NON-AMPHICHEIRAL CODIMENSION 2 KNOTS

F. GONZÁLEZ-ACUÑA AND JOSÉ M. MONTESINOS

1. Introduction. An *n*-knot (S^{n+2}, S^n) is *amphicheiral* if there is an orientation reversing autohomeomorphism of S^{n+2} leaving S^n invariant as a set. It is *invertible* if there is an orientation preserving autohomeomorphism of S^{n+2} whose restriction to S^n is an orientation reversing autohomeomorphism of S^n onto itself.

In 1961 Fox [8, Problem 35] asked if there exist non-amphicheiral locally flat 2-knots. We will prove the following

THEOREM 1. For any integer n there are smooth n-knots which are neither amphicheiral nor invertible.

2. Preliminaries. A knot (S^{n+2}, S^n) is +*amphicheiral* (resp. -*amphicheiral*) if there is an orientation reversing autohomeomorphism f of S^{n+2} leaving S^n invariant such that $f|S^n$ preserves (resp. reverses) orientation.

The following can be proved using Alexander duality:

LEMMA 1. Let $f: (S^{n+2}, S^n) \to (S^{n+2}, S^n)$ be a homeomorphism. Then f reverses the orientation of S^{n+2} if and only if precisely one of the automorphisms

 $f_*: H_n(S^n) \to H_n(S^n), f_*: H_1(S^{n+2} - S^n) \to H_1(S^{n+2} - S^n)$

is the identity.

Thus a knot is - amphicheiral if and only if there is an orientation reversing homeomorphism of S^{n+2} leaving S^n invariant such that $f_*: H_1(S^{n+2} - S^n) \to H_1(S^{n+2} - S^n)$ is the identity.

Let (S^{n+2}, S^n) be a knot and let $h: (S^{n+2}, S^n, S^{n+2} - S^n) \to (S^{n+2}, S^n, S^{n+2} - S^n)$ be a homotopy equivalence of triples. Denote by \tilde{h} a lifting of h to the universal abelian covering \tilde{X} of $X = S^{n+2} - S^n$, and call $p: \tilde{X} \to X$ the projection. The proof of the following lemma is easy and we omit it.

LEMMA 2. $\tilde{h}t = t^{\delta}\tilde{h}$ with $\delta = \pm 1$, and $\delta = 1$ if and only if $h_*: H_1(S^{n+2} - S^n) \rightarrow H_1(S^{n+2} - S^n)$ is the identity, where t is a generator of the group of covering transformations of $p: \tilde{X} \rightarrow X$.

Remark. Suppose (S^{n+2}, S^n) is a knot such that S^n has a neighborhood homeomorphic to $S^n \times D^2$, where S^n corresponds to $S^n \times \{0\}$ (for $n \neq 2$ all locally flat knots satisfy this condition [14]). Let $h: (S^{n+2}, S^n, S^{n+2} - S^n) \rightarrow (S^{n+2}, S^n, S^{n+2} - S^n)$ be a homotopy equivalence of triples. Then there is a

Received May 18, 1978 and in revised form February 26, 1979.

map homotopic to the identity $k(S^{n+2}, S^n, S^{n+2} - S^n) \rightarrow (S^{n+2}, S^n, S^{n+2} - S^n)$ which is the identity on S^n and such that, for some tubular neighborhood T of S^n , kh(T) = T and kh(E) = E, where E is the closure of $S^{n+2} - T$. Notice that h and kh have the same orientation features.

