeds in $\pi_{1}\left(M^{2}\right)$. It follows that F covers M^{2} and $\chi(F)=k \chi\left(M^{2}\right)$ for some $k \geqq 1$.

Remark. In Theorem 5.2 we will prove that if M^{2} is closed and orientable and F is incompressible in $M^{2} \times S^{1}$, then F is orientable and there is an integer $k \geqq 0$ such that

$$
g(F)=k\left(g\left(M^{2}\right)-1\right)+1
$$

Proposition 4.3. Let M^{2} denote a closed surface (orientable or not) different from the Klein bottle. Then there is no injective embedding of the Klein bottle in $M^{2} \times S^{1}$.

Proof. Suppose that $F \subset M^{2} \times S^{1}$ is injective, where F is the Klein bottle. There are elements $x \neq 1, y \neq 1$ in $\pi_{1}(F)$ such that $x^{2} y^{2}=1$ in $\pi_{1}(F)$ and $x \neq y^{-1}$. Let (x_{1}, x_{2}) and (y_{1}, y_{2}) denote the representations of x and y, respectively, in $\pi_{1}\left(M^{2} \times S^{1}\right) \approx \pi_{1}\left(M^{2}\right) \times Z$, where $x_{1}, y_{1} \in \pi_{1}\left(M^{2}\right)$ and $x_{2}, y_{2} \in Z$. It follows that

$$
\left(x_{1}^{2} y_{1}^{2},\left(x_{2} y_{2}\right)^{2}\right)=(1,1) .
$$

Thus $x_{1}{ }^{2} y_{1}{ }^{2}=1$ and $x_{2} y_{2}=1$. This states that $x_{2}=y_{2}{ }^{-1}$.
We wish to obtain a contradiction to the choice of $y \neq x^{-1}$ by showing that $x_{1}=y_{1}^{-1}$. There are two subcases to consider.

The first subcase is when $\chi\left(M^{2}\right)<0$. Consider the group G generated by x_{1}, y_{1} in $\pi_{1}\left(M^{2}\right)$. Then G is a free subgroup of $\pi_{1}\left(M^{2}\right)$ [6, Corollary 2]. If $G=1$, then $x_{1}=y_{1}{ }^{-1}$, and the desired contradiction is obtained. Otherwise, G is free on x_{1} and y_{1} or G is infinite cyclic. The former does not occur since $x_{1}{ }^{2} y_{1}{ }^{2}=1$. Hence, there is a $z \in \pi_{1}\left(M^{2}\right)$ and integers m and n such that $z^{m}=x_{1}$ and $z^{n}=y_{1}$. That is, $z^{2 m+2 n}=1$. Hence, if $m \neq 0$, then $m=-n$ and $z^{-n}=x_{1}$ or $y_{1}^{-1}=\left(z^{n}\right)^{-1}=x_{1}$. If $m=0$, then $n=0$ and $x_{1}=1=y_{1}^{-1}$.

The second subcase is when $\chi\left(M^{2}\right) \geqq 0$. In this case $\pi_{1}\left(M^{2}\right) \times Z$ is Abelian and does not admit an embedding of $\pi_{1}(F)$.

Proposition 4.4. Let M^{2} denote a surface distinct from P^{2}. If J is a nontrivial simple closed curve in M^{2}, then $J \times S^{1}$ is injective in $M^{2} \times S^{1}$.

Proof. This follows from the fact that a non-trivial element of $\pi_{1}\left(M^{2}\right)$ has infinite order.

Remark. In the case $M^{2}=P^{2}$ and J is a non-trivial simple closed curve in M^{2}, we see that $J \times S^{1}$ is not injective in $M^{2} \times S^{1}$; however $J \times S^{1}$ is incompressible in $M^{2} \times S^{1}$. This case offers another counterexample to a conjectured extension of the Loop Theorem (see [13, p. 18]).

Proposition 4.5. Let M^{2} denote a surface distinct from D^{2} and let p denote the natural projection of $M^{2} \times S^{1}$ onto M^{2}. If F is a surface in $M^{2} \times S^{1}$ and $p \mid F$ is a covering projection of F onto M^{2}, then F is injective in $M^{2} \times S^{1}$.

Proof. Case 1. $M^{2} \neq S^{2}$ or P^{2}. Then $F \neq S^{2}$ or D^{2} since neither can cover any manifold distinct from D^{2}, S^{2}, and P^{2}. Hence it is sufficient to show that

$$
\operatorname{ker}\left(\pi_{1}(F) \rightarrow \pi_{1}\left(M^{2} \times S^{1}\right)\right)
$$

is trivial.
Suppose that

$$
x \in \operatorname{ker}\left(\pi_{1}(F) \rightarrow \pi_{1}\left(M^{2} \times S^{1}\right)\right)
$$

Then $p \mid x$ is a trivial loop in $\pi_{1}\left(M^{2}\right)$. Since $p \mid F$ is a covering projection of F onto M^{2}, this contraction can be lifted to F; i.e. x is trivial in $\pi_{1}(F)$.

