SURFACES EMBEDDED IN $M^2 \times S^1$

WILLIAM JACO

1. Introduction. In this paper we study incompressible and injective (see § 2 for definitions) surfaces embedded in $M^2 \times S^1$, where M^2 is a surface and S^1 is the 1-sphere. We are able to characterize embeddings which are incompressible in $M^2 \times S^1$ when M^2 is closed and orientable. Namely, a necessary and sufficient condition for the closed surface F to be incompressible in $M^2 \times S^1$, where M^2 is closed and orientable, is that there exists an ambient isotopy h_t , $0 \leq t \leq 1$, of $M^2 \times S^1$ onto itself so that either

(i) there is a non-trivial simple closed curve $J \subset M^2$ and $h_1(F) = J \times S^1$, or

(ii) $p|h_1(F)$ is a covering projection of $h_1(F)$ onto M^2 , where p is the natural projection of $M^2 \times S^1$ onto M^2 .

This theorem is used to give an alternate proof for the classification of non-orientable, closed surfaces which can be embedded in $M^2 \times S^1$, where M^2 is closed and orientable. See Corollaries 5.4 and 5.5. These latter results were first obtained by Bredon and Wood [1, Theorem 4.8].

We show in § 6 that 3-manifolds fibred over S^1 with fibre a surface F do not determine the fibre F uniquely. In fact, for M^2 a surface and $\chi(M^2) \leq 0$, we see that for any integer k > 0, $M^2 \times S^1$ can be fibred over S^1 with fibre a surface Fand $\chi(F) = k\chi(M^2)$.

In §4, and assuming no more about M^2 than that it is a surface, we give sufficient conditions for a proper embedding of a surface F in $M^2 \times S^1$ to be injective in $M^2 \times S^1$.

2. Definitions and notation. The term *surface* is used to mean a compact 2-manifold with or without boundary. If we wish to emphasize that a surface M^2 does not have boundary, we say that M^2 is a *closed* surface.

 D^n and S^n are used to denote the *n*-cell and the *n*-sphere, respectively. We also use P^2 to denote real projective 2-space.

A manifold N^k is said to be *properly embedded* in the manifold M^n , n > k, if $N^k \cap \text{Bd } M^n = \text{Bd } N^k$. If the surface F is properly embedded in the 3-manifold M^3 , we say F is *injective* in M^3 if exactly one of the following cases holds:

- (i) If $F = S^2$, then F does not bound a 3-cell in M^3 ;
- (ii) If F = D², then either Bd D² does not bound a disk in Bd M³ or whenever Bd D² does bound a disk D₁² in Bd M³, then the 2-sphere D² ∪ D₁² is injective in M³;

Received March 10, 1969. This research was supported in part by National Science Foundation Contract GP-11533.

(iii) If $F \neq S^2$ or D^2 , then

 $\ker(i_*:\pi_1(F)\to\pi_1(M^3))$

is trivial, where i_* is induced by inclusion.

If the surface F is properly embedded in the 3-manifold M^3 , then we say that F is *incompressible* in M^3 if exactly one of the following cases holds:

- (i) If $F = S^2$ or D^2 , then F is injective in M^3 ;
- (ii) If $F \neq S^2$ or D^2 , then there is no disk D in M^3 where $D \cap F = \operatorname{Bd} D$ and Bd D is not contractible in F.

If F is injective in M^3 , then F is incompressible in M^3 ; however, the converse is not true in general. See [13] and the remark in this paper following Proposition 4.4. If F is two-sided in M^3 , then F is injective in M^3 if and only if F is incompressible in M^3 .

We say that a simple closed curve J in the space X is *trivial* in X if J can be contracted to a point in X. Otherwise, we say that J is *non-trivial* in X. A 3-manifold M is called *irreducible* if it contains no injective polyhedral 2-spheres.

The combinatorial terminology is consistent with that used in [17]. However, we use the term regular enlargement of a polyhedron P in a manifold M^n along with that of a regular neighbourhood of a polyhedron P in a manifold M^n . The submanifold N^n is called a *regular enlargement* of the polyhedron P in M^n if N^n is a polyhedron in M^n and for some subdivision of N^n and some subdivision of P, N^n collapses to P (see [17]).

Let F denote a surface which is properly embedded in the 3-manifold M^3 . Suppose that D is a disk in M^3 so that $D \cap F = \operatorname{Bd} D$. Then $\operatorname{Bd} D$ is a twosided simple closed curve in F. Furthermore, there is a 3-cell B (not unique) which is a regular enlargement of D in M^3 where

$$B \cap F = \operatorname{Bd} B \cap F = A,$$

an annulus, which is a regular neighbourhood of Bd D in F. Let D_1 and D_2 denote the closures of the components of Bd B - A. The resultant (either one or two surfaces) of replacing A by $D_1 \cup D_2$ is called an *elementary surgery* on F along D.

We use the term *map* to mean continuous function. A map f of X into Y is said to be *essential* if and only if f is not homotopic to a constant map. Otherwise, f is *inessential*. A map f of X onto Y is called a *covering projection* if for each $y \in Y$ there is an open set U of Y with $y \in U$ and $f^{-1}(U)$ can be written as a mutually exclusive collection of open sets $\{U_{\alpha}\}$, where f/U_{α} is a homeomorphism of U_{α} onto U for each α . If $f: X \to Y$ is a covering projection, we say that X covers Y.

Using the terminology of [2; 14], we say that the 3-manifold M^3 is *fibred* over S^1 with *fibre* a surface F if M^3 is the identification space obtained from $F \times I$ by identifying $F \times 0$ and $F \times 1$ with a homeomorphism η of F onto itself. Generally, if M^3 is fibred over S^1 with fibre a surface F, then M^3 is written $F \times I/\eta$.

SURFACES

We use the notation $\chi(K)$ to stand for the Euler characteristic of a complex K. If M^2 is a closed and orientable surface, we use $g(M^2)$ to denote the genus of M^2 .

The following lemmas are well known.

LEMMA 2.1. If $M^2 \neq S^2$ and M^3 can be fibred over S^1 with fibre M^2 , then M^3 is irreducible.

LEMMA 2.2. If M^3 can be fibred over S^1 with fibre S^2 , then a polyhedral 2-sphere S in M^3 is injective if and only if S does not separate M^3 .

