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NON-AMPHICHEIRAL CODIMENSION 2 KNOTS 

F. GONZALEZ-ACUNA AND JOSÉ M. MONTESINOS 

1. I n t r o d u c t i o n . An w-knot (Sn+2, Sn) is amphicheiral if there is an orienta
tion reversing autohomeomorphism of Sn+2 leaving Sn invariant as a set. I t is 
invertible if there is an orientation preserving autohomeomorphism of 5 n + 2 

whose restriction to Sn is an orientation reversing autohomeomorphism of Sn 

onto itself. 
In 1961 Fox [8, Problem 35] asked if there exist non-amphicheiral locally 

flat 2-knots. We will prove the following 

T H E O R E M 1. For any integer n there are smooth n-knots which are neither 
amphicheiral nor invertible. 

2. Pre l iminar ie s . A knot (Sn+2, Sn) is + amphicheiral (resp. —amphicheiral) 
if there is an orientation reversing autohomeomorphism / of Sn+2 leaving Sn 

invariant such t h a t / | 5 w preserves (resp. reverses) orientation. 
The following can be proved using Alexander duali ty: 

LEMMA 1. Let f: (Sn+2, Sn) —> (Sn+2, Sn) be a homeomorphism. Then f reverses 
the orientation of Sn+2 if and only if precisely one of the automorphisms 

U-Hn(S
n) -+Hn(S>),U:Hl(S

l>+* - 5») ->t f 1 (S»+ 2 - 5») 

is the identity. 

T h u s a knot is —amphicheiral if and only if there is an orientation reversing 
homeomorphism of Sn+2 leaving Sn invariant such tha t /* :Hi(Sn+2 — Sn) —> 
H^S"*2 - Sn) is the identity. 

Let (Sn+2, Sn) be a knot and let h: (5W+2, Sn, Sn+2 - &) -> (Sn+2, S\ 
Sn+2 — Sn) be a homotopy equivalence of triples. Denote by h a lifting of h 
to the universal abelian covering X of X = Sn+2 — Sn, and call p :X —> X the 
projection. The proof of the following lemma is easy and we omit it. 

LEMMA 2. ht = thh with Ô = ± 1 , and Ô = 1 if and only if ht:Hi(Sn+2 - Sn) 
—> Hi(Sn+2 — Sn) is the identity, where t is a generator of the group of covering 
transformations of p :X —• X. 

Remark. Suppose (Sn+2, Sn) is a knot such tha t Sn has a neighborhood homeo-
morphic to Sn X D2, where Sn corresponds to Sn X {0} (for n ^ 2 all locally 
flat knots satisfy this condition [14]). Let h: (Sn+2, Sn, Sn+2 - Sn) -> 
(Sn+2, Sn, Sn+2 — Sn) be a homotopy equivalence of triples. Then there is a 
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map homotopic to the identi ty k(Sn+2, Sn, Sn+2 - Sn) -> (Sn+\ Sn, Sn+2 - Sn) 
which is the identi ty on Sn and such tha t , for some tubular neighborhood T of 
Sn, kh(T) = T and kh(E) = P , where P is the closure of Sn+2 - P. Notice 
t ha t h and kh have the same orientat ion features. 

Let P be an (n + l)-manifold whose boundary is homeomorphic to Sn. 
Let a : P - > P b e a homeomorphism wThich is the ident i ty on a neighborhood of 
dP . In P X [0, 1] we identify (x, 1) with (a(x), 0) , for x G P , and identify 
(x, 0 with (x, 0) , for x G dP , / G [0, 1]. Denote the resulting space, which is an 
(n + 2)-manifold, by M (a) and let y\\P X [0, 1] —> M{a) be the identification 
map. This map sends P X {t} homeomorphically onto its image. If M (a) is 
homeomorphic to Sn+2 we call the pair (M(a), rj(dP X {0})) afibered knot with 
In t P as fiber and monodromy a. If [/ is a collar of d P in P such t h a t a\ U is the 
identi ty, then (V(U X [0, 1]), >n(dP X {0})) is homeomorphic to (Sn X D2, 
Sn X {0}). Thus , by the remark above, if (5W + 2 , Sn) is a hbered knot and 
h: (Sn+2, Sn, Sn+2 - Sn) -> ( 5 n + 2 , Sn, Sn+2 - Sn) is a homotopy equivalence of 
triples, we may assume hT = T and hE = E, where T = ry(C/ X [0, 1]), and 
£ is the closure of Sn+2 — T. 