Let P be an (n + 1)-manifold whose boundary is homeomorphic to S^n . Let $\alpha: P \to P$ be a homeomorphism which is the identity on a neighborhood of ∂P . In $P \times [0, 1]$ we identify (x, 1) with $(\alpha(x), 0)$, for $x \in P$, and identify (x, t) with (x, 0), for $x \in \partial P$, $t \in [0, 1]$. Denote the resulting space, which is an (n + 2)-manifold, by $M(\alpha)$ and let $\eta: P \times [0, 1] \to M(\alpha)$ be the identification map. This map sends $P \times \{t\}$ homeomorphically onto its image. If $M(\alpha)$ is homeomorphic to S^{n+2} we call the pair $(M(\alpha), \eta(\partial P \times \{0\}))$ a fibered knot with Int P as fiber and monodromy α . If U is a collar of ∂P in P such that $\alpha | U$ is the identity, then $(\eta(U \times [0, 1]), \eta(\partial P \times \{0\}))$ is homeomorphic to $(S^n \times D^2, S^n \times \{0\})$. Thus, by the remark above, if (S^{n+2}, S^n) is a fibered knot and $h: (S^{n+2}, S^n, S^{n+2} - S^n) \to (S^{n+2}, S^n, S^{n+2} - S^n)$ is a homotopy equivalence of triples, we may assume hT = T and hE = E, where $T = \eta(U \times [0, 1])$, and E is the closure of $S^{n+2} - T$.

Denote by \tilde{h} a lifting of h to the universal abelian covering \tilde{E} of E, and call $p: \tilde{E} \to E$ the projection; \tilde{E} is homeomorphic to $F \times \mathbf{R}$, where $F = \eta(P \times \{0\}) \cap E$. A lifting $q: F \to \tilde{E}$ of the inclusion $i: F \to E$ is a homotopy equivalence. Let $r: \tilde{E} \to F$ be a homotopy inverse of q. We have the commutative diagram of Figure 1 in which all arrows are isomorphisms, j_* , k_* are induced by inclusion and $h' = r\tilde{h}q$.

LEMMA 3. If the closure of the fiber does not admit an orientation reversing homotopy equivalence leaving its boundary fixed as a set, then there is no homotopy equivalence of the triple $(S^{n+2}, S^n, S^{n+2} - S^n)$ reversing the orientation of S^n .

LEMMA 4. If n = 2q, then $[h_*'x, h_*'y] = \epsilon[x, y]$, where $x, y \in T_q = torsion$ $H_q(F)$, ϵ is the degree of $h|S^n$ and $[,]: T_q \times T_q \to \mathbf{Q}/\mathbf{Z}$ is the linking pairing. *Proof of Lemma* 3. Since h' is a self homotopy equivalence of $(F, F \cap T)$, from the hypothesis it follows that

$$h_{*}': H_{n+1}(F, F \cap T) \to H_{n+1}(F, F \cap T)$$

is the identity. Hence $(h|S^n)_* = (k_*^{-1}j_*\partial i_*)h_*'(k_*^{-1}j_*\partial i_*)^{-1}$ is the identity. This proves Lemma 3.

Proof of Lemma 4. The linking pairing may be described as follows (see for example [22]). We denote by φ the composition of isomorphisms

$$T_{q} \xrightarrow{} \mathbb{T}\text{orsion } H_{q}(F, \partial F) \xleftarrow{\mu \cap}{\approx} \mathbb{T}\text{orsion } H^{q+1}(F)$$
$$\xleftarrow{\beta}{\approx} \operatorname{coker} \theta \xrightarrow{\omega}{\approx} \operatorname{Hom} (T_{q}; \mathbf{Q}/\mathbf{Z}),$$

where $\mu \in H_{n+1}(F, \partial F)$ is the fundamental class, so that μ_{\cap} is the Poincare duality isomorphism, θ is the homomorphism from $H^q(F; \mathbf{Q})$ to $H^q(F; \mathbf{Q}/\mathbf{Z})$, β is induced by the Bockstein associated to the sequence $0 \to \mathbf{Z} \to \mathbf{Q} \to \mathbf{Q}/\mathbf{Z} \to 0$ and ω is induced by the universal coefficient theorem. Then $[\eta, \xi] = \varphi(\xi)(\eta)$. The lemma follows from the diagram of Figure 2

$$T_{q} \rightleftharpoons \text{Torsion } H_{q}(F, \partial F) \xleftarrow{\mu_{\cap}} \text{Torsion } H^{q+1}(F) \xleftarrow{\beta} \text{coker } \theta \xrightarrow{\omega} \text{Hom } (T_{q}, \mathbf{Q}/\mathbf{Z})$$

