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Some extensions of a dual of the
Hahn-Banach Theorem, with applications
to separation and Helly type theorems

Ivan Singer

In previous papers we have proved that if G is a w*-closed
subspace of the conjugate space B* of a normed linear space

B , then every b € B can be extended within B , from G to
the whole B* , with an arbitrarily small increase of the norm.
Here we give some extensions of this result to the case when B*
is replaced by a.normed linear space E and B by any linear
subspace V of E*  and some applications to separation and

Helly type theorems.

1.

In [7]1, (8], (9] we have proved and given some applications of the
following theorem, which is dual, in a certain sense, to the classical
theorem of Hahn-Banach on the norm-preserving extension of continuous
linear functionals.

THEOREM DHB. Let B be a (real or complex) normed linear space and

G a o(B*, B)-closed linear subspace of the conjugate space B*. Then for
every b € B and € > 0 there exists an element bE € B such that

(1) z(b) = z(b) (x €6),
(2) bl = sup |2(B)| + € .
x€G
llll=1
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Some results related to Theorem DHB have been obtained by Ginzler [6].
Recently Alfsen and Effros have rediscovered Theorem DHB ([7], p. 116),
with our proof given in [9] end they have given a sufficient condition on
G under which it is possible to delete the ¢ > 0 in (2) above ([7],
Corollary 5.5), as well as some related extension theorems (see, for
example, []], Theorem 5.4). Apparently Alfsen and Effros [1] have been
unaware of the papers [7]1, [§], [9], and [4].

In §2 of the present paper we shall give an extension of Theorem DHB
to the more general case when B* is replaced by an arbitrary normed
linear space FE and B ris replaced by an arbitrary linear subspace V of
E* (Theorem 1), and some applications to separation and Helly type results

(Theorems 2-4). In §3 we shall give some related results on the factor
;%;- and the € > 0 occurring in Theorem 1 (Propositions 1-4), which may
have their own interest even in the particular case when E = B* and
V=m(B) , where T : B > B** is the canonical embedding (Corollaries 1

and 2).

Let us recall the terminology and notations, which we shall use in the

sequel.

Let E be a normed linear space and V a linear subspace of E* .,
We shall denote by V the o(E*, E)-closure of V in E* . Following
Dixmier [4], the characteristic ré(V) of V with respect to V is the

greatest number r' such that the unit ball 5, = {Fev]ifll =1} otV
is o(E*, E)-dense in the r'-ball r'Sy = (heV | |h) =r'}or V. It
is known ([4], Theorem 7') that

sup |f(x) |
fes,

(3) ”P(V) = 'izg sup |R(x)] °’

x{V; h‘Sv
where V, = {z € E | f(z) = 0 (f € V)} . Clearly, 0= r%,(V) <1 . The

characteristic r(V) of V is [4] the number
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' - s X . "’=
T el s 7o
(%) r(v) = x#0

0 ir V# E*
The canonical mapping u of E into V* is the continuous linear
mapping defined by
(3) u(z)(f) = flz) (x €E, f€V)

Clearly, u is one-to-one if and only if V is total on E (that
is, V = {0} , or, what is equivalent, V is o(E*, E)-dense in E* ).
Also, by (5), u is an isomorphism of E into V* if and only if

r»(V) > 0, and in this case

-1 _ 1
(6) =
Finally, dually to the notation V.L , for a subspace G of F we

shall use the notation G = {f €E* | f(z) =0 (x € G)} .

2.

We have the following extension of Theorem DHB (the proof is rather

short, since it uses Theorem DHB itself).

THEOREM 1. Let E be a normed linear space, G a linear subspace
of E, and V a linear subspace of E* . Then for every f € V and
€ > 0 there exists an element fe € V such that

(7) fe(x) = flx) (x€@G),
1
(8) ”fe“ = 7~ (@) (V) ”flG” + €,

u(G)
where u <is the canoniecal mapping of E 1into V* .

Proof. If either r'f(\/) (u(G)) =0 or =r(V) =0, then condition (8)
u(G

is void, so we may take f€ =f.

Assume now that both r}-(\J)(u(G)) =pr' >0 and r(V) =r >0 . Then,
u(G

~J
by Theorem DHB epplied to V and u(G) € V* , for every f € V and € > 0
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there exists an fs € V such that

folz) = ulz)(f) = ulz)(f) = flz) (z€6),
IF s sup WA +es3  swp lu(z)(£)] + € =
) weﬁﬁ%§ T u(z)€u(G)
llwll<y flulx) =1
5171" S |£(x) | +e=ﬁl|flcll +e,
=l

which completes the proof of Theorem 1.