3. Surfaces separating products. Let $M^3 = M^2 \times I$, where M^2 is a surface. Let $p: M^3 \to M^2$ denote the natural projection of M^3 onto the factor M^2 .

PROPOSITION 3.1. Suppose that F is an incompressible surface in M^3 with Bd $F \subset M^2 \times \{0\}$. Then there is an ambient isotopy h_t , $0 \leq t \leq 1$, of M^3 so that for each t the map h_t is fixed on Bd M^3 and $p|h_1(F)$ is a homeomorphism into M^2 .

Proof. Since Bd F is contained in $M^2 \times \{0\}$, each component of Bd F is a two-sided curve in $M^2 \times \{0\}$. The proof now follows directly from the techniques of Waldhausen in proving [16, Proposition 3.1].

PROPOSITION 3.2. Let M^2 denote a closed surface. If F is a closed surface in $M^2 \times I$ separating $M^2 \times 0$ from $M^2 \times 1$, then $\chi(F) \leq \chi(M^2)$.

Proof. The conclusion follows vacuously if $M^2 = S^2$. Hence, assume that $M^2 \neq S^2$. Since $M^2 \times I$ is irreducible and F separates $M^2 \times 0$ from $M^2 \times 1$, the surface $F \neq S^2$. It will be shown that there is an injective (hence, incompressible) closed surface $G \subset M^2 \times I$ with $\chi(F) \leq \chi(G)$.

Suppose that G' is a closed surface in $M^2 \times I$ separating $M^2 \times 0$ from $M^2 \times 1$ and $\chi(F) \leq \chi(G')$. If

$$\ker(\pi_1(G') \to \pi_1(M^2 \times I)) = \{1\},\$$

then let G = G'. Otherwise, there is a disk $D \subset M^2 \times I$ so that $D \cap G' = \operatorname{Bd} D$ and Bd D is not trivial in G' (see [13, § 6]).

Perform an elementary surgery on G' along the disk D. If Bd D separates G', we obtain two surfaces G_1' and G_2' , where $\chi(G') < \chi(G_i')$, i = 1, 2. Furthermore, either G_1' or G_2' separates $M^2 \times 0$ from $M^2 \times 1$. If Bd D does not separate G', we obtain a surface G'' which separates $M^2 \times 0$ from $M^2 \times 1$ and $\chi(G') < \chi(G'')$.

In either case, there is a closed surface G'' in $M^2 \times I$ separating $M^2 \times 0$ from $M^2 \times 1$ and $\chi(G') < \chi(G'')$. Since there is an upper bound on the Euler characteristic of a closed surface and $G'' \neq S^2$ (G'' separates $M^2 \times 0$ from $M^2 \times 1$), the desired injective surface G may be obtained.

To complete the proof apply Proposition 3.1 with G the F of that proposition. Since G is closed, G is homeomorphic to M^2 and therefore

$$\chi(F) \leq \chi(G) = \chi(M^2).$$

The next lemma is a technical lemma which is used later. Its proof is straightforward.

LEMMA 3.3. Suppose that J_1, \ldots, J_k is a mutually exclusive collection of simple closed curves in Bd $D^2 \times I \subset D^2 \times I$. Then there is a mutually exclusive collection of 2-cells D_1^2, \ldots, D_k^2 in $D^2 \times I$ so that for each $i = 1, \ldots, k$,

 $D_i^2 \cap \operatorname{Bd}(D^2 \times I) = \operatorname{Bd} D_i^2 \cap (\operatorname{Bd} D^2 \times I) = J_i.$

COROLLARY 3.4. If M^2 is a surface and F is a surface in $M^2 \times I$ separating $M^2 \times 0$ from $M^2 \times 1$, then $\chi(F) \leq \chi(M^2)$.

Proof. If Bd $M^2 = \emptyset$, then this is just Proposition 3.2. Hence, assume that Bd $M^2 \neq \emptyset$. Let $k \ge 1$ denote the number of components of Bd M^2 . Let M_+^2 denote the closed surface obtained from M^2 by attaching a copy of D^2 to each component of Bd M^2 . Then $M^2 \times I \subset M_+^2 \times I$.

Let k' denote the number of boundary components of F. Since F separates $M^2 \times 0$ from $M^2 \times 1$ in $M^2 \times I$, we have $k' \ge k$. Each component of Bd F is contained in (Bd $M^2 \times I$). Applying Lemma 3.3, the surface F may be expanded to a closed surface F_+ which separates $M_+^2 \times 0$ from $M_+^2 \times 1$ and $\chi(F_+) = \chi(F) + k'$.

From Proposition 3.2 it follows that $\chi(F_+) \leq \chi(M_+^2)$. Hence,

$$\chi(F) \leq \chi(F) + (k' - k) \leq \chi(M^2).$$

PROPOSITION 3.5. Let M^2 denote a surface. If F is injective in $M^2 \times S^1$ and $\chi(F) \neq 0$, then F does not separate $M^2 \times S^1$.

Proof. Case 1. $\chi(F) = 2$. Then $F = S^2$ and $M^2 = S^2$. If F separates $S^2 \times S^1$, then F is not injective.

Case 2. $\chi(F) = 1$. Then either $F = D^2$ or $F = P^2$. If $F = D^2$, then $M^2 \neq S^2$ and therefore, $M^2 \times S^1$ is irreducible. If F separates $M^2 \times S^1$, then by van Kampen's Theorem [9], $\pi_1(M^2 \times S^1)$ can be expressed as a non-trivial free product [8]. This is a contradiction to $\pi_1(M^2 \times S^1)$ having non-trivial centre.

If $F = P^2$, then $M^2 = P^2$. Hence, F does not separate since P^2 does not bound a 3-manifold.

Case 3. $\chi(F) < 0$. If F does separate $M^2 \times S^1$, then it follows from van Kæmpen's theorem that

$$\pi_1(M^2 \times S^1) \approx G_1 \underset{\pi_1(F)}{*} G_2$$

is a non-trivial free product with amalgamation along $\pi_1(F)$. But $\chi(F) < 0$

implies that $\pi_1(F)$ does not have centre [3; 6]. Thus $\pi_1(M^2 \times S^1)$ could not have centre [8, Vol. II, p. 32]. This is a contradiction to $\pi_1(M^2 \times S^1)$ having an infinite cyclic group in its centre.

