NON-AMPHICHEIRAL CODIMENSION 2 KNOTS

F. GONZÁLEZ-ACUÑA AND JOSÉ M. MONTESINOS

1. Introduction. An $n-\operatorname{knot}\left(S^{n+2}, S^{n}\right)$ is amphicheiral if there is an orientation reversing autohomeomorphism of S^{n+2} leaving S^{n} invariant as a set. It is invertible if there is an orientation preserving autohomeomorphism of S^{n+2} whose restriction to S^{n} is an orientation reversing autohomeomorphism of S^{n} onto itself.

In 1961 Fox [8, Problem 35] asked if there exist non-amphicheiral locally flat 2 -knots. We will prove the following

Theorem 1. For any integer n there are smooth n-knots which are neither amphicheiral nor invertible.
2. Preliminaries. A $\operatorname{knot}\left(S^{n+2}, S^{n}\right)$ is +amphicheiral (resp. -amphicheiral) if there is an orientation reversing autohomeomorphism f of S^{n+2} leaving S^{n} invariant such that $f \mid S^{n}$ preserves (resp. reverses) orientation.

The following can be proved using Alexander duality:
Lemma 1. Let $f:\left(S^{n+2}, S^{n}\right) \rightarrow\left(S^{n+2}, S^{n}\right)$ be a homeomorphism. Then f reverses the orientation of S^{n+2} if and only if precisely one of the automorphisms

$$
f_{*}: H_{n}\left(S^{n}\right) \rightarrow H_{n}\left(S^{n}\right), f_{*}: H_{1}\left(S^{n+2}-S^{n}\right) \rightarrow H_{1}\left(S^{n+2}-S^{n}\right)
$$

is the identity.
Thus a knot is -amphicheiral if and only if there is an orientation reversing homeomorphism of S^{n+2} leaving S^{n} invariant such that $f_{*}: H_{1}\left(S^{n+2}-S^{n}\right) \rightarrow$ $H_{1}\left(S^{n+2}-S^{n}\right)$ is the identity.

Let $\left(S^{n+2}, S^{n}\right)$ be a knot and let $h:\left(S^{n+2}, S^{n}, S^{n+2}-S^{n}\right) \rightarrow\left(S^{n+2}, S^{n}\right.$, $S^{n+2}-S^{n}$) be a homotopy equivalence of triples. Denote by \tilde{h} a lifting of h to the universal abelian covering \widetilde{X} of $X=S^{n+2}-S^{n}$, and call $p: \widetilde{X} \rightarrow X$ the projection. The proof of the following lemma is easy and we omit it.

Lemma 2. $\tilde{h} t=t^{\delta} \tilde{h}$ with $\delta= \pm 1$, and $\delta=1$ if and only if $h_{*}: H_{1}\left(S^{n+2}-S^{n}\right)$ $\rightarrow H_{1}\left(S^{n+2}-S^{n}\right)$ is the identity, where t is a generator of the group of covering transformations of $p: \widetilde{X} \rightarrow X$.

Remark. Suppose $\left(S^{n+2}, S^{n}\right)$ is a knot such that S^{n} has a neighborhood homeomorphic to $S^{n} \times D^{2}$, where S^{n} corresponds to $S^{n} \times\{0\}$ (for $n \neq 2$ all locally flat knots satisfy this condition [14]). Let $h:\left(S^{n+2}, S^{n}, S^{n+2}-S^{n}\right) \rightarrow$ $\left(S^{n+2}, S^{n}, S^{n+2}-S^{n}\right)$ be a homotopy equivalence of triples. Then there is a
map homotopic to the identity $k\left(S^{n+2}, S^{n}, S^{n+2}-S^{n}\right) \rightarrow\left(S^{n+2}, S^{n}, S^{n+2}-S^{n}\right)$ which is the identity on S^{n} and such that, for some tubular neighborhood T of $S^{n}, k h(T)=T$ and $k h(E)=E$, where E is the closure of $S^{n+2}-T$. Notice that h and $k h$ have the same orientation features.