REMARK |. (a) Theorem DHB can be obtained as a consequence of
Theorem 1, as follows., Let B be a normed linear space, E = B* ,
V = 7n(B) © B** = E* | where T : B > B** is the canonical embedding, and
let G be a o(B*, B)-closed subspace of B* = E . Then »(V) =1 and

the canonical mapping u : E -~ V* is an isometry of E onto V

14
(actually, u = ('n l) ) Also, u 1is an iscomorphism for o(B*, B) ,
a(v#*, V) , vhence, since G is 0o(B*, B)-closed, u(G@) = u(G) and there- -

fore r}\J (u(G)) = 1 . Consequently, by Theorem 1, we obtain Theorem DHB.
u(G)

(b) If E=B*, V=m(B), and G < B* is not necessarily
o(B*, B)-closed, we still have r(V) = 1 and, since u is an isometry and

a w*-isomorphism of E = B* onto V* , we have rAy (u(G)) = ré(G)
u(G)
Hence, in this case, from Theorem 1 we obtain the following generalization

of Theorem DHB, due to Glinzler ([6], Theorem 3). If B <8 a normed linear
space and G is a linear subspace of B* , then for every b €¢ B and
€ > 0 there exists an element be € B satisfying (1) and

1
”b H = —I7~) Sup |.’X:(b)| + €.
e T rl6) gec
licll<1
REMARK 2. The method of Remark 1 also shows how to construct

examples of norm-closed G € E with r}-(\/) (u(G)) = 0 . Indeed, take again
ulG

E=B*, V=n1n(B) cE* and then take any norm-closed o(B*, B)-dense

subspace G of B*=E , with »(G) =0 (for examples of such G C ca or

(Zl) or (I")* see, for instance, [4])). Then, since u = (n_l)* is an
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isomorphism for o(B*, B), o(V%*, V) , and an isometry of E onto V* , we

have %) =V* and r._, (u(e)) =0
u(G)

REMARK 3, 1In other words, Theorem 1 says that

(9) aist(f, G nv) = inf [f-hll = inf JR'|| =
heq v h';lz’fgl
G’lg

< 1
= v (@) x (V) Iflgh (f e
u(G)

Hence, since IIfIGII =< dist(f, ¢ n V) = |If'+(G'L n V)”V/G'LnV for all

f €V, it follows that if HV) >0 and r}(\cj) (@) >0, then V|, is
u

isomorphic to V/G oV , by the mapping f|G > f+ (6 nV) . Consequently,

in this case the subspace (GL n V)'L = (V/GL nV)* of V* is isomorphic
*
to [VIG) » by the mapping ¢ >y , where w(f|G) = o(f) (F eV

Let us give now some applications of Theorem 1 to separation and Helly

type theorems.

We recall the following well known results (see, for example, [5],
p. 422, Corollary 12, and [3], Chapter I, §4), which we shall use in the

sequel.

LEMMA 1. Let E be a normed linear space and V a total linear
subspace of E* . Then

(a) a linear subspace G of E is 0o(E, V)-closed if and only
if for each =z § G there exists f € ¢t AV with
flz) =1

(b) every finite-dimensional subspace G of E is o(E, V)~
closed;

(¢) if G 1is a o(E, V)-closed linear subspace of E and F
a finite-dimensional subspace of E such that G n F = {0},
then G®F 1is o(E, V)-closed.

The following application of Theorem 1 may be also regarded as a

sharpening of part of Lemma 1 (a).

THEOREM 2. Let E be a normed linear space, V a total linear
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subspace of E* , and G a o(E, V)-closed linear subspace of E . Then for
every x € E with dist(xz, G) =d >0 and every € > 0 there exists an
element fe €¢tnv satiefying fe(ac) =1 and

(10) T Gl * © »
u(G}ﬁZ‘])

where u 1is the canonical mapping of E into V* .

Proof. If either r'~_ (u(G® [x])}) =0 or »r(V) =0, then
u(colx])

condition (10) is void, so we may take fe tobe any f as in Lemma 1
(a).

Assume now that both r'~U (W(G® [z])) >0 ana =»(V) >0 . By
u(Gelx])

Lemms 1 (a) let fEGLﬂV, flx) =1 . Then
ly+rzll = ]AI“% y+ac” z [A|d = |fly+rz)|d (y+rz € ¢ ® [=]) ,

whence ”f'G&ﬁ[x]“ = %f . Consequently, by Theorem 1 (applied to G @ [z] ),
L

there exists fe € ¢ NV satisfying fe(x) =1 and (10), which completes

the proof.
REMARK 4. 1In general, r'~_ (u(G® [x])) # iy (w(®)

u(Golx]) u(G)

Indeed, for example, let E = cs = Zl , V= T, (co] c1” and let G be a
0
0(06, co)—dense norm-closed hyperplene in cs . Then rc*(G) =% (vy
0

[4]), but for any x € cS\G we have G @ [z] = 08 , whence

r! (G® [x]) = 1 . Consequently, as in Remarks 1 and 2 above, we have
otz ,

r'~y W@ x])) =1%#%=r_, ua)
u(Golz]) u(G)
REMARK 5. (a) In the particular case when V = E* , we have
r(V) =1 and u = T , the canonical embedding of E into E** , whence

r}\j) (u(G)) =1 for every subspace G of E . Consequently, Theorem 2
u(G

yields that for every o(E, E*)-closed (and hence for every) linear
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subspace G of E , every x € E with dist(x, G) =d > 0 and every
1
€ > 0 there exists fe € G satisfying fe(x) =1 and

Hfg“ < % + € . Combining this result with the o(E*, E)-compactness of

L
balls in E* we obtain that there also exists fb € G satisfying

folz) =1 and IIfOII 5% , which is a well known corollary of the Hahn-
Banach Theorem.