Remarks. (1) If M^2 is a closed surface and $\chi(M^2) < 0$, then there is an injective surface $F \subset M^2 \times S^1$, where $\chi(F) = 0$ and F separates $M^2 \times S^1$. (See Proposition 4.4.)

(2) It would seem natural to expect that a surface F in $M^2 \times S^1$ which does not separate $M^2 \times S^1$ to have the property $\chi(F) = 0$ or $\chi(F) \leq \chi(M^2)$. However, this is not the case. In fact, if $\chi(M) \leq 0$, there is a non-separating surface F in $M^2 \times S^1$ with $\chi(F) = -2k$ for any $k \geq 0$.

4. Existence of injective surfaces in products.

LEMMA 4.1. Let F denote a surface different from the Klein bottle or the torus. If G is a group and $\pi_1(F)$ embeds in $G \times Z$, then $\pi_1(F)$ embeds in G or in Z.

Proof. If F is a surface different from the Klein bottle or the torus, x and y are elements of $\pi_1(F)$ and xy = yx, then there is an element $z \in \pi_1(F)$ and integers m and n so that $x = z^m$, $y = z^n$ (see [3; 6] for the closed case; otherwise $\pi_1(F)$ is a free group).

Consider the diagram

where i_* is injective and ρ_1 , ρ_2 are the natural projections. If ker $(\rho_2 i_*) = \{1\}$, then our proof is complete. Hence, assume that ker $(\rho_2 i_*) \neq \{1\}$.

Suppose that $x \in \ker(\rho_1 i_*)$. Let $y \in \ker(\rho_2 i_*)$ be chosen so that $y \neq 1$. It follows that $i_*(x) \in \ker(\rho_1)$ and $i_*(y) \in \ker(\rho_2)$. Let (1, x') and $(y', 1) \in G \times Z$ represent $i_*(x)$ and $i_*(y)$, respectively. Thus $i_*(xy) = i_*(yx)$. Since the homomorphism i_* is injective, xy = yx. Let integers m, n be chosen so that $x = z^m, y = z^n$.

We shall show that x = 1; hence, $\ker(\rho_1 i_*) = \{1\}$. Let $(z_1, z_2) = i_*(z)$. Then $z_1^m = 1$ and $z_2^n = 1$. It follows that $z_2 = 1$ since $y \neq 1$ and i_* injective imply that $n \neq 0$. Thus

$$i_*(x) = i_*(z^m) = (z_1^m, 1) = (1, 1)$$

and i_* injective yields x = 1.

PROPOSITION 4.2. Let M^2 denote a surface. If F is injective in $M^2 \times S^1$, then there is a $k \ge 0$ such that $\chi(F) = k\chi(M^2)$.

Proof. Case 1. $\chi(F) = 2$. Whenever $M^2 \neq S^2$, $M^2 \times S^1$ is irreducible; hence, both $M^2 = S^2$ and $F = S^2$. Let k = 1.

Case 2. $\chi(F) = 1$. Then $F = D^2$ or $F = P^2$.

Suppose that $F = D^2$. Since $M^2 \times S^1$ is irreducible $(M^2 \neq S^2$ by Bd $M^2 \neq \emptyset)$ and each component of Bd $(M^2 \times S^1)$ is a torus, $M^2 = D^2$. Let k = 1.

Suppose that $F = P^2$. If $M^2 \neq P^2$, then no element of $\pi_1(M^2) \times Z$ is of finite order. Hence, $M^2 = P^2$. Let k = 1.

Case 3. $\chi(F) = 0$. Let k = 0.

Case 4. $\chi(F) < 0$. Then by Lemma 4.1, $\pi_1(F)$ embeds in $\pi_1(M^2)$. It follows that F covers M^2 and $\chi(F) = k\chi(M^2)$ for some $k \ge 1$.

Remark. In Theorem 5.2 we will prove that if M^2 is closed and orientable and F is incompressible in $M^2 \times S^1$, then F is orientable and there is an integer $k \ge 0$ such that

$$g(F) = k(g(M^2) - 1) + 1.$$

PROPOSITION 4.3. Let M^2 denote a closed surface (orientable or not) different from the Klein bottle. Then there is no injective embedding of the Klein bottle in $M^2 \times S^1$.

Proof. Suppose that $F \subset M^2 \times S^1$ is injective, where F is the Klein bottle. There are elements $x \neq 1$, $y \neq 1$ in $\pi_1(F)$ such that $x^2y^2 = 1$ in $\pi_1(F)$ and $x \neq y^{-1}$. Let (x_1, x_2) and (y_1, y_2) denote the representations of x and y, respectively, in $\pi_1(M^2 \times S^1) \approx \pi_1(M^2) \times Z$, where $x_1, y_1 \in \pi_1(M^2)$ and $x_2, y_2 \in Z$. It follows that

$$(x_1^2y_1^2, (x_2y_2)^2) = (1, 1).$$

Thus $x_1^2y_1^2 = 1$ and $x_2y_2 = 1$. This states that $x_2 = y_2^{-1}$.

We wish to obtain a contradiction to the choice of $y \neq x^{-1}$ by showing that $x_1 = y_1^{-1}$. There are two subcases to consider.

The first subcase is when $\chi(M^2) < 0$. Consider the group G generated by x_1, y_1 in $\pi_1(M^2)$. Then G is a free subgroup of $\pi_1(M^2)$ [6, Corollary 2]. If G = 1, then $x_1 = y_1^{-1}$, and the desired contradiction is obtained. Otherwise, G is free on x_1 and y_1 or G is infinite cyclic. The former does not occur since $x_1^2y_1^2 = 1$. Hence, there is a $z \in \pi_1(M^2)$ and integers m and n such that $z^m = x_1$ and $z^n = y_1$. That is, $z^{2m+2n} = 1$. Hence, if $m \neq 0$, then m = -n and $z^{-n} = x_1$ or $y_1^{-1} = (z^n)^{-1} = x_1$. If m = 0, then n = 0 and $x_1 = 1 = y_1^{-1}$.