Let P be an $(n+1)$-manifold whose boundary is homeomorphic to S^{n}. Let $\alpha: P \rightarrow P$ be a homeomorphism which is the identity on a neighborhood of ∂P. In $P \times[0,1]$ we identify $(x, 1)$ with $(\alpha(x), 0)$, for $x \in P$, and identify (x, t) with $(x, 0)$, for $x \in \partial P, t \in[0,1]$. Denote the resulting space, which is an $(n+2)$-manifold, by $M(\alpha)$ and let $\eta: P \times[0,1] \rightarrow M(\alpha)$ be the identification map. This map sends $P \times\{t\}$ homeomorphically onto its image. If $M(\alpha)$ is homeomorphic to S^{n+2} we call the pair $(M(\alpha), \eta(\partial P \times\{0\}))$ a fibered knot with Int P as fiber and monodromy α. If U is a collar of ∂P in P such that $\alpha \mid U$ is the identity, then $(\eta(U \times[0,1]), \eta(\partial P \times\{0\}))$ is homeomorphic to $\left(S^{n} \times D^{2}\right.$, $\left.S^{n} \times\{0\}\right)$. Thus, by the remark above, if $\left(S^{n+2}, S^{n}\right)$ is a fibered knot and $h:\left(S^{n+2}, S^{n}, S^{n+2}-S^{n}\right) \rightarrow\left(S^{n+2}, S^{n}, S^{n+2}-S^{n}\right)$ is a homotopy equivalence of triples, we may assume $h T=T$ and $h E=E$, where $T=\eta(U \times[0,1])$, and E is the closure of $S^{n+2}-T$.

Denote by \tilde{h} a lifting of h to the universal abelian covering \widetilde{E} of E, and call $p: \widetilde{E} \rightarrow E$ the projection; \widetilde{E} is homeomorphic to $F \times \mathbf{R}$, where $F=$ $\eta(P \times\{0\}) \cap E$. A lifting $q: F \rightarrow \widetilde{E}$ of the inclusion $i: F \rightarrow E$ is a homotopy equivalence. Let $r: \widetilde{E} \rightarrow F$ be a homotopy inverse of q. We have the commutative diagram of Figure 1 in which all arrows are isomorphisms, j_{*}, k_{*} are induced by inclusion and $h^{\prime}=r \tilde{h} q$.

Figure 1

Lemma 3. If the closure of the fiber does not admit an orientation reversing homotopy equivalence leaving its boundary fixed as a set, then there is no homotopy equivalence of the triple $\left(S^{n+2}, S^{n}, S^{n+2}-S^{n}\right)$ reversing the orientation of S^{n}.

Lemma 4. If $n=2 q$, then $\left[h_{*}{ }^{\prime} x, h_{*}{ }^{\prime} y\right]=\epsilon[x, y]$, where $x, y \in T_{q}=$ torsion $H_{q}(F), \epsilon$ is the degree of $h \mid S^{n}$ and $[]:, T_{q} \times T_{q} \rightarrow \mathbf{Q} / \mathbf{Z}$ is the linking pairing.

Proof of Lemma 3. Since h^{\prime} is a self homotopy equivalence of $(F, F \cap T)$, from the hypothesis it follows that

$$
h_{*}^{\prime}: H_{n+1}(F, F \cap T) \rightarrow H_{n+1}(F, F \cap T)
$$

is the identity. Hence $\left(h \mid S^{n}\right)_{*}=\left(k_{*}{ }^{-1} j_{*} \partial i_{*}\right) h_{*}{ }^{\prime}\left(k_{*}{ }^{-1} j_{*} \partial i_{*}\right)^{-1}$ is the identity. This proves Lemma 3.

Proof of Lemma 4. The linking pairing may be described as follows (see for example [22]). We denote by φ the composition of isomorphisms

$$
\begin{aligned}
T_{q} & \underset{\approx}{\approx} \text { Torsion } H_{q}(F, \partial F) \stackrel{\mu \cap}{\approx} \text { Torsion } H^{q+1}(F) \\
& \stackrel{\beta}{\approx} \operatorname{coker} \theta \xrightarrow{\approx} \operatorname{Hom}\left(T_{q} ; \mathbf{Q} / \mathbf{Z}\right)
\end{aligned}
$$

where $\mu \in H_{n+1}(F, \partial F)$ is the fundamental class, so that μ_{\cap} is the Poincare duality isomorphism, θ is the homomorphism from $H^{q}(F ; \mathbf{Q})$ to $H^{q}(F ; \mathbf{Q} / \mathbf{Z}), \beta$ is induced by the Bockstein associated to the sequence $0 \rightarrow \mathbf{Z} \rightarrow \mathbf{Q} \rightarrow \mathbf{Q} / \mathbf{Z} \rightarrow \mathbf{0}$ and ω is induced by the universal coefficient theorem. Then $[\eta, \xi]=\varphi(\xi)(\eta)$. The lemma follows from the diagram of Figure 2

Figure 2
in which the second square is commutative (resp. anticommutative) if $\epsilon=1$ (resp. $\epsilon=-1$), and the remaining squares are commutative.