$$\downarrow h_{*}' \qquad \qquad \downarrow h_{*}' \qquad \qquad \uparrow h'^{*} \qquad \uparrow h'^{*} \qquad \uparrow h'^{*} \qquad \uparrow h_{*}'^{*}$$

$$T_{q} \rightleftharpoons \text{Torsion } H_{q}(F, \partial F) \xleftarrow{\mu_{\cap}} \text{Torsion } H^{q+1}(F) \xleftarrow{\beta} \text{coker } \theta \xrightarrow{\omega} \text{Hom } (T_{q}, \mathbf{Q}/\mathbf{Z})$$

$$F_{\text{IGURE } 2}$$

in which the second square is commutative (resp. anticommutative) if $\epsilon = 1$ (resp. $\epsilon = -1$), and the remaining squares are commutative.

We now recall the definition of the lens space $L(p; q_1, q_2, \ldots, q_m)$, where p, q_1, q_2, \ldots, q_m are integers such that $(p, q_i) = 1$ for $1 \leq i \leq m$. Let

$$S^{2m-1} = \{ (z_1, \ldots, z_m) \in \mathbf{C}^m | \sum_{i=1}^m z_i \bar{z}_i = 1 \}$$

and let $g: S^{2m-1} \to S^{2m-1}$ be the diffeomorphism defined by

$$g(z_1,\ldots,z_m) = (e^{2\pi i (q_1/p)} z_1,\ldots,e^{2\pi i (q_m/p)} z_m).$$

Then $L(p; q_1, \ldots, q_m)$ is the smooth (2m - 1)-manifold S^{2m-1}/G , where G is the cyclic group of diffeomorphisms generated by g. Let $L_0(p; q_1, \ldots, q_m)$ be the lens space $L(p; q_1, \ldots, q_m)$ minus the interior of a smooth (2m - 1)-ball. The proof of the following lemma can be found in [5; 29.5].

LEMMA 5. $L_0(p; q_1, \ldots, q_m)$ admits an orientation reversing homotopy equivalence leaving its boundary fixed as a set only if, for some integer b, $b^m \equiv -1 \mod p$.

Remark. The converse of Lemma 5 is valid.

LEMMA 6 [2; 5.3]. Let f be a homotopy equivalence from $L = L(p; q_1, \ldots, q_m)$ into itself such that $f_*: H_1(L) \to H_1(L)$ is multiplication by an integer a satisfying $(a^r - 1, p) = 1$, for $1 \leq r < m$, and $a^m \equiv 1 \mod p$. Then the degree of f is 1 and, for $1 \leq i < 2m - 1$, $f^* - I^*: H^i(L) \to H^i(L)$ is an isomorphism, where I is the identity map of L.

Sketch of the proof. Using the fact that L is the (2m - 1)-skeleton of an Eilenberg-MacLane space of type $(\mathbb{Z}_p, 1)$ it is seen that $f^*: H^{2j}(L) \to H^{2j}(L)$ is multiplication by a^j and that deg $f \equiv 1 \mod p$.

LEMMA 7. Let m be an even natural number. Then there exists a positive prime p such that:

i) $p \equiv 1 \mod m$.

ii) there is no integer b such that $b^m \equiv -1 \mod p$.

Proof. Since (2m, m + 1) = 1 because *m* is even, by Dirichlet's theorem [15, p. 79] there is a prime p = 2mk + m + 1 for some positive integer *k*. The multiplicative group F_p^* of nonzero residue classes modulo *p* is cyclic of order p - 1 [21, p. 128]. The subgroup of F_p^* consisting of *m*-th powers has odd order (p - 1)/m and, therefore, -1 is not such a power.

3. Proof of Theorem 1.

Case I. n odd. The result for n = 1 was established by Trotter [20]. We therefore assume $n \ge 3$.

Let (S^{n+2}, S^n) be a smooth knot such that

i) Every automorphism of $G = \pi_1(S^{n+2}, S^n)$ induces the identity on G/G';

ii) (S^{n+2}, S^n) represents an element of order >2 in the cobordism group C_n^{TOP} of *n*-knots [4], [16].