Case $2 . M^{2}=S^{2}$. Then $F=S^{2}$. The 2 -sphere F is not injective in $S^{2} \times S^{1}$ if and only if F separates $S^{2} \times S^{1}$. In this case there is an ambient isotopy $h_{t}, 0 \leqq t \leqq 1$, of $S^{2} \times S^{1}$ such that $p \mid h_{1}(F)$ is not onto S^{2}. Hence, the map $p \mid F$ is inessential from F to S^{2}. This contradicts $p \mid F$ is a covering projection.

Case 3. $M^{2}=P^{2}$. Then $F \neq S^{2}$. For $p \mid F$ is an essential map of F onto P^{2} and since $P^{2} \times S^{1}$ is irreducible there would be a natural extension of $p \mid F$ to a 3-cell if $F=S^{2}$. The proof that F is injective in $P^{2} \times S^{1}$ now follows as in Case 2.

The following theorem shows that in a sense Proposition 4.2 was a best possible result.

Proposition 4.6. Let M^{2} denote a surface where $\chi\left(M^{2}\right) \leqq 0$. Then for each integer $k \geqq 0$, there is a two-sided surface F in $M^{2} \times S^{1}$ such that F is injective in $M^{2} \times S^{1}$ and $\chi(F)=k \chi\left(M^{2}\right)$.

Proof. Consider $M^{2} \times S^{1}$ as the identification space [4] obtained from $M^{2} \times I$ by setting $(x, 0)$ in $M^{2} \times 0$ equal to $(x, 1)$ in $M^{2} \times 1$.

Case 1. $k=0$. Since $\chi\left(M^{2}\right) \leqq 0$, there is a non-trivial simple closed curve $J \subset M^{2}$. By Proposition 4.4, $F=J \times S^{1}$ is injective in $M^{2} \times S^{1}$. Furthermore, $\chi(F)=0$.

Case 2. $k>0$. There are two situations to consider. The first is when M^{2} does not contain a two-sided, non-separating simple closed curve. In this situation there is an $\operatorname{arc} \alpha$ in M^{2} such that $\alpha \cap \mathrm{Bd} M=\mathrm{Bd} \alpha$ and $M^{2}-\alpha$ is connected. Let A denote a regular neighbourhood of α in M^{2}. Then A is a disk; and if \widetilde{M}^{2} is the closure of $M^{2}-A$, then $\widetilde{M}^{2} \cap A=A^{-1} \cup A^{1}$ where ${ }^{j} A$ si an arc for $j=-1$ or 1 and $A^{-1} \cap A^{1}=\emptyset$. It follows that $\chi\left(\widetilde{M}^{2}\right)=\chi\left(M^{2}\right)+1$.

For $1 \leqq n \leqq k$, define $F_{n}=\widetilde{M}^{2} \times n /(k+1)$. Let

$$
\theta: \alpha \times[-1,1] \rightarrow A
$$

be a parametrization of A such that $\theta \mid \alpha \times 0$ is the identity and for $j=-1$ or $1, \theta \mid \alpha \times j$ is a homeomorphism onto A^{j}.

For $1 \leqq n<k$, let

$$
\theta_{n}:[-1,1] \rightarrow[n /(k+1),(n+1) /(k+1)]
$$

be the linear function

$$
\theta_{n}(t)=\frac{t+2 n+1}{2(k+1)}
$$

Define

$$
A_{n}=\left\{\left(\theta(x, t), \theta_{n}(t)\right):(x, t) \in \alpha \times[-1,1]\right\}
$$

Notice that A_{n} is a disk in

$$
M^{2} \times[n /(k+1),(n+1) /(k+1)] \subset M^{2} \times I
$$

and A_{n} meets F_{n} in $A^{-1} \times n /(k+1)$ while A_{n} meets F_{n+1} in

$$
A^{1} \times(n+1) /(k+1)
$$

For $i=0,1$, let

$$
\theta_{i}:[-i, 1-i] \rightarrow\left[\frac{n i}{k+1}, \frac{n i+1}{k+1}\right]
$$

be the linear function

$$
\theta_{i}(t)=\frac{n i+t}{k+1}
$$

and define

$$
A_{i k}=\left\{\left(\theta(x, t), \theta_{i}(t)\right):(x, t) \in \alpha \times[-i, 1-i]\right\} .
$$

Notice that $A_{i k}$ is a disk in

$$
M^{2} \times\left[\frac{i n}{k+1}, \frac{i n+1}{k+1}\right] \subset M^{2} \times I
$$

and $A_{i k}$ meets $F_{\text {in }}$ in

$$
\theta(\alpha \times(1-i)) \times \frac{i n+1}{k+1}
$$

Let F be the image in $M^{2} \times S^{1}$ of the natural projection [4] of the surface

$$
\left(\bigcup_{n=1}^{k} F_{n}\right) \cup\left(\bigcup_{n=0}^{k} A_{n}\right) .
$$

Then by Proposition 4.5, F is an injective surface in $M^{2} \times S^{1}$ (see Figure 1).
It follows that

$$
\chi(F)=k\left(\chi\left(M^{2}\right)+1\right)+(k+1)-2(k+1)+1=k \chi\left(M^{2}\right)
$$

Now consider those surfaces M^{2} which contain a two-sided, non-separating simple closed curve J. Let A denote a regular neighbourhood of J in M^{2}.