We now recall the definition of the lens space $L\left(p ; q_{1}, q_{2}, \ldots, q_{m}\right)$, where $p, q_{1}, q_{2}, \ldots, q_{m}$ are integers such that $\left(p, q_{i}\right)=1$ for $1 \leqq i \leqq m$. Let

$$
S^{2 m-1}=\left\{\left(z_{1}, \ldots, z_{m}\right) \in \mathbf{C}^{m} \mid \sum_{i=1}^{m} z_{i} \bar{z}_{i}=1\right\}
$$

and let $g: S^{2 m-1} \rightarrow S^{2 m-1}$ be the diffeomorphism defined by

$$
g\left(z_{1}, \ldots, z_{m}\right)=\left(e^{2 \pi i\left(q_{1} / p\right)} z_{1}, \ldots, e^{2 \pi i\left(q_{m} / p\right)} z_{m}\right) .
$$

Then $L\left(p ; q_{1}, \ldots, q_{m}\right)$ is the smooth $(2 m-1)$-manifold $S^{2 m-1} / G$, where G is the cyclic group of diffeomorphisms generated by g. Let $L_{0}\left(p ; q_{1}, \ldots, q_{m}\right)$ be the lens space $L\left(p ; q_{1}, \ldots, q_{m}\right)$ minus the interior of a smooth $(2 m-1)$-ball. The proof of the following lemma can be found in [5;29.5].

Lemma 5. $L_{0}\left(p ; q_{1}, \ldots, q_{m}\right)$ admits an orientation reversing homotopy equivalence leaving its boundary fixed as a set only if, for some integer $b, b^{m} \equiv-1$ $\bmod p$.

Remark. The converse of Lemma 5 is valid.
Lemma $6[\mathbf{2} ; 5.3]$. Let f be a homotopy equivalence from $L=L\left(p ; q_{1}, \ldots, q_{m}\right)$ into itself such that $f_{*}: H_{1}(L) \rightarrow H_{1}(L)$ is multiplication by an integer a satisfying $\left(a^{r}-1, p\right)=1$, for $1 \leqq r<m$, and $a^{m} \equiv 1 \bmod p$. Then the degree of f is 1 and, for $1 \leqq i<2 m-1, f^{*}-I^{*}: H^{i}(L) \rightarrow H^{i}(L)$ is an isomorphism, where I is the identity map of L.

Sketch of the proof. Using the fact that L is the $(2 m-1)$-skeleton of an Eilenberg-MacLane space of type $\left(\mathbf{Z}_{p}, 1\right)$ it is seen that $f^{*}: H^{2 j}(L) \rightarrow H^{2 j}(L)$ is multiplication by a^{j} and that $\operatorname{deg} f \equiv 1 \bmod p$.

Lemma 7. Let m be an even natural number. Then there exists a positive prime p such that:
i) $p \equiv 1 \bmod m$.
ii) there is no integer b such that $b^{m} \equiv-1 \bmod p$.

Proof. Since $(2 m, m+1)=1$ because m is even, by Dirichlet's theorem $[15, \mathrm{p} .79]$ there is a prime $p=2 m k+m+1$ for some positive integer k. The multiplicative group $F_{p}{ }^{*}$ of nonzero residue classes modulo p is cyclic of order $p-1$ [21, p. 128]. The subgroup of $F_{p}{ }^{*}$ consisting of m-th powers has odd order $(p-1) / m$ and, therefore, -1 is not such a power.

3. Proof of Theorem 1.

Case I. n odd. The result for $n=1$ was established by Trotter $\lfloor\mathbf{2 0}]$. We therefore assume $n \geqq 3$.

Let $\left(S^{n+2}, S^{n}\right)$ be a smooth knot such that
i) Every automorphism of $G=\pi_{1}\left(S^{n+2}, S^{n}\right)$ induces the identity on G / G^{\prime};
ii) $\left(S^{n+2}, S^{n}\right)$ represents an element of order >2 in the cobordism group $C_{n}{ }^{\text {TOP }}$ of n-knots $[4],[16]$.

Then i) implies that the knot is neither +amphicheiral nor invertible (compare [8, problem 35]), and ii) implies that the knot is not-amphicheiral [16, p. 231].

As Kinoshita observed [8, problem 35], knots having an Alexander polynomial $\Delta(t)$ which is not symmetric satisfy i). Also the examples of [11] satisfy i) even though their Alexander polynomials are symmetric.