Then i) implies that the knot is neither + amphicheiral nor invertible (compare [8, problem 35]), and ii) implies that the knot is not - amphicheiral [16, p. 231].

As Kinoshita observed [8, problem 35], knots having an Alexander polynomial $\Delta(t)$ which is not symmetric satisfy i). Also the examples of [11] satisfy i) even though their Alexander polynomials are symmetric.

One can construct knots satisfying i) and ii) as follows. Take a slice smooth n-knot K_1 with a group G satisfying i); for instance, take one of the examples exhibited in [18]. Take the connected sum of K_1 with a smooth knot K_2 with group \mathbb{Z} and order >2 in the smooth cobordism group C_n . Such a knot K_2 can

be constructed by [12]. Since the natural homomorphism $C_n \to C_n^{\text{TOP}}$ is a monomorphism [4], then $K_1 \# K_2$ satisfies i) and ii).

Case II. $n \equiv 0 \mod 4$. Consider the finite module $T = \Lambda/\langle p, (t + 1)^2 \rangle$, where $\Lambda = \mathbb{Z}[t, t^{-1}], p \in \mathbb{Z}$ is a prime $\equiv 3 \mod 4$ and $\langle \ldots \rangle$ denotes the ideal generated by

Define the skew-symmetric form $[,]:T \times T \to \mathbf{Q}/\mathbf{Z}$ by [1, t] = 1/p. By $[\mathbf{17}, \S 0.13]$ a fibered *n*-knot $K = (S^{n+2}, S^n)$ can be constructed such that $H_q(F) = T$, where q = n/2, F is the closure of a fiber of K and [,] is the linking pairing. Here the structure of $H_q(F)$ as a Λ -module is defined by $t\xi = \alpha_*\xi$ where $\alpha: F \to F$ is the monodromy.

Let $h: (S^{n+2}, S^n) \to (S^{n+2}, S^n)$ be a homeomorphism which reverses the orientation of S^{n+2} . Let e be a generator of $H_q(F)$ (as a Λ -module) and let $\beta = \beta(t) \in \Lambda$ be such that $h_{\mathbf{*}}'(e) = \beta e$ where h' is as in Lemma 4. Then, by this lemma,

(1) $[\lambda e, \epsilon e] = \epsilon [\lambda e, e] = [h_{*}'(\lambda e), h_{*}'(e)], \text{ for any } \lambda \in \Lambda,$

where ϵ is the degree of $h|S^n$. From Lemma 2 and the diagram

in which the first and last squares are commutative up to homotopy, it follows that

(2) $h_{*}'(te) = t^{\delta}h_{*}'(e), \, \delta = \pm 1,$

where $\delta = 1$ if and only if $h_*: H_1(S^{n+2} - S^n) \to H_1(S^{n+2} - S^n)$ is the identity. Hence, if $(\epsilon, \delta) = (-1, +1)$, from (1) and (2) we obtain

 $[\lambda e, \epsilon e] = [\lambda \beta e, \beta e] = [\lambda e, \overline{\beta} \beta e],$

where $\bar{\beta} = \beta(t^{-1})$. Then $\epsilon e = \bar{\beta}\beta e$, hence $\epsilon \equiv \beta(t^{-1})\beta(t) \mod \langle p, (t+1)^2 \rangle$. For t = -1 this yields $-1 \equiv \beta(-1)^2 \mod (p)$ which is impossible because -1 is not a quadratic residue mod p.

If $(\epsilon, \delta) = (+1, -1)$ then $[\lambda e, \epsilon e] = [\overline{\lambda}\beta e, \beta e] = [\lambda e, -\overline{\beta}\beta e]$ and we obtain the same contradiction. Thus K is not amphicheiral.