Figure 1
Then A is an annulus and if \widetilde{M}^{2} is the closure of $M^{2}-A$, then $\widetilde{M}^{2} \cap A=$ $J^{-1} \cup J^{1}$ where J^{j} is a simple closed curve for $j=-1$ or 1 and $J^{-1} \cap J^{1}=\emptyset$. Also, $\chi\left(\tilde{M}^{2}\right)=\chi\left(M^{2}\right)$.

The construction of F in this situation is analogous to the construction of F above; only, here A is an annulus rather than a disk. The equation for $\chi(F)$ in this situation turns out to be

$$
\chi(F)=k \chi\left(\tilde{M}^{2}\right)=k \chi\left(M^{2}\right)
$$

Corollary 4.7. If M^{2} is a closed and orientable surface distinct from S^{2}, then for each integer $k \geqq 0$ there is an injective surface F in $M^{2} \times S^{1}$ with $g(F)=k\left(g\left(M^{2}\right)-1\right)+1$.
5. Necessary and sufficient conditions for incompressible surfaces. In this section the conclusions of $\S 4$ are improved for the case that M^{2} is a closed and orientable surface.

Lemma 5.1. Let G denote an orientable surface. Suppose that $\left\{G_{1}, \ldots, G_{n}\right\}$ is a mutually exclusive collection of incompressible surfaces in $G \times I$ such that
(a) for each $i=1, \ldots, n, \operatorname{Bd} G_{i} \subset G \times 0 \cup G \times 1$, and
(b) if K_{i} is a component of $\mathrm{Bd} G_{i}, K_{j}$ is a component of $\mathrm{Bd} G_{j}$, and $p\left(K_{i}\right) \cap p\left(K_{j}\right) \neq \emptyset$, then $p\left(K_{i}\right)=p\left(K_{j}\right)$, where p is the natural projection of $G \times I$ onto G.
Then there is an isotopy $h_{t}, 0 \leqq t \leqq 1$, of $G \times I$ onto itself, h_{t} is fixed on $\operatorname{Bd}(G \times I)$ for each t and for $i=1, \ldots, n$ either
(i) There is a non-trivial simple closed curve $J_{i} \subset G$ and $h_{1}\left(G_{i}\right)=J_{i} \times I$ or
(ii) $p \mid h_{1}\left(G_{i}\right)$ is a local homeomorphism of $h_{1}\left(G_{i}\right)$ into G.

Proof. The proof of this lemma parallels the proof in [16, p. 65, proof of Proposition 3.1]. There are, however, three noteworthy observations.

The first observation is that the theorem is true for $G=S^{2}$ and in fact $p \mid h_{1}\left(G_{i}\right)$ is a homeomorphism of $h_{1}\left(G_{i}\right)$ onto G. The second observation is that the point set $\cup_{i} p\left(\operatorname{Bd} G_{i}\right)$ is either void or a mutually exclusive collection of simple closed curves in G. This enables the considerations of Waldhausen in the case that G is a disk, annulus, or 2 -sphere with three holes. Furthermore, in the general case, it enables a curve to be found in G so that the induction hypothesis of Waldhausen goes through.

The third observation is that in the situation of Lemma 5.1 the best possible result is that either $h_{1} G_{1}$ is vertical, i.e. $h_{1}\left(G_{i}\right)=p^{-1} p\left(h_{1}\left(G_{i}\right)\right)$, or $p \mid h_{1}\left(G_{i}\right)$ is a local homeomorphism. This is due to $h_{1}\left(G_{i}\right)$ possibly having boundary on both $G \times 0$ and $G \times 1$.

Theorem 5.2. Let M^{2} denote a closed, orientable surface. The surface F is incompressible in $M^{2} \times S^{1}$ if and only if there is an isotopy $h_{t}, 0 \leqq t \leqq 1$, of $M^{2} \times S^{1}$ onto itself such that either
(i) there is a non-trivial simple closed curve $J \subset M^{2}$ and $h_{1}(F)=J \times S^{1}$ or
(ii) $p \mid h_{1}(F)$ is a covering projection of $h_{1}(F)$ onto M^{2}, where p is the natural projection of $M^{2} \times S^{1}$ onto M^{2}.

Proof. That conditions (i) and (ii) are sufficient for F to be incompressible (in fact, injective) in $M^{2} \times S^{1}$ follows from Propositions 4.4 and 4.5. Hence, we shall show that conditions (i) and (ii) are also necessary.