Denote by h a lifting of A to the universal abelian covering Ë of E, and call 
p:Ë—> E the projection; P is homeomorphic to P X R, where P = 
V(P X {0j) Pi P . A lifting g : P —> P of the inclusion i: F —+ E is a homotopy 
equivalence. Let r : E —•» P be a homotopy inverse of g. We have the commuta t ive 
diagram of Figure 1 in which all arrowrs are isomorphisms, j#, k* are induced by 
inclusion and h' = rhq. 

Hn+1{E, p-\T))î\Hn+1(E,T-S")-ï+Hn(T-S*)^Hn(T)<^Hn(S») 

q*wr* 

Hn+1(F,Fr\T) 

Hn+1(F,Fr\T) 

Q*//r# 

(h\S«), 

Hj+1(E,p-KT))^Hn+,(E,T-S")^+Hn(T-S'<)^Hn(r)+^Hn(S
n) 

FIGURE 1 

L E M M A 3. / / the closure of the fiber does not admit an orientation reversing 
homotopy equivalence leaving its boundary fixed as a set, then there is no homotopy 
equivalence of the triple (Sn+2, Sn, Sn+2 — Sn) reversing the orientation of Sn. 

L E M M A 4. If n = 2g, then [h*'x, h*y\ — e[x, y], where x, y G TQ = torsion 
HQ(F), 6 is the degree of h\Sn and [ , ] : Tq X Tq —» Q / Z is the linking pairing. 

https://doi.org/10.4153/CJM-1980-014-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1980-014-x


CODIMENSION 2 KNOTS 187 

Proof of Lemma 3. Since h! is a self homotopy equivalence of (F, F r\ T), 
from the hypothesis it follows that 

h*':Hn+1(F, Fn T)->Hn+1(F, F H T) 

is the identity. Hence (h\Sn)* = (k*~lj*di*)h* (k*~lj*di*)~l is the identity. 
This proves Lemma 3. 

Proof of Lemma 4. The linking pairing may be described as follows (see for 
example [22]). We denote by <p the composition of isomorphisms 

Tt 
Mn 

Torsion Hq(F, dF) < Torsion Hq+1(F) 

coker 6 Horn (Tq;Q/Z)} 

where /x £ Hn+i(F, dF) is the fundamental class, so that /xn is the Poincare 
duality isomorphism, 6 is the homomorphism from Hq(F; Q) to HQ(F; Q/Z), 0 
is induced by the Bockstein associated to the sequence 0 —> Z —» 0 —* Q/Z —» 0 
and co is induced by the universal coefficient theorem. Then [77, £] = ^(£)M-
The lemma follows from the diagram of Figure 2 

Ur\ 8 CO 
r,**>Torsion ^ ( F , dF)*— Torsion H°+1(F)+-coker 6»->Hom (7, , Q/Z) 
I 'X/ I "f" "f 4* 
A*' A»' A" A/* 

7 \ -^Tors ion Hq(F, dF)4^-Torsion H«+l(F)+--coker 0—•Horn (rff, Q/Z) 

FIGURE 2 

in which the second square is commutative (resp. anticommutative) if e = 1 
(resp. e = —1), and the remaining squares are commutative. 

We now recall the definition of the lens space L(p; qu q2, . . . , qm), where 
p, qi, q2, . . . , qm are integers such that (p, qt) = 1 for 1 ^ i fg m. Let 

S 2 - 1 = {(zi zm) € C»| Z ' L ^ z ^ 1} 

and let g:S2m~l —» 5 2 w _ 1 be the dirreomorphism defined by 

g(zu . . . , zm) = ( 6 2 ' « ^ i ^ Z l , . . . , e2*'<*»'*>*m). 

Then L(p;qi, . . . , qm) is the smooth (2m — 1)-manifold S2m~1/G1 where G is 
the cyclic group of diffeomorphisms generated by g. Let L0(p; qu . . . , gm) be 
the lens space L(p; qu . . . , gm) minus the interior of a smooth (2m — l)-ball. 
The proof of the following lemma can be found in [5; 29.5]. 
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LEMMA 5. L0(p\ qu . . . , qm) admits an orientation reversing homotopy equiv
alence leaving its boundary fixed as a set only if, for some integer b, bm = — 1 
mod p. 