One can construct knots satisfying i) and ii) as follows. Take a slice smooth n-knot K_{1} with a group G satisfying i); for instance, take one of the examples exhibited in $[\mathbf{1 8}]$. Take the connected sum of K_{1} with a smooth knot K_{2} with group \mathbf{Z} and order >2 in the smooth cobordism group C_{n}. Such a knot K_{2} can
be constructed by [12]. Since the natural homomorphism $C_{n} \rightarrow C_{n}{ }^{\text {TOP }}$ is a monomorphism [4], then $K_{1} \# K_{2}$ satisfies i) and ii).

Case II. $n \equiv 0 \bmod 4$. Consider the finite module $T=\Lambda /\left\langle p,(t+1)^{2}\right\rangle$, where $\Lambda=\mathbf{Z}\left[t, t^{-1}\right], p \in \mathbf{Z}$ is a prime $\equiv 3 \bmod 4$ and $\langle\ldots\rangle$ denotes the ideal generated by
Define the skew-symmetric form [,]:T×T \mathbf{Q} / \mathbf{Z} by $[1, t]=1 / p$. By [17, §0.13] a fibered n-knot $K=\left(S^{n+2}, S^{n}\right)$ can be constructed such that $H_{q}(F)=T$, where $q=n / 2, F$ is the closure of a fiber of K and [,] is the linking pairing. Here the structure of $H_{q}(F)$ as a Λ-module is defined by $t \xi=\alpha_{*} \xi$ where $\alpha: F \rightarrow F$ is the monodromy.

Let $h:\left(S^{n+2}, S^{n}\right) \rightarrow\left(S^{n+2}, S^{n}\right)$ be a homeomorphism which reverses the orientation of S^{n+2}. Let e be a generator of $H_{q}(F)$ (as a Λ-module) and let $\beta=\beta(t) \in \Lambda$ be such that $h_{*}^{\prime}(e)=\beta e$ where h^{\prime} is as in Lemma 4. Then, by this lemma,
(1) $[\lambda e, \epsilon e]=\epsilon[\lambda e, e]=\left[h_{*}{ }^{\prime}(\lambda e), h_{*}{ }^{\prime}(e)\right]$, for any $\lambda \in \Lambda$,
where ϵ is the degree of $h \mid S^{n}$. From Lemma 2 and the diagram

in which the first and last squares are commutative up to homotopy, it follows that
(2) $h_{*}{ }^{\prime}(t e)=t^{\delta} h_{*^{\prime}}(e), \delta= \pm 1$,
where $\delta=1$ if and only if $h_{*}: H_{1}\left(S^{n+2}-S^{n}\right) \rightarrow H_{1}\left(S^{n+2}-S^{n}\right)$ is the identity.
Hence, if $(\epsilon, \delta)=(-1,+1)$, from (1) and (2) we obtain

$$
[\lambda e, \epsilon e]=[\lambda \beta e, \beta e]=[\lambda e, \bar{\beta} \beta e],
$$

where $\bar{\beta}=\beta\left(t^{-1}\right)$. Then $\epsilon e=\bar{\beta} \beta e$, hence $\epsilon \equiv \beta\left(t^{-1}\right) \beta(t) \bmod \left\langle p,(t+1)^{2}\right\rangle$. For $t=-1$ this yields $-1 \equiv \beta(-1)^{2} \bmod (p)$ which is impossible because -1 is not a quadratic residue $\bmod p$.

If $(\epsilon, \delta)=(+1,-1)$ then $[\lambda e, \epsilon e]=[\bar{\lambda} \beta e, \beta e]=[\lambda e,-\bar{\beta} \beta e]$ and we obtain the same contradiction. Thus K is not amphicheiral.
To obtain a fibered knot which in addition is not invertible, it suffices to take the connected sum of K with a fibered knot K^{\prime} such that $H_{q}\left(F^{\prime}\right)=$ $\Lambda /\langle\lambda\rangle$, where F^{\prime} is the closure of a fiber of K^{\prime} and $\lambda=\lambda(t)$ is a non-symmetric monic polynomial such that $\lambda(0)= \pm 1$. Such a knot K^{\prime} can be constructed by [19, Corollary 3.4]. Notice that $H_{q}\left(F^{\prime}\right)$ has no \mathbf{Z}-torsion (by [6]) so that the previous argument shows that $K \# K^{\prime}$ is still not amphicheiral (and noninvertible).