Suppose that F is incompressible in $M^{2} \times S^{1}$. Consider $M^{2} \times S^{1}$ as the identification space $M^{2} \times I / \eta$ obtained from $M^{2} \times I$ by the homeomorphism $\eta: M^{2} \rightarrow M^{2}$ so that $\eta(x)=x$ and η reverses orientation on M^{2}. Let $\rho: M^{2} \times I \rightarrow M^{2} \times S^{1}$ be the identification projection.

With an isotopy $g_{t}, 0 \leqq t \leqq 1$, of $M^{2} \times S^{1}$, make $g_{1}(F)$ in general position with $\rho\left(M^{2} \times 0\right)$ and $g_{1}(F) \cap \rho\left(M^{2} \times 0\right)$ minimal. Let G_{1}, \ldots, G_{n} denote the components of $\rho^{-1}\left(g_{1}(F)\right)$ in $M^{2} \times I$. If $M^{2}=S^{2}$, then $F=S^{2}$ and $\rho^{-1}\left(g_{1}(F)\right)$ is a 2 -sphere separating $M^{2} \times 0$ from $M^{2} \times 1$. If $M^{2} \neq S^{2}$, then $F \neq S^{2}$ and no component of $\rho^{-1}\left(g_{1}(F)\right)$ is the 2 -sphere. Hence, in any case each component of $\rho^{-1}\left(g_{1}(F)\right)$ is incompressible in $M^{2} \times I$.

By Lemma 5.1, there is an isotopy $h_{t}{ }^{\prime}, 0 \leqq t \leqq 1$, of $M^{2} \times I$ onto itself with $h_{t}{ }^{\prime}$ fixed on $M^{2} \times 0 \cup M^{2} \times 1$ and either
(i) there is a non-trivial simple closed curve $J_{i} \subset M^{2}$ and $h_{1}{ }^{\prime}\left(G_{i}\right)=J_{i} \times I$ or
(ii) if p^{\prime} is the projection of $M^{2} \times I$ onto M^{2}, then $p^{\prime} \mid h_{1}{ }^{\prime}\left(G_{i}\right)$ is a local homeomorphism of $h_{1}{ }^{\prime}\left(G_{i}\right)$ into M^{2}.

Since $h_{t}{ }^{\prime}$ is fixed on $M^{2} \times 0 \cup M^{2} \times 1$, it induces an isotopy $\bar{h}_{t}{ }^{\prime}, 0 \leqq t \leqq 1$, on $M^{2} \times S^{1}$ so that the diagram

commutes for each t. Define

$$
h_{t}= \begin{cases}g_{2 t}, & 0 \leqq t \leqq 1 / 2 \\ \bar{h}_{2 t-1}^{\prime}, & 1 / 2 \leqq t \leqq 1\end{cases}
$$

It needs to be shown that $h_{t}, 0 \leqq t \leqq 1$, satisfies the conclusions of Theorem 5.2.

Suppose that there is a non-trivial simple closed curve $J_{i} \subset M^{2}$ and $h_{1}{ }^{\prime}\left(G_{i}\right)=J_{i} \times I$. Then $\rho h_{1}{ }^{\prime}\left(G_{i}\right)=J_{i} \times S^{1}$ and thus $\rho\left(G_{i}\right)=h_{1}(F)$. It follows that $h_{1}(F)=J_{i} \times S^{1}$. Having made this observation, it may be assumed that for no i is $h_{1}{ }^{\prime}\left(G_{i}\right)$ vertical; i.e.

$$
h_{1}^{\prime}\left(G_{i}\right)=\left(p^{\prime}\right)^{-1} p^{\prime}\left(h_{1}^{\prime}\left(G_{i}\right)\right)
$$

Case 1. $g\left(M^{2}\right)=0$. Then $F=S^{2}$ and $\rho^{-1}\left(g_{1}(F)\right)=S^{2}$. Furthermore, $\rho^{-1}\left(G_{1}(F)\right)$ separates $M^{2} \times 0$ from $M^{2} \times 1$ in $M^{2} \times I$. It follows that $p \mid h_{1}(F)$ is actually a homeomorphism of $h_{1}(F)$ onto M^{2}.

Case 2. $g\left(M^{2}\right)=1$. Then either $\rho^{-1}\left(g_{1}(F)\right)$ is a torus and thus $p \mid h_{1}(F)$ is a homeomorphism onto M^{2} [16, Corollary 3.2] or each component G_{i} of $\rho^{-1}\left(g_{1}(F)\right)$ is an annulus having one component of $\mathrm{Bd} G_{i}$ in $M^{2} \times 0$ and the other in $M^{2} \times 1$. (In general, an incompressible surface in $M^{2} \times I$ need not be orientable; however in this case G_{i} is an annulus. Again by [16, Corollary 3.2], if $\operatorname{Bd} G_{i}$ is contained in $M^{2} \times 0$, then $g_{1}(F) \cap \rho\left(M^{2} \times 0\right)$ is not minimal. Similarly if $\mathrm{Bd} G_{i}$ is contained in $M^{2} \times 1$.)