To obtain a fibered knot which in addition is not invertible, it suffices to take the connected sum of K with a fibered knot K' such that $H_q(F') = \Lambda/\langle\lambda\rangle$, where F' is the closure of a fiber of K' and $\lambda = \lambda(t)$ is a non-symmetric monic polynomial such that $\lambda(0) = \pm 1$. Such a knot K' can be constructed by [19, Corollary 3.4]. Notice that $H_q(F')$ has no Z-torsion (by [6]) so that the previous argument shows that K # K' is still not amphicheiral (and non-invertible).

Case III. $n \equiv 2 \mod 4$. We first assume n > 2. Let p be a positive integer which is the product of positive prime numbers which are congruent to 1 modulo m = (n + 2)/2 and such that $b^m \not\equiv -1 \mod p$, for every integer b (such a p exists by Lemma 7). Then there is a positive integer a such that $a^m \equiv 1 \mod p$ and $(a^r - 1, p) = 1$, for $1 \leq r < m$ (see, for instance [2]). Consider the lens space $L = L(p; 1, a, \ldots, a^{m-1})$ and the diffeomorphism $g: S^{2m-1} \to S^{2m-1}$, defined by

$$g(z_1,\ldots,z_m) = (e^{2\pi i/p} z_1, e^{2\pi i a/p} z_2, \ldots, e^{2\pi i a^{m-1}/p} z_m).$$

If we define $T: S^{2m-1} \to S^{2m-1}$ by $T(z_1, z_2, \ldots, z_m) = (z_2, z_3, \ldots, z_m, z_1)$, then $Tg = g^a T$, so that T induces a diffeomorphism from L onto itself, which is isotopic to a diffeomorphism $f: L \to L$ which is the identity on a neighborhood of a smooth (2m - 1)-ball B. Since the induced automorphism $f_*: H_1(L) \to H_1(L)$ is multiplication by a, Lemma 6 can be applied; in particular f is orientation preserving. Let α be the restriction of f to $L_0 = L - \text{Int } B$. By using the Mayer-Vietoris and Van-Kampen theorems it is readily seen that the smooth manifold $M(\alpha)$, defined above, is homeomorphic to S^{n+2} . We therefore have a fibered knot (S^{n+2}, S^n) with $\text{Int } L_0$ as fiber. We may take S^{n+2} to be diffeomorphic to the standard smooth (n + 2)-sphere by changing the differentiable structure in an (n + 2)-ball in $S^{n+2} - S^n$. By Lemmas 5 and 3 (S^{n+2}, S^n) is not - amphicheiral.

Now, using the fact that p does not divide $a^2 - 1$, it is readily seen that every automorphism of

$$\pi_1(S^{n+2} - S^n) = ||t, x: x^p = 1, txt^{-1} = x^a||$$

induces the identity on its abelianization. Thus Lemma 1 implies that (S^{n+2}, S^n) is neither +amphicheiral nor invertible.

It remains to establish the case n = 2.

Let p be an odd positive integer such that $a^2 \not\equiv -1 \mod p$, for every integer a. If q is relatively prime to p then there is a smooth fibered 2-knot K_1 with fiber Int $L_0(p; 1, q)$, obtained by 2-twist spinning a suitable two bridge knot [24].

Consider a second smooth 2-knot K_2 such that

i) The Alexander polynomial $\Delta(t)$ of K_2 is not symmetric.

ii) Hom $(T_1, \mathbb{Z}_{p^2}) \to \text{Hom } (T_1, \mathbb{Z}_p)$ is onto, where $T_1 = \text{Torsion } H_1(\tilde{E}_2)$.

Of course ii) is satisfied if $H_1(\tilde{E}_2)$ has no **Z**-torsion.

At the end of the proof we will give examples of knots satisfying i) and ii). Condition ii) is equivalent to the condition $\beta = 0$, where

$$\beta$$
: $H^1(\tilde{E}_2, \partial \tilde{E}_2; \mathbb{Z}_p) \rightarrow H^2(\tilde{E}_2, \partial \tilde{E}_2; \mathbb{Z}_p)$

is the Bockstein associated to the sequence $0 \rightarrow \mathbb{Z}_p \rightarrow \mathbb{Z}_p \rightarrow \mathbb{Z}_p \rightarrow 0$. This is a consequence of the commutative diagram of Figure 3 in which the Ext terms in the third row are 0 by [9, § 63].