Case III. $n \equiv 2 \bmod 4$. We first assume $n>2$. Let p be a positive integer which is the product of positive prime numbers which are congruent to 1 modulo $m=(n+2) / 2$ and such that $b^{m} \neq-1 \bmod p$, for every integer b (such a p exists by Lemma 7). Then there is a positive integer a such that $a^{m} \equiv 1 \bmod p$ and $\left(a^{r}-1, p\right)=1$, for $1 \leqq r<m$ (see, for instance [2]). Consider the lens space $L=L\left(p ; 1, a, \ldots, a^{m-1}\right)$ and the diffeomorphism $g: S^{2 m-1} \rightarrow S^{2 m-1}$, defined by

$$
g\left(z_{1}, \ldots, z_{m}\right)=\left(e^{2 \pi i / p} z_{1}, e^{2 \pi i a / p} z_{2}, \ldots, e^{2 \pi t a m-1 / p} z_{m}\right)
$$

If we define $T: S^{2 m-1} \rightarrow S^{2 m-1}$ by $T\left(z_{1}, z_{2}, \ldots, z_{m}\right)=\left(z_{2}, z_{3}, \ldots, z_{m}, z_{1}\right)$, then $T g=g^{a} T$, so that T induces a diffeomorphism from L onto itself, which is isotopic to a diffeomorphism $f: L \rightarrow L$ which is the identity on a neighborhood of a smooth $(2 m-1)$-ball B. Since the induced automorphism $f_{*}: H_{1}(L) \rightarrow$ $H_{1}(L)$ is multiplication by a, Lemma 6 can be applied; in particular f is orientation preserving. Let α be the restriction of f to $L_{0}=L-\operatorname{Int} B$. By using the Mayer-Vietoris and Van-Kampen theorems it is readily seen that the smooth manifold $M(\alpha)$, defined above, is homeomorphic to S^{n+2}. We therefore have a fibered knot $\left(S^{n+2}, S^{n}\right)$ with Int L_{0} as fiber. We may take S^{n+2} to be diffeomorphic to the standard smooth $(n+2)$-sphere by changing the differentiable structure in an $(n+2)$-ball in $S^{n+2}-S^{n}$. By Lemmas 5 and $3\left(S^{n+2}, S^{n}\right)$ is not - amphicheiral.

Now, using the fact that p does not divide $a^{2}-1$, it is readily seen that every automorphism of

$$
\pi_{1}\left(S^{n+2}-S^{n}\right)=\left\|t, x: x^{p}=1, t x t^{-1}=x^{a}\right\|
$$

induces the identity on its abelianization. Thus Lemma 1 implies that $\left(S^{n+2}, S^{n}\right)$ is neither + amphicheiral nor invertible.

It remains to establish the case $n=2$.
Let p be an odd positive integer such that $a^{2} \not \equiv-1 \bmod p$, for every integer a. If q is relatively prime to p then there is a smooth fibered 2 - $\operatorname{knot} K_{1}$ with fiber Int $L_{0}(p ; 1, q)$, obtained by 2 -twist spinning a suitable two bridge knot [24].

Consider a second smooth 2 -knot K_{2} such that
i) The Alexander polynomial $\Delta(t)$ of K_{2} is not symmetric.
ii) $\operatorname{Hom}\left(T_{1}, \mathbf{Z}_{p^{2}}\right) \rightarrow \operatorname{Hom}\left(T_{1}, \mathbf{Z}_{p}\right)$ is onto, where $T_{1}=\operatorname{Torsion} H_{1}\left(\widetilde{E}_{2}\right)$.

Of course ii) is satisfied if $H_{1}\left(\widetilde{E}_{2}\right)$ has no \mathbf{Z}-torsion.
At the end of the proof we will give examples of knots satisfying i) and ii).
Condition ii) is equivalent to the condition $\beta=0$, where

$$
\beta: H^{1}\left(\widetilde{E}_{2}, \partial \widetilde{E}_{2} ; \mathbf{Z}_{p}\right) \rightarrow H^{2}\left(\widetilde{E}_{2}, \partial \widetilde{E}_{2} ; \mathbf{Z}_{p}\right)
$$

is the Bockstein associated to the sequence $0 \rightarrow \mathbf{Z}_{p} \rightarrow \mathbf{Z}_{p^{2}} \rightarrow \mathbf{Z}_{p} \rightarrow 0$. This is a consequence of the commutative diagram of Figure 3 in which the Ext terms in the third row are 0 by $[9, \S 63]$.