If $p \mid h_{1}(F)$ is not a covering projection, then there is a simple closed curve $J \subset M^{2}$ such that $J \times 0$ is a component of $\operatorname{Bd} G_{i}$ for some i and $J \times 1$ is a component of $\mathrm{Bd} G_{j}$ for some j (j may be equal to i) and p fails to be a local homeomorphism at each point of $\rho(J \times 0)$.

Let $U(J)$ denote a regular neighbourhood of J in M^{2} such that for each component of $h_{1}{ }^{\prime}\left(G_{i}\right) \cap(U(J) \times I)$ and each component of

$$
h_{1}{ }^{\prime}\left(G_{j}\right) \cap(U(J) \times I)
$$

the projection onto M^{2} is a homeomorphism. The simple closed curve J separates $U(J)$ into two components. Denote the closures of these as $U^{+}(J)$ and $U-(J)$. It follows that both the component of $h_{1}{ }^{\prime}\left(G_{i}\right) \cap(U(J) \times I)$ containing $J \times 0$ and the component of $h_{1}{ }^{\prime}\left(G_{j}\right) \cap(U(J) \times I)$ containing $J \times 1$ are contained in (say) $U^{+}(J) \times I$.

Suppose that $i=j$. Each component common to $h_{1}{ }^{\prime}\left(G_{i}\right)$ and the closure of $M^{2} \times I-\left(U^{+}(J) \times I\right)$ is an annulus with a boundary component on each component of $\operatorname{Bd}\left(U^{+}(J) \times I\right)$. An analysis of the way that the boundary of these components would have to be spanned in $U^{+}(J) \times I$ shows that this situation cannot happen.

Suppose that $i \neq j$. Then an analysis like that above for $i=j$ shows that the projection of neither $h_{1}{ }^{\prime}\left(G_{i}\right)$ nor $h_{1}{ }^{\prime}\left(G_{j}\right)$ is onto M^{2}. By the way that $h_{1}{ }^{\prime}\left(G_{i}\right)$ and $h_{1}{ }^{\prime}\left(G_{j}\right)$ meet $U^{+}(J) \times I$, it follows that either the projection of $h_{1}{ }^{\prime}\left(G_{i}\right)$ is contained in the projection of $h_{1}{ }^{\prime}\left(G_{j}\right)$ or vice versa. Suppose that the projection of $h_{1}{ }^{\prime}\left(G_{i}\right)$ is contained in the projection of $h_{1}{ }^{\prime}\left(G_{j}\right)$. Then an analysis shows that either $h_{1}{ }^{\prime}\left(G_{j}\right)$ cannot have boundary on $M^{2} \times 0$ or the projection of $h_{1}{ }^{\prime}\left(G_{j}\right)$ into M^{2} is not a local homeomorphism. Both of these conclusions give rise to a contradiction.

Case 3. $g\left(M^{2}\right)>1$. In this case either $\rho^{-1}\left(g_{1}(F)\right)$ is a closed surface with genus equal to $g\left(M^{2}\right)$ and $p \mid h_{1}(F)$ is a homeomorphism onto M^{2} or each component G_{i} of $\rho^{-1}\left(g_{1}(F)\right)$ has boundary and $\mathrm{Bd} G_{i}$ meets both $M^{2} \times 0$ and $M^{2} \times 1$.

If $p \mid h_{1}(F)$ is not a covering projection, then there is a simple closed curve $J \subset M^{2}$ and components G_{i} and G_{j} as in Case 2. The component C of $p^{\prime}\left(h_{1}^{\prime}\left(G_{i}\right)\right) \cap p^{\prime}\left(h_{1}^{\prime}\left(G_{j}\right)\right)$ containing J is a surface in M^{2}. To see this there are three considerations to make. If $x \in C$ and x is in

$$
p^{\prime}\left(\text { Int } h_{1}^{\prime}\left(G_{i}\right)\right) \cap p^{\prime}\left(\operatorname{Int} h_{1}^{\prime}\left(G_{j}\right)\right)
$$

then $x \in$ Int C. If $x \in C$ and x is in either

$$
p^{\prime}\left(\operatorname{Int} h_{1}^{\prime}\left(G_{i}\right)\right) \cap p^{\prime}\left(\operatorname{Bd} h_{1}^{\prime}\left(G_{j}\right)\right)
$$

or

$$
p^{\prime}\left(\operatorname{Bd} h_{1}^{\prime}\left(G_{i}\right)\right) \cap p^{\prime}\left(\operatorname{Int} h_{1}^{\prime}\left(G_{j}\right)\right)
$$

but does not satisfy the first consideration, then $x \in \operatorname{Bd} C$. If $x \in C$ and x is in

$$
p^{\prime}\left(\operatorname{Bd} h_{1}^{\prime}\left(G_{i}\right)\right) \cap p^{\prime}\left(\operatorname{Bd} h_{1}^{\prime}\left(G_{j}\right)\right)
$$

and x does not satisfy either the first or second consideration, then $x \in \operatorname{Bd} C$. Notice in the last situation that $x \in J^{\prime}$, a simple closed curve in M^{2} and $J^{\prime} \times 0$ along with $J^{\prime} \times 1$ are boundary components of $h_{1}{ }^{\prime}\left(G_{i^{\prime}}\right)$ and $h_{1}{ }^{\prime}\left(G_{j^{\prime}}\right)$, respectively, where $p \mid \rho\left(J^{\prime} \times 0\right)$ is not a local homeomorphism when considered as a map of $h_{1}(F)$ into M^{2}.