Remark. The converse of Lemma 5 is valid. 

LEMMA 6 [2; 5.3]. Letf be a homotopy equivalence from L = L(p; qu . . . , qm) 
into itself such thatf%:Hi(L) —>Hi(L) is multiplication by an integer a satisfying 
(aT — 1, p) = 1, for 1 ^ r < m, and am = 1 mod p. Then the degree of f is 1 
and, for 1 ^ i < 2m — 1 , / * — I*\Hl(L) —> Hl(L) is an isomorphism, where 
I is the identity map of L. 

Sketch of the proof. Using the fact that L is the (2m — 1)-skeleton of an 
Eilenberg-MacLane space of type (Zp, 1) it is seen t h a t / * :H2i(L) —» H2j(L) 
is multiplication by aj and that d e g / = 1 mod p. 

LEMMA 7. Let m be an even natural number. Then there exists a positive prime 
p such that: 

i) p = 1 mod m. 
ii) there is no integer b such that bm = — 1 mod p. 

Proof. Since (2m, m + 1) = 1 because m is even, by Dirichlet's theorem 
[15, p. 79] there is a prime p = 2mk + m + 1 for some positive integer &. The 
multiplicative group Fp* of nonzero residue classes modulo p is cyclic of order 
p — 1 [21, p. 128]. The subgroup of Fp* consisting of ra-th powers has odd 
order (p — l)/m and, therefore, — 1 is not such a power. 

3. Proof of Theorem 1. 

Case I. n odd. The result for n = 1 was established by Trotter [20]. We 
therefore assume w §; 3. 

Let (S*+2, Sw) be a smooth knot such that 

i) Every automorphism of G = 7ri(5w+2, 5W) induces the identity on G/G'' ; 
ii) (Sn+2,Sn) represents an element of order > 2 in the cobordism group 

Cn
TOP of n-knots [4], [16]. 

Then i) implies that the knot is neither +amphicheiral nor invertible 
(compare [8, problem 35]), and ii) implies that the knot is not — amphicheiral 
[16, p. 231]. 

As Kinoshita observed [8, problem 35], knots having an Alexander poly
nomial A(/) which is not symmetric satisfy i). Also the examples of [11] 
satisfy i) even though their Alexander polynomials are symmetric. 

One can construct knots satisfying i) and ii) as follows. Take a slice smooth 
w-knot Ki with a group G satisfying i) ; for instance, take one of the examples 
exhibited in [18]. Take the connected sum of K\ w7ith a smooth knot Ko with 
group Z and order > 2 in the smooth cobordism group Cn. Such a knot K2 can 
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be constructed by [12]. Since the natural homomorphism Cn 

monomorphism [4], then Kx # K2 satisfies i) and ii). 
C is a 

Case I I . n = 0 mod 4. Consider the finite module T = A/(p, (t + l ) 2 ) , 
where A = Z[t, t~l], p Ç Z is a prime = 3 mod 4 and ( . . . ) denotes the ideal 
generated by . . . . 

Define the skew-symmetric form [ , ]:T X T-^Q/Z by [1, /] = 1/p. By 
[17, §0.13] a fibered n-knot X = (Sn+2, Sn) can be constructed such tha t 
Hq(F) = T, where q = n/2, F is the closure of a fiber of K and [ , ] is the 
linking pairing. Here the s tructure of HQ(F) as a A-module is defined by 
/£ = <**£ where a". F —> F is the monodromy. 

Let h: (Sn+2, Sn) —» (Sn+2, Sn) be a homeomorphism which reverses the 
orientation of Sn+2. Let e be a generator of Hg(F) (as a A-module) and let 
0 = j3(0 £ A be such tha t h* (e) = fie where h' is as in Lemma 4. Then, by 
this lemma, 

(1) [\e} ee] = €[Xe, e] = [A* ' (^) , V ( « ) ] , for any X G A, 

where e is the degree of h\Sn. From Lemma 2 and the diagram 

F-^+E >E > F 

F- >E—^+E y F, 
V h r 

in which the first and last squares are commutat ive up to homotopy, it follows 
tha t 

(2) h*'(te) = t*K'(e),b = ± 1 , 

where 5 = 1 if and only if A, :H1(S
n^2 - Sn) -> 771(5n+2 - 5n) is the identi ty. 