The sum $K_1 \# K_2 = (S^4, S^2)$ has Alexander polynomial $\Delta(t)$ so that (S^4, S^2) is neither +amphicheiral nor invertible.

Let $h: (S^4, S^2, S^4 - S^2) \to (S^4, S^2, S^4 - S^2)$ be a homotopy equivalence of triples. We may assume the knot has a tubular neighborhood T such that h(T) = T and h(E) = E, where E is the closure of $S^4 - T$. Let S^3 be a 3-sphere in S^4 splitting S^4 into two balls B_1, B_2 such that, for i = 1, 2 $(B_i \cap S^2) \cup D^2$ is the knot K_i where D^2 is a 2-disk contained in S^3 . We choose S^3 so that $S^3 \cap T$ is a tubular neighborhood of $S^3 \cap S^2$ in S^3 . Write $E_i = B_i - \text{Int } T$ and $\tilde{E}_i = \eta^{-1}(E_i)$, where $\eta: \tilde{E} \to E$ is the infinite cyclic covering of E. Let $\tilde{h}: \tilde{E} \to \tilde{E}$ be a lifting of $h: E \to E$.

Since K_1 is a fibered knot we can identify $(\tilde{E}_1, \partial \tilde{E}_1)$ with $(L_0, \partial L_0) \times \mathbf{R}$, which is homotopy equivalent to $(L_0, \partial L_0)$, L_0 being $L_0(p; 1, q)$. We have the relation $x \cup \beta(x) = q\mu$, where x is a generator of $H^1(\tilde{E}_1, \partial \tilde{E}_1; \mathbf{Z}_p)$, $\beta: H^1(\tilde{E}_1, \partial \tilde{E}_1; \mathbf{Z}_p) \to H^2(\tilde{E}_1, \partial \tilde{E}_1; \mathbf{Z}_p)$ is the Bockstein homomorphism corresponding to the sequence $0 \to \mathbf{Z}_p \to \mathbf{Z}_{p^2} \to \mathbf{Z}_p \to 0$ and μ generates $H^3(\tilde{E}_1, \partial \tilde{E}_1; \mathbf{Z}_p)$ (see, for example [10, p. 225]).

We have a commutative diagram (Figure 4)

in which all arrows have the obvious meaning.

If we write $\bar{x} = j^*(i^*)^{-1}(x)$, then $\tilde{h}^*(\bar{x})$ is an element of the form $r\bar{x} + \bar{y}$ which is the image of an element

$$(rx, y) \in H^1(\tilde{E}_1, \partial \tilde{E}_1; \mathbf{Z}_p) + H^1(\tilde{E}_2, \partial \tilde{E}_2; \mathbf{Z}_p)$$

by the arrows in the upper part of the diagram. Notice that

$$\beta(\tilde{h}^*(\bar{x})) = \beta(r\bar{x} + \bar{y}) = r\beta(\bar{x}),$$

since $\beta(y) = 0$.

We have $H^3(\tilde{E}_2; \mathbb{Z}_p) \approx \text{Hom}(H_3(\tilde{E}_2); \mathbb{Z}_p) + \text{Ext}(H_2(\tilde{E}_2), \mathbb{Z}_p)$. Using [9, § 63], we obtain $H^3(\tilde{E}_2; \mathbb{Z}_p) = 0$ because $H_3(\tilde{E}_2) = 0$ and $H_2(\tilde{E}_2)$ has no **Z**-torsion [17]. Using the exact sequence of the triple $(\tilde{E}, \tilde{E}_2 \cup \partial \tilde{E}, \partial \tilde{E})$ and the fact that

$$H^{3}(\tilde{E}_{2} \cup \partial \tilde{E}, \partial \tilde{E}; \mathbf{Z}_{p}) \approx H^{3}(\tilde{E}_{2}, \partial \tilde{E}_{2} \cap \partial \tilde{E}_{1}; \mathbf{Z}_{p}) \approx H^{3}(\tilde{E}_{2}; \mathbf{Z}_{p}) \approx 0$$