Let C^{\prime} denote the component of C containing $J \times 0$ and complementary to

$$
p^{\prime}\left(\operatorname{Bd} h_{1}^{\prime}\left(G_{i}\right)-J \times 0\right) \cup p^{\prime}\left(\operatorname{Bd} h_{1}^{\prime}\left(G_{j}\right)-J \times 1\right) .
$$

Since $g\left(M^{2}\right)>1$, there is a $J \subset M^{2}$ and G_{i}, G_{j} as before such that C^{\prime} is not an annulus. Hence there is a non-trivial simple closed curve l in C^{\prime} based on J and l is not homotopic to J in C^{\prime}.

Since p^{\prime} is a local homeomorphism on each component of $h_{1}^{\prime} \rho^{-1}\left(g_{1}(F)\right)$ and misses

$$
p^{\prime}\left(\operatorname{Bd} h_{1}^{\prime}\left(G_{i}\right)\right) \cup p^{\prime}\left(\operatorname{Bd} h_{1}^{\prime}\left(G_{j}\right)\right),
$$

except for J, the simple closed curve l lifts to a loop l_{0} in $h_{1}{ }^{\prime}\left(G_{i}\right)$ based at $J \times 0$ and a loop l_{1} in $h_{1}{ }^{\prime}\left(G_{j}\right)$ based at $J \times 1$.

Consider the loop $\rho\left(l_{0} l_{1}^{-1}\right)$ in $h_{1}(F)$. The loop $\rho\left(l_{0} l_{1}^{-1}\right)$ is trivial in $M^{2} \times S^{1}$ since $\rho\left(l_{0}\right) \sim \rho(l) \sim \rho\left(l_{1}\right)$ in $M^{2} \times S^{1}$. There is a simple closed curve homotopic to $\rho\left(l_{0} l_{1}{ }^{-1}\right)$ in $h_{1}(F)$ which bounds a disk D in $M^{2} \times S^{1}$, where $D \cap h_{1}(F)=\operatorname{Bd} D$. Since $h_{1}(F)$ is incompressible in $M^{2} \times S^{1}$, the loop $\rho\left(l_{0} l_{1}{ }^{-1}\right)$ is trivial in $h_{1}(F)$. By choosing l neither trivial in C^{\prime} nor homotopic to J in C^{\prime}, this leads to a contradiction. The projection p of the contraction $\rho\left(l_{0} l_{1}{ }^{-1}\right)$ in $h_{1}(F)$ gives rise to either a contraction of l in C^{\prime} or a homotopy of l and J in C^{\prime}.

The proof of Theorem 5.2 will be complete if whenever $h_{1}(F) \neq J \times S^{1}$ for some J, then $p \mid h_{1}(F)$ is onto M^{2}. However, it has been shown that in this case $p \mid h_{1}(F)$ is indeed a local homeomorphism. Thus by invariance of domain for manifolds [5], the image of the projection $p \mid h_{1}(F)$ is both open and closed in M^{2}. It follows that $p \mid h_{1}(F)$ is onto M^{2}.

Corollary 5.3. Let M^{2} denote a closed and orientable surface. The closed surface F is injective in $M^{2} \times S^{1}$ if and only if F is incompressible in $M^{2} \times S^{1}$.

The next two corollaries have also been obtained by Bredon and Wood [1] using different techniques.

Corollary 5.4. Let M^{2} denote a closed and orientable surface different from S^{2}. The closed, non-orientable surface F can be embedded in $M^{2} \times S^{1}$ if and only if $\chi(F)$ is even and F is not the Klein bottle.

Proof. It is easy to see how to embed non-orientable surfaces with even, non-zero, Euler characteristic in $M^{2} \times S^{1}$. Namely, the surface $M^{2} \neq S^{2}$ has a non-separating simple closed curve J. Any simple closed curve meeting $J \times S^{1}$ in a single "piercing point" will guide a non-orientable handle for attachment on $J \times S^{1}$. Such an operation lowers the Euler characteristic by two.

For F a non-orientable surface, let $\bar{g}(F)$ denote the maximal number of two-sided simple closed curves in F the union of which does not separate F. If $\bar{g}(F)=n$, then $\chi(F)=2-2 n$ or $1-2 n$.

If F is non-orientable and F can be embedded in $M^{2} \times S^{1}$, then F is not incompressible in $M^{2} \times S^{1}$. We shall show that if F is non-orientable and $F \subset M^{2} \times S^{1}$, then $\bar{g}(F) \neq 0$ or 1 .