Figure 3

The sum $K_{1} \# K_{2}=\left(S^{4}, S^{2}\right)$ has Alexander polynomial $\Delta(t)$ so that $\left(S^{4}, S^{2}\right)$ is neither + amphicheiral nor invertible.

Let $h:\left(S^{4}, S^{2}, S^{4}-S^{2}\right) \rightarrow\left(S^{4}, S^{2}, S^{4}-S^{2}\right)$ be a homotopy equivalence of triples. We may assume the knot has a tubular neighborhood T such that $h(T)=T$ and $h(E)=E$, where E is the closure of $S^{4}-T$. Let S^{3} be a 3 -sphere in S^{4} splitting S^{4} into two balls B_{1}, B_{2} such that, for $i=1,2$ $\left(B_{i} \cap S^{2}\right) \cup D^{2}$ is the knot K_{i} where D^{2} is a 2 -disk contained in S^{3}. We choose S^{3} so that $S^{3} \cap T$ is a tubular neighborhood of $S^{3} \cap S^{2}$ in S^{3}. Write $E_{i}=B_{i}$ - Int T and $\widetilde{E}_{i}=\eta^{-1}\left(E_{i}\right)$, where $\eta: \widetilde{E} \rightarrow E$ is the infinite cyclic covering of E. Let $\widetilde{h}: \widetilde{E} \rightarrow \widetilde{E}$ be a lifting of $h: E \rightarrow E$.

Since K_{1} is a fibered knot we can identify ($\widetilde{E}_{1}, \partial \widetilde{E}_{1}$) with ($L_{0}, \partial L_{0}$) $\times \mathbf{R}$, which is homotopy equivalent to $\left(L_{0}, \partial L_{0}\right), L_{0}$ being $L_{0}(p ; 1, q)$. We have the relation $x \cup \beta(x)=q \mu$, where x is a generator of $H^{1}\left(\widetilde{E}_{1}, \partial \widetilde{E}_{1} ; \mathbf{Z}_{p}\right)$, $\beta: H^{1}\left(\widetilde{E}_{1}, \partial \widetilde{E}_{1} ; \mathbf{Z}_{p}\right) \rightarrow H^{2}\left(\widetilde{E}_{1}, \partial \widetilde{E}_{1} ; \mathbf{Z}_{p}\right)$ is the Bockstein homomorphism corresponding to the sequence $0 \rightarrow \mathbf{Z}_{p} \rightarrow \mathbf{Z}_{p^{2}} \rightarrow \mathbf{Z}_{p} \rightarrow 0$ and μ generates $H^{3}\left(\widetilde{E}_{1}, \partial \widetilde{E}_{1}\right.$; \mathbf{Z}_{p}) (see, for example [10, p. 225]).

We have a commutative diagram (Figure 4)

Figure 4
in which all arrows have the obvious meaning.

If we write $\bar{x}=j^{*}\left(i^{*}\right)^{-1}(x)$, then $\tilde{h}^{*}(\bar{x})$ is an element of the form $r \bar{x}+\bar{y}$ which is the image of an element

$$
(r x, y) \in H^{1}\left(\widetilde{E}_{1}, \partial \widetilde{E}_{1} ; \mathbf{Z}_{p}\right)+H^{1}\left(\widetilde{E}_{2}, \partial \widetilde{E}_{2} ; \mathbf{Z}_{p}\right)
$$

by the arrows in the upper part of the diagram. Notice that

$$
\beta\left(\tilde{h}^{*}(\bar{x})\right)=\beta(r \bar{x}+\bar{y})=r \beta(\bar{x}),
$$

since $\beta(y)=0$.
We have $H^{3}\left(\widetilde{E}_{2} ; \mathbf{Z}_{p}\right) \approx \operatorname{Hom}\left(H_{3}\left(\widetilde{E}_{2}\right) ; \mathbf{Z}_{p}\right)+\operatorname{Ext}\left(H_{2}\left(\widetilde{E}_{2}\right), \mathbf{Z}_{p}\right)$. Using $[9, \S 63]$, we obtain $H^{3}\left(\widetilde{E}_{2} ; \mathbf{Z}_{p}\right)=0$ because $H_{3}\left(\widetilde{E}_{2}\right)=0$ and $H_{2}\left(\widetilde{E}_{2}\right)$ has no \mathbf{Z}-torsion [17]. Using the exact sequence of the triple ($\left.\widetilde{E}, \widetilde{E}_{2} \cup \partial \widetilde{E}, \partial \widetilde{E}\right)$ and the fact that