Hence, if (e, 5) = (—1, + 1 ) , from (1) and (2) we obtain 

[\e, ee] = [\f3e, fie] = [\e, fifie], 

where fi = fi(t~l). Then ee = fifie, hence e = fi(t-l)fi{t) mod (p, (t + l ) 2 ) . 
For / = — 1 this yields — 1 = fi(— l ) 2 mod (p) which is impossible because — 1 
is not a quadrat ic residue mod p. 

If (e, Ô) = ( + 1 , - 1 ) then [\e, ee] = \\fie, fie] = [Xe, -fifie] and we obtain 
the same contradiction. Thus K is not amphicheiral. 

To obtain a fibered knot which in addition is not invertible, it suffices to 
take the connected sum of K with a fibered knot K' such tha t Hq{Ff) = 
A/(X), where F' is the closure of a fiber of K' and X = \{i) is a non-symmetric 
monic polynomial such tha t X(0) = ± 1 . Such a knot Kf can be constructed by 
[19, Corollary 3.4]. Notice tha t Hq{F') has no Z-torsion (by [6]) so t ha t the 
previous argument shows tha t K # K' is still not amphicheiral (and non-
invertible). 

https://doi.org/10.4153/CJM-1980-014-x Published online by Cambridge University Press

file:////fie
https://doi.org/10.4153/CJM-1980-014-x


190 F. GONZÂLEZ-ACUNA AND JOSE M. MONTESINOS 

Case I I I . n = 2 mod 4. We first assume n > 2. Let £ be a positive integer 
which is the product of positive prime numbers which are congruent to 1 
modulo m = (n + 2 ) / 2 and such t ha t bm ^ — 1 mod p , for every integer b 
(such a p exists by Lemma 7) . Then there is a positive integer a such t h a t 
um = 1 mod p and {aT — I, p) = 1, for 1 ^ r < m (see, for instance [2]). 
Consider the lens space L = L(p; 1, a, . . . , a m _ 1 ) and the diffeomorphism 
r .S2™-1 ->S2m~\ defined by 

g(zu . . . , zm) = (e**if*Zl, e**ta'*z2, . . . , e 2 ^ " 1 ^ ) . 

If we define T:S2m~l -> 5 2 r a~ 1 by r ( * i , z2, . . . , sw) = («2, z8, . • • , *m, *i) , then 
7"g = gaJ^ so t ha t r induces a diffeomorphism from L onto itself, which is 
isotopic to a diffeomorphism f'.L —+ L wThich is the ident i ty on a neighborhood 
of a smooth (2m — l ) -bal l B. Since the induced a u t o m o r p h i s m / * : i7 i (L) —•» 
H\{L) is multiplication by a, Lemma 6 can be applied; in p a r t i c u l a r / is orien
tat ion preserving. Let a be the restriction of/ to L0 = L — Int. 5 . By using the 
Mayer-Vietoris and Van-Kampen theorems it is readily seen t h a t the smooth 
manifold M (a), defined above, is homeomorphic to Sn+2. We therefore have a 
fibered knot (Sn+2, Sn) with In t L0 as fiber. We may take 5 n + 2 to be diffeo-
morphic to the s tandard smooth (n + 2)-sphere by changing the differentiable 
s t ructure in an (n + 2)-ball mSn+2 — Sn. By Lemmas 5 and 3 (Sn+2

y Sn) is not 
— amphicheiral . 

Now, using the fact t ha t p does not divide a2 — 1, it is readily seen t ha t every 
automorphism of 

TTi(Sn+2 - Sn) = \\t, x: xv = 1, txt~l = xG|| 

induces the ident i ty on its abelianization. T h u s Lemma 1 implies t h a t 
(5W+2 , Sn) is neither + amphicheiral nor invertible. 

I t remains to establish the case n = 2. 
Let p be an odd positive integer such t ha t a2 ^ - 1 m o d f , for every 

integer a. If q is relatively prime to p then there is a smooth fibered 2-knot Kx 

with fiber Int L0(p; 1, q), obtained by 2-twist spinning a suitable two bridge 
knot [24]. 