we conclude that $j^*: H^3(\tilde{E}, \tilde{E}_2 \cup \partial \tilde{E}; \mathbb{Z}_p) \to H^3(\tilde{E}, \partial \tilde{E}; \mathbb{Z}_p)$ is an isomorphism. Therefore, if $i^*: H^3(\tilde{E}, \tilde{E}_2 \cup \partial \tilde{E}; \mathbb{Z}_p) \to H^3(\tilde{E}_1, \partial \tilde{E}_1; \mathbb{Z}_p)$ is the inclusion induced isomorphism, then $\bar{\mu} = j^*(i^*)^{-1}(\mu)$ is a generator of $H^3(\tilde{E}, \partial \tilde{E}; \mathbb{Z}_p)$ and we have the relation $\bar{x} \cup \beta(\bar{x}) = q\bar{\mu}$. Hence

$$q\tilde{h}^*(\bar{\mu}) = \tilde{h}^*(q\bar{\mu}) = \tilde{h}^*(\bar{x}) \cup \beta\tilde{h}^*(\bar{x}) = (r\bar{x} + \bar{y}) \cup r\beta(\bar{x})$$
$$= r^2\bar{x} \cup \beta(\bar{x}) = r^2q\bar{\mu},$$

that is, $\tilde{h}^*(\bar{\mu}) \neq -\bar{\mu}$ because $r^2 \not\equiv -1 \mod p$. Therefore $\tilde{h}^*: H^3(\tilde{E}, \partial \tilde{E}) \rightarrow H^3(\tilde{E}, \partial \tilde{E})$ is the identity and, using the isomorphisms

$$H^{3}(\tilde{E}, \partial \tilde{E}) \xleftarrow{\delta}{\approx} H^{2}(\partial \tilde{E}) \xleftarrow{\eta^{*}}{\approx} H^{2}(\partial E) \xleftarrow{}{\approx} H^{2}(T) \xrightarrow{}{\approx} H^{2}(S^{2}),$$

we conclude that h preserves the orientation of S^2 . This proves that (S^4, S^2) is not – amphicheiral.

Finally, to complete the proof of Theorem 1, we give examples of knots satisfying i) and ii) above. Knots whose group has a presentation of deficiency one have the property that the first homology module of the infinite cyclic cover of its complement can be presented by a square matrix [13, p. 107] and therefore this module has no torsion [6]. If $\Delta(t)$ is a (not necessarily symmetric) polynomial satisfying $\Delta(1) = \pm 1$, there are smooth 2-knots whose groups can be presented with two generators and one relation, with Alexander polynomial $\Delta(t)$ [18]. Another knot satisfying i) and ii) is the Cappell-Kirby-Akbulut knot ([3] and [1]); thus there are smooth fibered 2-knots which are neither amphicheiral nor invertible.

4. Remarks.

Remark 1. Notice that the existence of non-amphicheiral knots is not implied, in principle, by the existence of knots which are not - amphicheiral and

knots which are not +amphicheiral. Kinoshita essentially produces knots in every dimension which are not +amphicheiral (see [8, problem 35]). Farber [7, Theorem 4] gives a necessary condition for an *n*-knot, with $n \equiv 2$ (4), to be -amphicheiral (not "amphicheiral" as Farber erroneously states). Using this condition he shows that there are 2-knots which are non-invertible and are not -amphicheiral.

Remark 2. The proof of Case II can be adapted to get fibered 2q-knots, that satisfy the theorem, using a generalization of the linking pairing to arbitrary smooth knots (see [17] and [7]). We note that the Blanchfield pairing (see [14]) can be used to obtain fibered knots, that satisfy the theorem for n odd.