The second subcase is when $\chi(M^2) \ge 0$. In this case $\pi_1(M^2) \times Z$ is Abelian and does not admit an embedding of $\pi_1(F)$.

PROPOSITION 4.4. Let M^2 denote a surface distinct from P^2 . If J is a nontrivial simple closed curve in M^2 , then $J \times S^1$ is injective in $M^2 \times S^1$.

Proof. This follows from the fact that a non-trivial element of $\pi_1(M^2)$ has infinite order.

SURFACES

Remark. In the case $M^2 = P^2$ and J is a non-trivial simple closed curve in M^2 , we see that $J \times S^1$ is *not* injective in $M^2 \times S^1$; however $J \times S^1$ is incompressible in $M^2 \times S^1$. This case offers another counterexample to a conjectured extension of the Loop Theorem (see [13, p. 18]).

PROPOSITION 4.5. Let M^2 denote a surface distinct from D^2 and let p denote the natural projection of $M^2 \times S^1$ onto M^2 . If F is a surface in $M^2 \times S^1$ and p|F is a covering projection of F onto M^2 , then F is injective in $M^2 \times S^1$.

Proof. Case 1. $M^2 \neq S^2$ or P^2 . Then $F \neq S^2$ or D^2 since neither can cover any manifold distinct from D^2 , S^2 , and P^2 . Hence it is sufficient to show that

$$\ker(\pi_1(F) \to \pi_1(M^2 \times S^1))$$

is trivial.

Suppose that

$$x \in \ker(\pi_1(F) \to \pi_1(M^2 \times S^1)).$$

Then p|x is a trivial loop in $\pi_1(M^2)$. Since p|F is a covering projection of *F* onto M^2 , this contraction can be lifted to *F*; i.e. *x* is trivial in $\pi_1(F)$.

Case 2. $M^2 = S^2$. Then $F = S^2$. The 2-sphere F is not injective in $S^2 \times S^1$ if and only if F separates $S^2 \times S^1$. In this case there is an ambient isotopy $h_t, 0 \leq t \leq 1$, of $S^2 \times S^1$ such that $p|h_1(F)$ is not onto S^2 . Hence, the map p|Fis inessential from F to S^2 . This contradicts p|F is a covering projection.

Case 3. $M^2 = P^2$. Then $F \neq S^2$. For p|F is an essential map of F onto P^2 and since $P^2 \times S^1$ is irreducible there would be a natural extension of p|Fto a 3-cell if $F = S^2$. The proof that F is injective in $P^2 \times S^1$ now follows as in Case 2.

The following theorem shows that in a sense Proposition 4.2 was a best possible result.

PROPOSITION 4.6. Let M^2 denote a surface where $\chi(M^2) \leq 0$. Then for each integer $k \geq 0$, there is a two-sided surface F in $M^2 \times S^1$ such that F is injective in $M^2 \times S^1$ and $\chi(F) = k\chi(M^2)$.

Proof. Consider $M^2 \times S^1$ as the identification space [4] obtained from $M^2 \times I$ by setting (x, 0) in $M^2 \times 0$ equal to (x, 1) in $M^2 \times 1$.

Case 1. k = 0. Since $\chi(M^2) \leq 0$, there is a non-trivial simple closed curve $J \subset M^2$. By Proposition 4.4, $F = J \times S^1$ is injective in $M^2 \times S^1$. Furthermore, $\chi(F) = 0$.

Case 2. k > 0. There are two situations to consider. The first is when M^2 does not contain a two-sided, non-separating simple closed curve. In this situation there is an arc α in M^2 such that $\alpha \cap \operatorname{Bd} M = \operatorname{Bd} \alpha$ and $M^2 - \alpha$ is connected. Let A denote a regular neighbourhood of α in M^2 . Then A is a disk; and if \tilde{M}^2 is the closure of $M^2 - A$, then $\tilde{M}^2 \cap A = A^{-1} \cup A^1$ where ${}^{j}A$ si an arc for j = -1 or 1 and $A^{-1} \cap A^1 = \emptyset$. It follows that $\chi(\tilde{M}^2) = \chi(M^2) + 1$.

For
$$1 \leq n \leq k$$
, define $F_n = \tilde{M}^2 \times n/(k+1)$. Let
 $\theta: \alpha \times [-1, 1] \to A$

be a parametrization of A such that $\theta | \alpha \times 0$ is the identity and for j = -1 or $1, \theta | \alpha \times j$ is a homeomorphism onto A^{j} .

For $1 \leq n < k$, let

$$\theta_n: [-1, 1] \rightarrow [n/(k+1), (n+1)/(k+1)]$$

be the linear function

$$\theta_n(t) = \frac{t + 2n + 1}{2(k+1)}$$

Define

$$A_n = \{ (\theta(x, t), \theta_n(t)) \colon (x, t) \in \alpha \times [-1, 1] \}.$$

Notice that A_n is a disk in

$$M^{2} \times [n/(k+1), (n+1)/(k+1)] \subset M^{2} \times I$$

and A_n meets F_n in $A^{-1} \times n/(k+1)$ while A_n meets F_{n+1} in

$$A^1 \times (n+1)/(k+1).$$

For i = 0, 1, let

$$\theta_i: [-i, 1-i] \rightarrow \left[\frac{ni}{k+1}, \frac{ni+1}{k+1}\right]$$

be the linear function

$$\theta_i(t) = \frac{ni+t}{k+1};$$

and define

$$A_{ik} = \{ (\theta(x, t), \theta_i(t)) \colon (x, t) \in \alpha \times [-i, 1-i] \}.$$

Notice that A_{ik} is a disk in

$$M^2 \times \left[\frac{in}{k+1}, \frac{in+1}{k+1}\right] \subset M^2 \times I$$

and A_{ik} meets F_{in} in

$$\theta(\alpha \times (1-i)) \times \frac{in+1}{k+1}.$$

Let F be the image in $M^2 \times S^1$ of the natural projection [4] of the surface

$$\begin{pmatrix} k \\ \bigcup \\ n=1 \end{pmatrix} \cup \begin{pmatrix} k \\ \bigcup \\ n=0 \end{pmatrix} = \begin{pmatrix} k \\ 0 \end{pmatrix}$$

Then by Proposition 4.5, F is an injective surface in $M^2 \times S^1$ (see Figure 1). It follows that

$$\chi(F) = k(\chi(M^2) + 1) + (k + 1) - 2(k + 1) + 1 = k\chi(M^2).$$

Now consider those surfaces M^2 which contain a two-sided, non-separating simple closed curve J. Let A denote a regular neighbourhood of J in M^2 .

https://doi.org/10.4153/CJM-1970-063-x Published online by Cambridge University Press

FIGURE 1

Then A is an annulus and if \tilde{M}^2 is the closure of $M^2 - A$, then $\tilde{M}^2 \cap A = J^{-1} \cup J^1$ where J^j is a simple closed curve for j = -1 or 1 and $J^{-1} \cap J^1 = \emptyset$. Also, $\chi(\tilde{M}^2) = \chi(M^2)$.