If $\bar{g}(F)=0$, then $F=P^{2}$. But each embedding of P^{2} in a 3 -manifold must be incompressible. If $\bar{g}(F)=1$, then F is either the Klein bottle or a nonorientable surface with $\chi(F)=-1$. If F were the Klein bottle, then F admits an elementary surgery along some disk D in $M^{2} \times S^{1}$. Since $M^{2} \times S^{1}$ is irreducible ($M^{2} \neq S^{2}$), the result of such a surgery would lead to an embedding
of the solid Klein bottle in $M^{2} \times S^{1}$. This would contradict $M^{2} \times S^{1}$ being orientable. If $\chi(F)=-1$, then F admits an elementary surgery along a disk D in $M^{2} \times S^{1}$. The result of such a surgery would lead to an embedding of P^{2} in $M^{2} \times S^{1}$. Hence, again we arrive at a contradiction.

The proof will proceed by an induction on $\bar{g}(F)$; namely, if $\bar{g}(F)=k, k \geqq 2$, and F can be embedded in $M^{2} \times S^{1}$, then $\chi(F)=2-2 k$.

If $\bar{g}(F)=2$, then $\chi(F) \neq-3$. If this were true, then by an elementary surgery on F along a disk D in $M^{2} \times S^{1}$, there would result a closed surface F^{\prime}, where $\chi\left(F^{\prime}\right)=1$ or -1 . We have seen that this cannot happen.

If $\bar{g}(F)=k+1$, then by an elementary surgery on F along a disk D in $M^{2} \times S^{1}$, there would result either one closed surface F^{\prime} with $\bar{g}\left(F^{\prime}\right) \leqq k$ or two closed surfaces F_{1} and F_{2} with $\bar{g}\left(F_{i}\right) \leqq k, i=1,2$. In the former, $\chi\left(F^{\prime}\right)$ is even and hence, $\chi(F)$ is even. In the latter, $\chi\left(F_{i}\right)$ is even; hence, $\chi(F)$ is even.

Corollary 5.5. The closed non-orientable surface F can be embedded in $S^{2} \times S^{1}$ if and only if $\chi(F)$ is even.

Proof. This proof is analogous to the proof of Corollary 5.4. However, since $S^{2} \times S^{1}$ is not irreducible, it admits an embedding of the Klein bottle. Such an embedding can be obtained from a non-separating 2 -sphere S in $S^{2} \times S^{1}$ by adding a non-orientable handle guided by a simple closed curve "piercing" S at precisely one point.

6. Non-unique fiberings over S^{1}.

Theorem 6.1. Let F denote an incompressible, two-sided surface in $M^{2} \times S^{1}$ where $\chi(F)<0$. Then there is a retraction r of $M^{2} \times S^{1}$ onto a simple closed curve J in $M^{2} \times S^{1}$ and

$$
\operatorname{ker}\left(r_{*}: \pi_{1}\left(M^{2} \times S^{1}\right) \rightarrow Z\right)
$$

is $\pi_{1}(F)$.
Proof. It follows from Proposition 3.5 that F does not separate $M^{2} \times S^{1}$. Hence, there is a simple closed curve $J \subset M^{2} \times S^{1}$ and J meets F in a single point $q \in F$. Furthermore, locally about q the simple closed curve J is in different sides of F. Let $U(F)$ denote a regular neighbourhood of F in $M^{2} \times S^{1}$ meeting J in a subarc A of J, where $q \in A$.

The Tietze Extension Theorem now yields a retraction of $U(F)$ onto A. This retraction may be extended to a retraction r of $M^{2} \times S^{1}$ onto J by again applying the Tietze Extension Theorem to retract the closure of $M^{2} \times S^{1}-U(F)$ onto the closure of $J-A$ in J (see [7] for similar techniques of building retractions).

The infinite cyclic covering space corresponding to the non-separating surface F and constructed in the fashion of Neuwirth [10] has as its fundamental group $\operatorname{ker}\left(r_{*}\right)$. Since $\chi(F)<0$, the group $\pi_{1}(F)$ does not have centre [3; 6]. Since $\pi_{1}\left(M^{2} \times S^{1}\right)$ has an infinite cyclic subgroup in its centre, an argument like that in [15, the proof of Lemma 4.4] shows that $\pi_{1}(F) \approx \operatorname{ker}\left(r_{*}\right)$.

Theorem 6.2. Let M^{2} denote a surface where $\chi\left(M^{2}\right) \leqq 0$. Then for any integer $k>0, M^{2} \times S^{1}$ can be fibred over S^{1} with fibre a surface F and $\chi(F)=k \chi\left(M^{2}\right)$.

Proof. Case 1. $\chi\left(M^{2}\right)=0$. Then $F=M^{2}$ satisfies the theorem.
Case 2. $\chi\left(M^{2}\right)<0$. By Proposition 4.6, there is a two-sided surface F which is injective in $M^{2} \times S^{1}$ and $\chi(F)=k \chi\left(M^{2}\right)$. By Theorem 6.1, there is a retraction r of $M^{2} \times S^{1}$ onto a simple closed curve J so that the sequence

$$
1 \rightarrow \pi_{1}(F) \xrightarrow{i_{*}} \pi_{1}\left(M^{2} \times S^{1}\right) \xrightarrow{r_{*}} \pi_{1}(J) \rightarrow 1
$$

is exact, where i_{*} is induced by inclusion. It now follows by [14] and the fact that $M^{2} \times S^{1}$ is irreducible that $M^{2} \times S^{1}$ can be fibred over S^{1} with fibre the surface F. This completes the proof of the theorem.