Finally we mention some examples of amphicheiral knots.

a) 2-ribbon knots [23] are clearly – amphicheiral.

b) Let (S^{n+2}, S^n) be a fibered knot with monodromy $\alpha: P \to P$, where P is the closure of the fiber, such that α is isotopic rel ∂P to $h^{-1}\alpha^{-1}h$ for some orientation preserving homeomorphism $h: P \to P$. Then there is an orientation reversing homeomorphism of S^{n+2} which is the identity on the closure of some fiber. For example 2-twist spun knots satisfy this condition (with h = identity). Also the *r*-twist spun of the torus knot (p, q) satisfies this condition, *h* being isotopic to an involution.

c) Let (S^{n+2}, S^n) be a knot as in b). Construct another knot (S^{n+2}, S_1^n) by performing *r* spherical modifications on 0-spheres and then *r* spherical modifications on 1-spheres, contained in the complement of a fixed fiber. Then (S^{n+2}, S_1^n) is +amphicheiral.

d) Let (S^{n+2}, S^n) be a fibered knot with monodromy $\alpha: P \to P$ such that α is isotopic rel ∂P to $h^{-1}\alpha h$ for some orientation reversing homeomorphism $h: P \to P$. Then the knot is -amphicheiral. The Cappell-Akbulut-Kirby knot ([3], [1]) is an example.

References

- 1. S. Akbulut and R. Kirby, An exotic involution of S⁴ (preprint).
- 2. E. Becerra, Simple homotopy equivalent knot complements, Ph.D. Thesis (1976), Instituto de Matemáticas de la U.N.A.M., Mexico.
- 3. S. S. Cappell, Superspinning and knot complement, in Topology of manifolds (Markham Publishing Co., 1970), 358-383.
- 4. S. S. Cappell and J. L. Shaneson, *Topological knots and knot cobordism*, Topology 12 (1973), 33-40.
- 5. M. M. Cohen, A course in simple homotopy theory, Springer (1970).
- 6. R. H. Crowell, The Group G'/G'' of a knot group, Duke Math. J. 30 (1963), 349-354.
- 7. M. S. Farber, Linking coefficients and two dimensional knots, Soviet Math. Dokl. 16 (1975), 647-650.
- 8. R. H. Fox, Some problems in knot theory, in Topology of 3-manifolds and related topics (Prentice Hall, N.J., 1962), 168-176.
- 9. L. Fuchs, Infinite abelian groups (Academic Press 36, 1970).
- 10. P. J. Hilton and S. Wylie, Homology theory (Cambridge University Press, 1960).
- 11. C. Kearton, Noninvertible knots of codimension 2, Proc. Am. Math. Soc. 40 (1973), 274-276.

- 12. M. Kervaire, Les noeuds de dimensions superieures, Bull. Soc. Math. France 93 (1965), 225-271.
- On higher dimensional knots, Differential and Combinatorial Topology, A symposium in honor of Marston Morse, Princeton Univ. Press (1965), 105-119.
- R. C. Kirby and L. C. Siebenmann, Codimension two locally flat imbeddings, Notices Amer. Math. Soc. 18 (1971), 983.
- 15. E. Landau, Vorlesungen uber Zahlentheorie, Verlag bon S. Hirzel Leipzig (1974).
- 16. J. Levine, Knot cobordism groups in codimension two, Comm. Math. Helv. 44 (1969), 229-244.
- Knot modules, Annals of Math Studies 84 and Trans. Amer. Math. Soc. 229 (1977), 1–50.
- W. Sumners, Homotopy torsion in codimension two knots, Proc. Amer. Math. Soc. 24 (1970), 229-240.
- 19. ——— Polynomial invariants and the integral homology of coverings of knots and links, Inventiones Math. 15 (1972), 78–90.
- 20. H. F. Trotter Non-invertible knots exist, Topology 2 (1963), 275-280.
- 21. B. L. Van der Waerden, Moderne algebra (Springer, 1950).
- 22. C. T. C. Wall, Classification problems in differential topology—VI, Topology 6 (1967), 273–296.
- 23. T. Yanagawa, On ribbon 2-knots, Osaka J. Math. 6 (1969), 447-464.
- 24. E. C. Zeeman, Twisting spun knots, Trans. Amer. Math. Soc. 115 (1965), 471-495.

Instituto de Matemáticas de la U.N.A.M., Mexico; The Institute for Advanced Study, Princeton, New Jersey