The construction of F in this situation is analogous to the construction of F above; only, here A is an annulus rather than a disk. The equation for $\chi(F)$ in this situation turns out to be

$$\chi(F) = k\chi(\tilde{M}^2) = k\chi(M^2).$$

COROLLARY 4.7. If M^2 is a closed and orientable surface distinct from S^2 , then for each integer $k \ge 0$ there is an injective surface F in $M^2 \times S^1$ with $g(F) = k(g(M^2) - 1) + 1$.

5. Necessary and sufficient conditions for incompressible surfaces. In this section the conclusions of § 4 are improved for the case that M^2 is a closed and orientable surface.

LEMMA 5.1. Let G denote an orientable surface. Suppose that $\{G_1, \ldots, G_n\}$ is a mutually exclusive collection of incompressible surfaces in $G \times I$ such that (a) for each $i = 1, \ldots, n$, Bd $G_i \subset G \times 0 \cup G \times 1$, and

(b) if K_i is a component of Bd G_i , K_j is a component of Bd G_j , and $p(K_i) \cap p(K_j) \neq \emptyset$, then $p(K_i) = p(K_j)$, where p is the natural projection of $G \times I$ onto G.

Then there is an isotopy h_i , $0 \leq t \leq 1$, of $G \times I$ onto itself, h_i is fixed on $Bd(G \times I)$ for each t and for i = 1, ..., n either

(i) There is a non-trivial simple closed curve $J_i \subset G$ and $h_1(G_i) = J_i \times I$ or

(ii) $p|h_1(G_i)$ is a local homeomorphism of $h_1(G_i)$ into G.

Proof. The proof of this lemma parallels the proof in [16, p. 65, proof of Proposition 3.1]. There are, however, three noteworthy observations.

The first observation is that the theorem is true for $G = S^2$ and in fact $p|h_1(G_i)$ is a homeomorphism of $h_1(G_i)$ onto G. The second observation is that the point set $\bigcup_i p(\operatorname{Bd} G_i)$ is either void or a mutually exclusive collection of simple closed curves in G. This enables the considerations of Waldhausen in the case that G is a disk, annulus, or 2-sphere with three holes. Furthermore, in the general case, it enables a curve to be found in G so that the induction hypothesis of Waldhausen goes through.

The third observation is that in the situation of Lemma 5.1 the best possible result is that either h_1G_1 is vertical, i.e. $h_1(G_i) = p^{-1}p(h_1(G_i))$, or $p|h_1(G_i)$ is a local homeomorphism. This is due to $h_1(G_i)$ possibly having boundary on both $G \times 0$ and $G \times 1$.

THEOREM 5.2. Let M^2 denote a closed, orientable surface. The surface F is incompressible in $M^2 \times S^1$ if and only if there is an isotopy h_t , $0 \leq t \leq 1$, of $M^2 \times S^1$ onto itself such that either

(i) there is a non-trivial simple closed curve $J \subset M^2$ and $h_1(F) = J \times S^1$ or

(ii) $p|h_1(F)$ is a covering projection of $h_1(F)$ onto M^2 , where p is the natural projection of $M^2 \times S^1$ onto M^2 .

Proof. That conditions (i) and (ii) are sufficient for F to be incompressible (in fact, injective) in $M^2 \times S^1$ follows from Propositions 4.4 and 4.5. Hence, we shall show that conditions (i) and (ii) are also necessary.

Suppose that F is incompressible in $M^2 \times S^1$. Consider $M^2 \times S^1$ as the identification space $M^2 \times I/\eta$ obtained from $M^2 \times I$ by the homeomorphism $\eta: M^2 \to M^2$ so that $\eta(x) = x$ and η reverses orientation on M^2 . Let $\rho: M^2 \times I \to M^2 \times S^1$ be the identification projection.

With an isotopy g_t , $0 \leq t \leq 1$, of $M^2 \times S^1$, make $g_1(F)$ in general position with $\rho(M^2 \times 0)$ and $g_1(F) \cap \rho(M^2 \times 0)$ minimal. Let G_1, \ldots, G_n denote the components of $\rho^{-1}(g_1(F))$ in $M^2 \times I$. If $M^2 = S^2$, then $F = S^2$ and $\rho^{-1}(g_1(F))$ is a 2-sphere separating $M^2 \times 0$ from $M^2 \times 1$. If $M^2 \neq S^2$, then $F \neq S^2$ and no component of $\rho^{-1}(g_1(F))$ is the 2-sphere. Hence, in any case each component of $\rho^{-1}(g_1(F))$ is incompressible in $M^2 \times I$.

By Lemma 5.1, there is an isotopy $h_t', 0 \leq t \leq 1$, of $M^2 \times I$ onto itself with h_t' fixed on $M^2 \times 0 \cup M^2 \times 1$ and either

(i) there is a non-trivial simple closed curve $J_i \subset M^2$ and $h_1'(G_i) = J_i \times I$ or

(ii) if p' is the projection of $M^2 \times I$ onto M^2 , then $p'|h_1'(G_i)$ is a local homeomorphism of $h_1'(G_i)$ into M^2 .