Consider a second smooth 2-knot K2 such tha t 
i) The Alexander polynomial A(/) of K2 is not symmetr ic . 

ii) Horn ( 7 \ , Z ^ ) —> Horn ( 7 \ , Zp) is onto, where 7 \ = Torsion Hi(E2). 
Of course ii) is satisfied if Hi(E2) has no Z-torsion. 
At the end of the proof we will give examples of knots satisfying i) and ii). 
Condition ii) is equivalent to the condition /3 = 0, where 

P:Hl(Ë2, dË2; Zp) -> H2(Ë2, dË2] Zp) 

is the Bockstein associated to the sequence 0 —» Zp —> Zp2 —» Zp —> 0. This is a 
consequence of the commuta t ive diagram of Figure 3 in which the Ex t te rms in 
the third row are 0 by [9, § 63]. 
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Horn (Ti, Zp2)~ -*Hom (TUZP)~- ->Ext ('A, Z p ) - - •Ex t (7'lf Zp2) 

- •Ext (# i (£2) ,Z p ) •Ex t (tfi(Ê2), ZpS) Horn (tfi(£2), Zp2) •Horn (# i (£ 2 ) , Zp) 

Il II 

Horn (tfi(£2 , d£2), Zp2)—•Horn (#i(È 2 , dË2), Zp) 0 = Ext ( # i ( È 2 ) / 7 \ , Z p ) — • E x t ( # i ( E 2 ) / r i , Zpi) = 0 

fT(£2 l <3£2;Zp2) • / / 1 ( £ 2 , 0^2;ZP) — • tf2(£2, d£ 2 ;Z p ) 

FIGURE 3 

The sum Kx$Ki = (S\ S2) has Alexander polynomial A(/) so that (S\ S2) 
is neither +amphicheiral nor invertible. 

Let ft: (S\ S2, S4 - S2) -> (S4, S2, S4 - S2) be a homotopy equivalence of 
triples. We may assume the knot has a tubular neighborhood T such that 
h(T) = T and h(E) = E, where E is the closure of 54 — T. Let S3 be a 
3-sphere in S4 splitting S4 into two balls Bi, B2 such that, for i — 1,2 
(Btr\S2) \J D2 is the knot Kt where D2 is a 2-disk contained in Sz. We 
choose S2, so that Ss Pi T is a tubular neighborhood of S3 O 52 in S3. Write 
Et = Bt — Int T and Et = r]~l(Ei), where rj'.E—^E is the infinite cyclic 
covering of E. Let k\E —» E be a lifting of h:E—+E. 

Since i£i is a fibered knot we can identify (£1, d£i) writh (L0, dL0) X R, 
which is homotopy equivalent to (L0, dL0), L0 being L0(p; 1, g). We have the 
relation x W f3(x) = qn, where x is a generator of Hl(Ëu dE\\ Zp), 
fi:Hl(Ëi, dËi] Zp) —> H2(Ëi, dEi\ Zp) is the Bockstein homomorphism corre
sponding to the sequence 0 —> Zp —> Zp2 —* Zp —>• 0 and \xgenerates HZ{EX, bE\\ 
Zp) (see, for example [10, p. 225]). 

We have a commutative diagram (Figure 4) 

H\E; Zp)-^-HP(Ei;Zp) + IP(E2;ZP) 

y \ / v 
#*(£, d£ ; Zp) i^CEi ; Zp) H^Eu dË! ; Zp) + H\E2, dE2 ; Zp) 

^ \ / 
^H\E, Ei\J bE\ Zp)-^+H'(E1} dËùZp) 

FIGURE 4 

in which all arrows have the obvious meaning. 
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If we write x = j*(i*)~l(x), then h*(x) is an element of the form rx + y 
which is the image of an element 

(rx, y) £ Hl(Eu dEiî Zp) + Hl(Ë2, dË2; Zp) 

by the arrows in the upper part of the diagram. Notice that 

P(7t*(x)) = Q(rx + y) = rf3(x)} 

since fi(y) = 0. 
We have H*(Ë2; Zp) « Horn (H,(E2) ; Zp) + Ext (# 2 (£ 2 ) , Z,). Using 

[9, § 63], we obtain H*(E2\ Zp) = 0 because H,(E2) = 0 and H2(E2) has no 
Z-torsion [17]. Using the exact sequence of the triple (Ë, E2 VJ 3Ë, dE) and 
the fact that 