$$
H^{3}\left(\widetilde{E}_{2} \cup \partial \widetilde{E}, \partial \widetilde{E} ; \mathbf{Z}_{p}\right) \approx H^{3}\left(\widetilde{E}_{2}, \partial \widetilde{E}_{2} \cap \partial \widetilde{E}_{1} ; \mathbf{Z}_{p}\right) \approx H^{3}\left(\widetilde{E}_{2} ; \mathbf{Z}_{p}\right) \approx 0
$$

we conclude that $j^{*}: H^{3}\left(\widetilde{E}, \widetilde{E}_{2} \cup \partial \widetilde{E} ; \mathbf{Z}_{p}\right) \rightarrow H^{3}\left(\widetilde{E}, \partial \widetilde{E} ; \mathbf{Z}_{p}\right)$ is an isomorphism. Therefore, if $i^{*}: H^{3}\left(\widetilde{E}, \widetilde{E}_{2} \cup \partial \widetilde{E} ; \mathbf{Z}_{p}\right) \rightarrow H^{3}\left(\widetilde{E}_{1}, \partial \widetilde{E}_{1} ; \mathbf{Z}_{p}\right)$ is the inclusion induced isomorphism, then $\bar{\mu}=j^{*}\left(i^{*}\right)^{-1}(\mu)$ is a generator of $H^{3}\left(\widetilde{E}, \partial \widetilde{E} ; \mathbf{Z}_{p}\right)$ and we have the relation $\bar{x} \cup \beta(\bar{x})=q \bar{\mu}$. Hence

$$
\begin{aligned}
q \tilde{h}^{*}(\bar{\mu})=\tilde{h}^{*}(q \bar{\mu})=\tilde{h}^{*}(\bar{x}) \cup \beta \tilde{h}^{*}(\bar{x})=(r \bar{x}+\bar{y}) & \cup r \beta(\bar{x}) \\
& =r^{2} \bar{x} \cup \beta(\bar{x})=r^{2} q \bar{\mu}
\end{aligned}
$$

that is, $\tilde{h}^{*}(\bar{\mu}) \neq-\bar{\mu}$ because $r^{2} \neq-1 \bmod p$. Therefore $\tilde{h}^{*}: H^{3}(\widetilde{E}, \partial \widetilde{E}) \rightarrow$ $H^{3}(\widetilde{E}, \partial \widetilde{E})$ is the identity and, using the isomorphisms

$$
H^{3}(\widetilde{E}, \partial \widetilde{E}) \stackrel{\delta}{\approx} H^{2}(\partial \widetilde{E}) \stackrel{\eta^{*}}{\approx} H^{2}(\partial E) \underset{\approx}{\approx} H^{2}(T) \underset{\approx}{\approx} H^{2}\left(S^{2}\right)
$$

we conclude that h preserves the orientation of S^{2}. This proves that $\left(S^{4}, S^{2}\right)$ is not -amphicheiral.

Finally, to complete the proof of Theorem 1, we give examples of knots satisfying i) and ii) above. Knots whose group has a presentation of deficiency one have the property that the first homology module of the infinite cyclic cover of its complement can be presented by a square matrix [13, p. 107] and therefore this module has no torsion [6]. If $\Delta(t)$ is a (not necessarily symmetric) polynomial satisfying $\Delta(1)= \pm 1$, there are smooth 2 -knots whose groups can be presented with two generators and one relation, with Alexander polynomial $\Delta(t)$ [18]. Another knot satisfying i) and ii) is the Cappell-KirbyAkbulut knot ([3] and [1]); thus there are smooth fibered 2 -knots which are neither amphicheiral nor invertible.

4. Remarks.

Remark 1. Notice that the existence of non-amphicheiral knots is not implied, in principle, by the existence of knots which are not -amphicheiral and
knots which are not +amphicheiral. Kinoshita essentially produces knots in every dimension which are not +amphicheiral (see [8, problem 35]). Farber [7, Theorem 4] gives a necessary condition for an n-knot, with $n \equiv 2$ (4), to be -amphicheiral (not "amphicheiral" as Farber erroneously states). Using this condition he shows that there are 2 -knots which are non-invertible and are not - amphicheiral.

Remark 2. The proof of Case II can be adapted to get fibered $2 q$-knots, that satisfy the theorem, using a generalization of the linking pairing to arbitrary smooth knots (see [17] and [7]). We note that the Blanchfield pairing (see [14]) can be used to obtain fibered knots, that satisfy the theorem for n odd.