Since h_t is fixed on $M^2 \times 0 \cup M^2 \times 1$, it induces an isotopy \bar{h}_t , $0 \leq t \leq 1$, on $M^2 \times S^1$ so that the diagram

$$\begin{array}{cccc} M^2 \times I & & \stackrel{h_t'}{\longrightarrow} & M^2 \times I \\ \rho \downarrow & & \downarrow \rho \\ M^2 \times S^1 & \stackrel{\overline{h}_t'}{\longrightarrow} & M^2 \times S^1 \end{array}$$

commutes for each t. Define

$$h_{t} = \begin{cases} g_{2t}, & 0 \leq t \leq 1/2, \\ \bar{h}'_{2t-1}, & 1/2 \leq t \leq 1. \end{cases}$$

It needs to be shown that h_t , $0 \leq t \leq 1$, satisfies the conclusions of Theorem 5.2.

Suppose that there is a non-trivial simple closed curve $J_i \subset M^2$ and $h_1'(G_i) = J_i \times I$. Then $\rho h_1'(G_i) = J_i \times S^1$ and thus $\rho(G_i) = h_1(F)$. It follows that $h_1(F) = J_i \times S^1$. Having made this observation, it may be assumed that for no *i* is $h_1'(G_i)$ vertical; i.e.

$$h_1'(G_i) = (p')^{-1} p'(h_1'(G_i)).$$

Case 1. $g(M^2) = 0$. Then $F = S^2$ and $\rho^{-1}(g_1(F)) = S^2$. Furthermore, $\rho^{-1}(G_1(F))$ separates $M^2 \times 0$ from $M^2 \times 1$ in $M^2 \times I$. It follows that $p|h_1(F)$ is actually a homeomorphism of $h_1(F)$ onto M^2 .

Case 2. $g(M^2) = 1$. Then either $\rho^{-1}(g_1(F))$ is a torus and thus $p|h_1(F)$ is a homeomorphism onto M^2 [16, Corollary 3.2] or each component G_i of $\rho^{-1}(g_1(F))$ is an annulus having one component of Bd G_i in $M^2 \times 0$ and the other in $M^2 \times 1$. (In general, an incompressible surface in $M^2 \times I$ need not be orientable; however in this case G_i is an annulus. Again by [16, Corollary 3.2], if Bd G_i is contained in $M^2 \times 0$, then $g_1(F) \cap \rho(M^2 \times 0)$ is not minimal. Similarly if Bd G_i is contained in $M^2 \times 1$.)

If $p|h_1(F)$ is not a covering projection, then there is a simple closed curve $J \subset M^2$ such that $J \times 0$ is a component of Bd G_i for some i and $J \times 1$ is a component of Bd G_i for some j (j may be equal to i) and p fails to be a local homeomorphism at each point of $\rho(J \times 0)$.

Let U(J) denote a regular neighbourhood of J in M^2 such that for each component of $h_1'(G_i) \cap (U(J) \times I)$ and each component of

$$h_1'(G_j) \cap (U(J) \times I)$$

the projection onto M^2 is a homeomorphism. The simple closed curve J separates U(J) into two components. Denote the closures of these as $U^+(J)$ and $U^-(J)$. It follows that both the component of $h_1'(G_i) \cap (U(J) \times I)$ containing $J \times 0$ and the component of $h_1'(G_j) \cap (U(J) \times I)$ containing $J \times 1$ are contained in (say) $U^+(J) \times I$.

Suppose that i = j. Each component common to $h_1'(G_i)$ and the closure of $M^2 \times I - (U^+(J) \times I)$ is an annulus with a boundary component on each component of Bd $(U^+(J) \times I)$. An analysis of the way that the boundary of these components would have to be spanned in $U^+(J) \times I$ shows that this situation cannot happen.

Suppose that $i \neq j$. Then an analysis like that above for i = j shows that the projection of neither $h_1'(G_i)$ nor $h_1'(G_j)$ is onto M^2 . By the way that $h_1'(G_i)$ and $h_1'(G_j)$ meet $U^+(J) \times I$, it follows that either the projection of $h_1'(G_i)$ is contained in the projection of $h_1'(G_j)$ or vice versa. Suppose that the projection of $h_1'(G_i)$ is contained in the projection of $h_1'(G_j)$. Then an analysis shows that either $h_1'(G_j)$ cannot have boundary on $M^2 \times 0$ or the projection of $h_1'(G_j)$ into M^2 is not a local homeomorphism. Both of these conclusions give rise to a contradiction.

Case 3. $g(M^2) > 1$. In this case either $\rho^{-1}(g_1(F))$ is a closed surface with genus equal to $g(M^2)$ and $p|h_1(F)$ is a homeomorphism onto M^2 or each component G_i of $\rho^{-1}(g_1(F))$ has boundary and Bd G_i meets both $M^2 \times 0$ and $M^2 \times 1$.

If $p|h_1(F)$ is not a covering projection, then there is a simple closed curve $J \subset M^2$ and components G_i and G_j as in Case 2. The component C of $p'(h_1'(G_i)) \cap p'(h_1'(G_j))$ containing J is a surface in M^2 . To see this there are three considerations to make. If $x \in C$ and x is in

 $p'(\operatorname{Int} h_1'(G_i)) \cap p'(\operatorname{Int} h_1'(G_j)),$

then $x \in$ Int C. If $x \in C$ and x is in either

 $p'(\operatorname{Int} h_1'(G_i)) \cap p'(\operatorname{Bd} h_1'(G_j))$

or

$$p'(\operatorname{Bd} h_1'(G_i)) \cap p'(\operatorname{Int} h_1'(G_j))$$

but does not satisfy the first consideration, then $x \in Bd C$. If $x \in C$ and x is in

 $p'(\operatorname{Bd} h_1'(G_i)) \cap p'(\operatorname{Bd} h_1'(G_i))$

and x does not satisfy either the first or second consideration, then $x \in Bd C$. Notice in the last situation that $x \in J'$, a simple closed curve in M^2 and $J' \times 0$ along with $J' \times 1$ are boundary components of $h_1'(G_{i'})$ and $h_1'(G_{j'})$, respectively, where $p|\rho(J' \times 0)$ is not a local homeomorphism when considered as a map of $h_1(F)$ into M^2 .

Let C' denote the component of C containing $J \times 0$ and complementary to

$$p'(\operatorname{Bd} h_1'(G_i) - J \times 0) \cup p'(\operatorname{Bd} h_1'(G_j) - J \times 1).$$

Since $g(M^2) > 1$, there is a $J \subset M^2$ and G_i , G_j as before such that C' is not an annulus. Hence there is a non-trivial simple closed curve l in C' based on J and l is not homotopic to J in C'.