HHË2 U dË, ÔË; Zp) « # 3 ( £ 2 , aÊ2 H a£i ; Zp) « H*(E2; Zp) « 0 

we conclude that j * :Hd(E, E2 \J bE\ Zv) —> HZ(Ë, dË\ Zp) is an isomorphism. 
Therefore, if i* :H*(E, E2 U dE\ Zp) —• H*(ËU dËi\ Zp) is the inclusion in
duced isomorphism, then /z = j *^* ) " " 1 ^ ) is a generator of HZ(E, dE; Zp) and 
we have the relation x KJ fi(x) = qpi. Hence 

qh*(fl) = /Ï*(<7M) = h*(x) VJ p7i*(x) = (rx + y) \J rfi(x) 

= r2x yj fi(x) = r2qji, 

that is, h*(p.) ^ — M because r2 ^ - 1 mod p. Therefore h* :H*(Ë, 3Ë) —> 
H*(Ë, dË) is the identity and, using the isomorphisms 

# 3 ( £ , a£) ^ #2(<9È) ^ ~ r # 2 (d£ ) ^ 3 - H2(T) - ^ H2(S2), 
r*-^ r^j ^-^ r^^ 

we conclude that h preserves the orientation of S2. This proves that (54, S2) is 
not — amphicheiral. 

Finally, to complete the proof of Theorem 1, we give examples of knots 
satisfying i) and ii) above. Knots whose group has a presentation of deficiency 
one have the property that the first homology module of the infinite cyclic 
cover of its complement can be presented by a square matrix [13, p. 107] and 
therefore this module has no torsion [6]. If A(/) is a (not necessarily symmetric) 
polynomial satisfying A(l) = ± 1 , there are smooth 2-knots whose groups 
can be presented with two generators and one relation, with Alexander poly
nomial A(t) [18]. Another knot satisfying i) and ii) is the Cappell-Kirby-
Akbulut knot ([3] and [1]); thus there are smooth fibered 2-knots which are 
neither amphicheiral nor invertible. 

4. Remarks. 

Remark 1. Notice that the existence of non-amphicheiral knots is not im
plied, in principle, by the existence of knots which are not —amphicheiral and 
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knots which are not +amphiche i ra l . Kinoshita essentially produces knots in 
every dimension which are not +amphiche i ra l (see [8, problem 35]). Farber 
[7, Theorem 4] gives a necessary condition for an w-knot, with n = 2 (4), to be 
— amphicheiral (not "amphicheira l" as Farber erroneously s ta tes) . Using this 
condition he shows tha t there are 2-knots which are non-invertible and are 
not —amphicheiral. 

Remark 2. The proof of Case II can be adapted to get fibered 2g-knots, t ha t 
satisfy the theorem, using a generalization of the linking pairing to arbi t rary 
smooth knots (see [17] and [7]). We note tha t the Blanchfield pairing (see 
[14]) can be used to obtain fibered knots, tha t satisfy the theorem for n odd. 

Finally we mention some examples of amphicheiral knots. 
a) 2-ribbon knots [23] are clearly —amphicheiral. 
b) Let (Sn+2, Sn) be a fibered knot with monodromy a'.P —» P, where P is 

the closure of the fiber, such tha t a is isotopic rel dP to h~1a~lh for some 
orientation preserving homeomorphism h'.P —> P . Then there is an orientation 
reversing homeomorphism of Sn+2 which is the identi ty on the closure of some 
fiber. For example 2-twist spun knots satisfy this condition (with h = ident i ty) . 
Also the r-twist spun of the torus knot (p, q) satisfies this condition, h being 
isotopic to an involution. 

c) Let (Sn+2, Sn) be a knot as in b) . Construct another knot (5W+2 , Sf) by 
performing r spherical modifications on 0-spheres and then r spherical modifi
cations on 1-spheres, contained in the complement of a fixed fiber. Then 
(5W+2, S?) is +amphichei ra l . 

d) Let (Sn+2, Sn) be a fibered knot with monodromy a'.P —^ P such tha t a 
is isotopic rel dP to h~lah for some orientation reversing homeomorphism 
h'.P —> P. Then the knot is —amphicheiral. The Cappell-Akbulut-Kirby 
knot ([3], [1]) is an example. 
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