Finally we mention some examples of amphicheiral knots.
a) 2 -ribbon knots $[\mathbf{2 3}]$ are clearly -amphicheiral.
b) Let $\left(S^{n+2}, S^{n}\right)$ be a fibered knot with monodromy $\alpha: P \rightarrow P$, where P is the closure of the fiber, such that α is isotopic rel ∂P to $h^{-1} \alpha^{-1} h$ for some orientation preserving homeomorphism $h: P \rightarrow P$. Then there is an orientation reversing homeomorphism of S^{n+2} which is the identity on the closure of some fiber. For example 2-twist spun knots satisfy this condition (with $h=$ identity). Also the r-twist spun of the torus knot (p, q) satisfies this condition, h being isotopic to an involution.
c) Let $\left(S^{n+2}, S^{n}\right)$ be a knot as in b). Construct another knot ($S^{n+2}, S_{1}{ }^{n}$) by performing r spherical modifications on 0 -spheres and then r spherical modifications on 1 -spheres, contained in the complement of a fixed fiber. Then $\left(S^{n+2}, S_{1}{ }^{n}\right)$ is + amphicheiral.
d) Let $\left(S^{n+2}, S^{n}\right)$ be a fibered knot with monodromy $\alpha: P \rightarrow P$ such that α is isotopic rel ∂P to $h^{-1} \alpha h$ for some orientation reversing homeomorphism $h: P \rightarrow P$. Then the knot is -amphicheiral. The Cappell-Akbulut-Kirby knot ([3], [1]) is an example.

References

1. S. Akbulut and R. Kirby, An exotic involution of S^{4} (preprint).
2. E. Becerra, Simple homotopy equizalent knot complements, Ph.D. Thesis (1976), Instituto de Matemáticas de la U.N.A.M., Mexico.
3. S. S. Cappell, Superspinning and knot complement, in Topology of manifolds (Markham Publishing Co., 1970), 358-383.
4. S. S. Cappell and J. L. Shaneson, Topological knots and knot cobordism, Topology 12 (1973), 33-40.
5. M. M. Cohen, A course in simple homotopy theory, Springer (1970).
6. R. H. Crowell, The Group $G^{\prime} / G^{\prime \prime}$ of a knot group, Duke Math. J. 30 (1963), 349-354.
7. M. S. Farber, Linking coefficients and two dimensional knots, Soviet Math. Dokl. 16 (1975), 647-650.
8. R. H. Fox, Some problems in knot theory, in Topology of 3-manifolds and related topics (Prentice Hall, N.J., 1962), 168-176.
9. L. Fuchs, Infinite abelian groups (Academic Press 36, 1970).
10. P. J. Hilton and S. Wylie, Homology theory (Cambridge University Press, 1960).
11. C. Kearton, Noninvertible knots of codimension 2, Proc. Am. Math. Soc. 40 (1973), 274-276.
12. M. Kervaire, Les noeuds de dimensions superieures, Bull. Soc. Math. France 93 (1965), 225-271.
13. - On higher dimensional knots, Differential and Combinatorial Topology, A symposium in honor of Marston Morse, Princeton Univ. Press (1965), 105-119.
14. R. C. Kirby and L. C. Siebenmann, Codimension two locally flat imbeddings, Notices Amer. Math. Soc. 18 (1971), 983.
15. E. Landau, Vorlesungen uber Zahlentheorie, Verlag bon S. Hirzel Leipzig (1974).
16. J. Levine, Knot cobordism groups in codimension two, Comm. Math. Helv. 44 (1969), 229-244.
17. - Knot modules, Annals of Math Studies 84 and Trans. Amer. Math. Soc. 229 (1977), 1-50.
18. D. W. Sumners, Homotopy torsion in codimension two knots, Proc. Amer. Math. Soc. 24 (1970), 229-240.
19. -— Polynomial invariants and the integral homology of coverings of knots and links, Inventiones Math. 15 (1972), 78-90.
20. H. F. Trotter Non-invertible knots exist, Topology 2 (1963), 275-280.
21. B. L. Van der Waerden, Moderne algebra (Springer, 1950).
22. C. T. C. Wall, Classification problems in differential topology-VI, Topology 6 (1967), 273-296.
23. T. Yanagawa, On ribbon 2-knots, Osaka J. Math. 6 (1969), 447-464.
24. E. C. Zeeman, Twisting spun knots, Trans. Amer. Math. Soc. 115 (1965), 471-495.

Instituto de Matemáticas de la U.N.A.M.,
Mexico;
The Institute for Advanced Study, Princeton, New Jersey