SURFACES

Since p' is a local homeomorphism on each component of $h_1'\rho^{-1}(g_1(F))$ and misses

$$p'(\operatorname{Bd} h_1'(G_i)) \cup p'(\operatorname{Bd} h_1'(G_j)),$$

except for J, the simple closed curve l lifts to a loop l_0 in $h_1'(G_i)$ based at $J \times 0$ and a loop l_1 in $h_1'(G_j)$ based at $J \times 1$.

Consider the loop $\rho(l_0 l_1^{-1})$ in $h_1(F)$. The loop $\rho(l_0 l_1^{-1})$ is trivial in $M^2 \times S^1$ since $\rho(l_0) \sim \rho(l) \sim \rho(l_1)$ in $M^2 \times S^1$. There is a simple closed curve homotopic to $\rho(l_0 l_1^{-1})$ in $h_1(F)$ which bounds a disk D in $M^2 \times S^1$, where $D \cap h_1(F) = \text{Bd } D$. Since $h_1(F)$ is incompressible in $M^2 \times S^1$, the loop $\rho(l_0 l_1^{-1})$ is trivial in $h_1(F)$. By choosing l neither trivial in C' nor homotopic to J in C', this leads to a contradiction. The projection p of the contraction $\rho(l_0 l_1^{-1})$ in $h_1(F)$ gives rise to either a contraction of l in C' or a homotopy of l and J in C'.

The proof of Theorem 5.2 will be complete if whenever $h_1(F) \neq J \times S^1$ for some J, then $p|h_1(F)$ is onto M^2 . However, it has been shown that in this case $p|h_1(F)$ is indeed a local homeomorphism. Thus by invariance of domain for manifolds [5], the image of the projection $p|h_1(F)$ is both open and closed in M^2 . It follows that $p|h_1(F)$ is onto M^2 .

COROLLARY 5.3. Let M^2 denote a closed and orientable surface. The closed surface F is injective in $M^2 \times S^1$ if and only if F is incompressible in $M^2 \times S^1$.

The next two corollaries have also been obtained by Bredon and Wood [1] using different techniques.

COROLLARY 5.4. Let M^2 denote a closed and orientable surface different from S^2 . The closed, non-orientable surface F can be embedded in $M^2 \times S^1$ if and only if $\chi(F)$ is even and F is not the Klein bottle.

Proof. It is easy to see how to embed non-orientable surfaces with even, non-zero, Euler characteristic in $M^2 \times S^1$. Namely, the surface $M^2 \neq S^2$ has a non-separating simple closed curve J. Any simple closed curve meeting $J \times S^1$ in a single "piercing point" will guide a non-orientable handle for attachment on $J \times S^1$. Such an operation lowers the Euler characteristic by two.

For F a non-orientable surface, let $\bar{g}(F)$ denote the maximal number of two-sided simple closed curves in F the union of which does not separate F. If $\bar{g}(F) = n$, then $\chi(F) = 2 - 2n$ or 1 - 2n.

If F is non-orientable and F can be embedded in $M^2 \times S^1$, then F is not incompressible in $M^2 \times S^1$. We shall show that if F is non-orientable and $F \subset M^2 \times S^1$, then $\bar{g}(F) \neq 0$ or 1.

If $\tilde{g}(F) = 0$, then $F = P^2$. But each embedding of P^2 in a 3-manifold must be incompressible. If $\tilde{g}(F) = 1$, then F is either the Klein bottle or a nonorientable surface with $\chi(F) = -1$. If F were the Klein bottle, then F admits an elementary surgery along some disk D in $M^2 \times S^1$. Since $M^2 \times S^1$ is irreducible $(M^2 \neq S^2)$, the result of such a surgery would lead to an embedding

of the solid Klein bottle in $M^2 \times S^1$. This would contradict $M^2 \times S^1$ being orientable. If $\chi(F) = -1$, then F admits an elementary surgery along a disk D in $M^2 \times S^1$. The result of such a surgery would lead to an embedding of P^2 in $M^2 \times S^1$. Hence, again we arrive at a contradiction.

The proof will proceed by an induction on $\bar{g}(F)$; namely, if $\bar{g}(F) = k, k \ge 2$, and F can be embedded in $M^2 \times S^1$, then $\chi(F) = 2 - 2k$.

If $\bar{g}(F) = 2$, then $\chi(F) \neq -3$. If this were true, then by an elementary surgery on F along a disk D in $M^2 \times S^1$, there would result a closed surface F', where $\chi(F') = 1$ or -1. We have seen that this cannot happen.

If $\bar{g}(F) = k + 1$, then by an elementary surgery on F along a disk D in $M^2 \times S^1$, there would result either one closed surface F' with $\bar{g}(F') \leq k$ or two closed surfaces F_1 and F_2 with $\bar{g}(F_i) \leq k$, i = 1, 2. In the former, $\chi(F')$ is even and hence, $\chi(F)$ is even. In the latter, $\chi(F_i)$ is even; hence, $\chi(F)$ is even.

COROLLARY 5.5. The closed non-orientable surface F can be embedded in $S^2 \times S^1$ if and only if $\chi(F)$ is even.

Proof. This proof is analogous to the proof of Corollary 5.4. However, since $S^2 \times S^1$ is not irreducible, it admits an embedding of the Klein bottle. Such an embedding can be obtained from a non-separating 2-sphere S in $S^2 \times S^1$ by adding a non-orientable handle guided by a simple closed curve "piercing" S at precisely one point.

6. Non-unique fiberings over S¹.

THEOREM 6.1. Let F denote an incompressible, two-sided surface in $M^2 \times S^1$ where $\chi(F) < 0$. Then there is a retraction r of $M^2 \times S^1$ onto a simple closed curve J in $M^2 \times S^1$ and

$$\ker(r_*:\pi_1(M^2\times S^1)\to Z)$$

is $\pi_1(F)$.