Corollary 6.3. If M^{2} is a closed, orientable surface distinct from S^{2}, then $M^{2} \times S^{1}$ admits a fibration over S^{1} with fibre F a closed, orientable surface and $g(F)=k\left(g\left(M^{2}\right)-1\right)+1$, where $k>0$.

It is now clear that a result similar to Proposition 4.2 for $M^{2} \times S^{1}$ is not true for 3 -manifolds which are non-trivial fibrations over S^{1} with fibre a surface F; that is, we have the following.

Corollary 6.4. If M is fibred over S^{1} with fibre a surface F, then for F^{\prime} injective in M it is not necessarily true that $\chi\left(F^{\prime}\right) \leqq \chi(F)$.

Proof. Let F^{\prime} be a closed orientable surface with $g\left(F^{\prime}\right)=2$. Then $F^{\prime} \times S^{1}$ can be fibred over S^{1} with fibre a surface F where $g(F)=k \geqq 2$. If $k>2$, then $\chi\left(F^{\prime}\right) \neq \chi(F)$; yet, F^{\prime} is injective in $F^{\prime} \times S^{1}$.

Let f and g denote embeddings of the space X into the space Y. If there is a homeomorphism h of Y onto itself such that $h f=g$, then f and g are said to be equivalent.

Corollary 6.5. There is a 3 -manifold M fibred over S^{1} with fibre a surface F, where $\chi(F)<0$ and a non-separating embedding $f: F \rightarrow M$ such that $f(F)$ is not equivalent to any injective embedding of F into M.

Proof. Let $M=F^{\prime} \times S^{1}$, where $g\left(F^{\prime}\right)=2$. Let F denote a surface in $F^{\prime} \times S^{1}$ so that $g(F)=3$ and M can be fibred over S^{1} with fibre the surface F.

If $f(F)$ is the embedding of F in M obtained by adding a small handle to F^{\prime} in M, then $f(F)$ is not equivalent to an injective surface in M; in particular, $f(F)$ is not equivalent to F.

References

1. G. E. Bredon and J. W. Wood, Non-orientable surfaces in orientable 3-manifolds, Invent. Math. 7 (1969), 83-110.
2. G. Burde and H. Zieschang, A topological classification of certain 3-manifolds, Bull. Amer. Math. Soc. 74 (1968), 122-124.
3. M. Greendlinger, A class of groups all of whose elements have trivial centralizers, Math. Z. 78 (1962), 91-96.
4. P. J. Hilton and S. Wylie, Homology theory: An introduction to algebraic topology (Cambridge Univ. Press, New York, 1960).
5. W. Hurewicz and H. Wallman, Dimension theory, rev. ed., Princeton Mathematical Series, Vol. 4 (Princeton Univ. Press, Princeton N.J., 1948).
6. William Jaco, On certain subgroups of the fundamental group of a closed surface, Proc. Cambridge Philos. Soc. 67 (1970), 17-18.
7. William Jaco and D. R. McMillan, Jr., Retracting three-manifolds onto finite graphs, Illinois J. Math. 14 (1970), 150-158.
8. A. G. Kurosh, The theory of groups, 2nd ed., Vols. I and II (Chelsea, New York, 1960).
9. William Massey, Algebraic topology: An introduction (Harcourt, Brace \& World, Inc., New York, 1967).
10. Lee Neuwirth, The algebraic determination of the genus of knots, Amer. J. Math. 82 (1960), 791-798.
11. _ A topological classification of certain 3-manifolds, Bull. Amer. Math. Soc. 69 (1963), 372-375.
12. Peter Orlik On certain fibered 3 -manifolds (to appear).
13. J. Stallings, On the loop theorem, Ann. of Math. (2) 72 (1960), 12-19.
14. -_On fibering certain 3-manifolds, pp. 95-100 in Topology of 3-manifolds and related topics (Proc. the Univ. of Georgia Institute, 1961), edited by M. K. Fort (Prentice-Hall, Englewood Cliffs, N.J., 1962).
15. F. Waldhausen, Gruppen mit Zentrum und 3-dimensionale Mannigfaltigkeiten, Topology 6 (1967), 505-517.
16. -On irreducible 3-manifolds which are sufficiently large, Ann. of Math. (2) 87 (1968), 56-88.
17. E. C. Zeeman, Seminar on combinatorial topology, (mimeographed notes) (Publ. Inst. Hautes Etudes Sci., Paris, 1963).

University of Michigan, Ann Arbor, Michigan

[^0]: Received March 10, 1969. This research was supported in part by National Science Foundation Contract GP-11533.