Proof. It follows from Proposition 3.5 that F does not separate $M^2 \times S^1$. Hence, there is a simple closed curve $J \subset M^2 \times S^1$ and J meets F in a single point $q \in F$. Furthermore, locally about q the simple closed curve J is in different sides of F. Let U(F) denote a regular neighbourhood of F in $M^2 \times S^1$ meeting J in a subarc A of J, where $q \in A$.

The Tietze Extension Theorem now yields a retraction of U(F) onto A. This retraction may be extended to a retraction r of $M^2 \times S^1$ onto J by again applying the Tietze Extension Theorem to retract the closure of $M^2 \times S^1 - U(F)$ onto the closure of J - A in J (see [7] for similar techniques of building retractions).

The infinite cyclic covering space corresponding to the non-separating surface F and constructed in the fashion of Neuwirth [10] has as its fundamental group ker (r_*) . Since $\chi(F) < 0$, the group $\pi_1(F)$ does not have centre [3; 6]. Since $\pi_1(M^2 \times S^1)$ has an infinite cyclic subgroup in its centre, an argument like that in [15, the proof of Lemma 4.4] shows that $\pi_1(F) \approx \ker(r_*)$.

THEOREM 6.2. Let M^2 denote a surface where $\chi(M^2) \leq 0$. Then for any integer k > 0, $M^2 \times S^1$ can be fibred over S^1 with fibre a surface F and $\chi(F) = k\chi(M^2)$.

Proof. Case 1. $\chi(M^2) = 0$. Then $F = M^2$ satisfies the theorem.

Case 2. $\chi(M^2) < 0$. By Proposition 4.6, there is a two-sided surface F which is injective in $M^2 \times S^1$ and $\chi(F) = k\chi(M^2)$. By Theorem 6.1, there is a retraction r of $M^2 \times S^1$ onto a simple closed curve J so that the sequence

$$1 \to \pi_1(F) \xrightarrow{i_*} \pi_1(M^2 \times S^1) \xrightarrow{r_*} \pi_1(J) \to 1$$

is exact, where i_* is induced by inclusion. It now follows by [14] and the fact that $M^2 \times S^1$ is irreducible that $M^2 \times S^1$ can be fibred over S^1 with fibre the surface F. This completes the proof of the theorem.

COROLLARY 6.3. If M^2 is a closed, orientable surface distinct from S^2 , then $M^2 \times S^1$ admits a fibration over S^1 with fibre F a closed, orientable surface and $g(F) = k(g(M^2) - 1) + 1$, where k > 0.

It is now clear that a result similar to Proposition 4.2 for $M^2 \times S^1$ is not true for 3-manifolds which are non-trivial fibrations over S^1 with fibre a surface F; that is, we have the following.

COROLLARY 6.4. If M is fibred over S¹ with fibre a surface F, then for F' injective in M it is not necessarily true that $\chi(F') \leq \chi(F)$.

Proof. Let F' be a closed orientable surface with g(F') = 2. Then $F' \times S^1$ can be fibred over S^1 with fibre a surface F where $g(F) = k \ge 2$. If k > 2, then $\chi(F') \le \chi(F)$; yet, F' is injective in $F' \times S^1$.

Let f and g denote embeddings of the space X into the space Y. If there is a homeomorphism h of Y onto itself such that hf = g, then f and g are said to be equivalent.

COROLLARY 6.5. There is a 3-manifold M fibred over S^1 with fibre a surface F, where $\chi(F) < 0$ and a non-separating embedding $f: F \to M$ such that f(F) is not equivalent to any injective embedding of F into M.

Proof. Let $M = F' \times S^1$, where g(F') = 2. Let F denote a surface in $F' \times S^1$ so that g(F) = 3 and M can be fibred over S^1 with fibre the surface F.

If f(F) is the embedding of F in M obtained by adding a small handle to F' in M, then f(F) is not equivalent to an injective surface in M; in particular, f(F) is not equivalent to F.

References

- G. E. Bredon and J. W. Wood, Non-orientable surfaces in orientable 3-manifolds, Invent. Math. 7 (1969), 83-110.
- G. Burde and H. Zieschang, A topological classification of certain 3-manifolds, Bull. Amer. Math. Soc. 74 (1968), 122-124.

- 3. M. Greendlinger, A class of groups all of whose elements have trivial centralizers, Math. Z. 78 (1962), 91-96.
- 4. P. J. Hilton and S. Wylie, *Homology theory: An introduction to algebraic topology* (Cambridge Univ. Press, New York, 1960).
- 5. W. Hurewicz and H. Wallman, *Dimension theory*, rev. ed., Princeton Mathematical Series, Vol. 4 (Princeton Univ. Press, Princeton N.J., 1948).
- 6. William Jaco, On certain subgroups of the fundamental group of a closed surface, Proc. Cambridge Philos. Soc. 67 (1970), 17–18.
- William Jaco and D. R. McMillan, Jr., Retracting three-manifolds onto finite graphs, Illinois J. Math. 14 (1970), 150-158.
- 8. A. G. Kurosh, The theory of groups, 2nd ed., Vols. I and II (Chelsea, New York, 1960).
- 9. William Massey, Algebraic topology: An introduction (Harcourt, Brace & World, Inc., New York, 1967).
- Lee Neuwirth, The algebraic determination of the genus of knots, Amer. J. Math. 82 (1960), 791-798.
- 11. A topological classification of certain 3-manifolds, Bull. Amer. Math. Soc. 69 (1963), 372–375.
- 12. Peter Orlik On certain fibered 3-manifolds (to appear).
- 13. J. Stallings, On the loop theorem, Ann. of Math. (2) 72 (1960), 12-19.
- 14. ——— On fibering certain 3-manifolds, pp. 95-100 in Topology of 3-manifolds and related topics (Proc. the Univ. of Georgia Institute, 1961), edited by M. K. Fort (Prentice-Hall, Englewood Cliffs, N.J., 1962).
- F. Waldhausen, Gruppen mit Zentrum und 3-dimensionale Mannigfaltigkeiten, Topology 6 (1967), 505–517.
- 16. —— On irreducible 3-manifolds which are sufficiently large, Ann. of Math. (2) 87 (1968), 56-88.
- 17. E. C. Zeeman, Seminar on combinatorial topology, (mimeographed notes) (Publ. Inst. Hautes Etudes Sci., Paris, 1963).

University of Michigan, Ann Arbor, Michigan