(b) If B is a normed linear space and G a O(E*, E)-closed
subspace of B* and if we take E and V as in Remark 1, then Theorem 2
yields that for every x € B* with dist(x, ¢) =d >0 and every € >0
there exists b_ € G, © B satisfying z(b) =1 and

-1
Il =%+ e .

This result is nothing else than a well known theorem of Banach ([Z2],
p. 122, Theorem 1), which has been reproved also in (8], [9] as a

consequence of Theorem DHB.

THEOREM 3. Let E be a normed linear space, V a linear subspace
of E* with r(V) =1, A asetin E such that G = [A] satisfies

r;?53(u(0)) =1 (where [4] is the closed linear subspace spanmed by A
u

and u 1is the canonical mapping of E 1into V* ), f eV, and M > O,
In order that for every € > 0 there exist an fé € V satisfying

(11) . fe(x) = flz) (x €4),

(A

(12) [

M+e,

it 18 necessary and sufficient that we have

n

Yo

=1

(13)

n
.§l AS (’“'i)l =M %2

for every finite collection of scalars A ces An and of elements

l,
Tys eves zn €4.

Proof. 1If for every € > 0 there exists an fé € V satisfying (11),
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(12), then for every >‘l’ vens )‘n and Tis eens :z:n‘é A and every € >0 ,
we have

n n n n

DEECA RN RAOTESIAT RES ERT [igl A

whence, since € > 0 was arbitrary, we obtain (13).

Conversely, if we have (13), then [|f|G|| <= M and hence, by Theorem 1,
for eVery € > 0 there exists an fg € V satisfying (11), (12), which
completes the proof.

REMARK 6. If B is a normed linear space and if we take E and V
as in Remark 1, then Theorem 3 yields the extension of a "dual" theorem of

Helly, which was obtained in [8], [9] (as a consequence of Theorem DHB).

LEMMA 2. Let E be a normed linear space, V a total linear

subspace of E* , Tys vees & €E and let ¢

" 1 e, be scalars. In

order that there exist an f € V satisfying

(14) f(x,b) = e, (=1, ..., n),

A the

it 18 necessary and sufficient that for any scalars )\l, cees A

n n
relations Y Mz, =0 dmply 3 A.e, =0.
1=1 1=1

Proof. The necessity is an immediate consequence of the linearity of

We shall prove the sufficiency by induction on = .

Let n = 1 and assume that for any scalar A, the relation )\lx 0

1 1°

implies )\lcl =0 ., If xy # O , then, since V is total on FE , there

exists fo € V such that fo(:cl) =1 . Hence f = clfo € V and satisfies

(14). If =z, = 0 , then, by our assumption, A = 0 for all scalars

1 1°1

)\l , Whence e, = 0; soany f €V satisfies (1L4).

Assume now that the sufficiency part is true for n - 1 and that the

condition is satisfied (for » ). Then the condition is also satisfied for
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n -1 and hence, by the induction hypothesis, there exist fJ’. €V

(=1, ..., n) such that f!;.(xi)=ci (2 #J;2,d=1, ..., n)

Now if :cl, ey xn are linearly independent, then, since by Lemma 1

(b)), Gj = [x‘b] is o(&, V)-closed (Jj =1, ..., n) , there exist, by

i#g
Lemma 1 (a/, fj € V satisfying fj(xi) = (Sij (¢, d=1, ..., n)

n
Consequently, f = J. e.f. €V and satisfies (1k).
i=1 J°d
On the other hand, if xl, ey xn are linearly dependent, say
X, - z aixi = 0 for some J , then by our assumption
Y
c. - Z ad.c. = 0 , whence
Jooqgg t*

)= Y ae. =c.

%4 ’
i#] J

so f= f‘Jf € V satisfies (14), which completes the proof.

REMARK 7. More generally, both Lemma 1 and Lemma 2 are valid, with

the same proof, for E* replaced by E’# , the linear space of all linear

functionals on E . In the particular case when V = E'# , Lemma 2 has been

given in [3], Chapter I, §2, Lemma 1, and in the particular case when

V< E'# is total, but =z, ..., :zn are linearly independent (whence the

condition of the lemma is satisfied), it can be found in [3], Chapter I,
§2, Corollary 1.

The following "Helly type" application may be also regarded as a
sharpening of Lemma 2.

THEOREM 4. rLet E be a normed linear space, V a linear subspace

of E* with r(v) =1, Xys ceen & €F, and let cy> ---5 c, be

scalars and M > 0 . In order that for every € > 0 there exist an
fe €V satisfying

(15) f8($i) = Ci (7: =1, ..., n) s
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and (12), it is necessary and sufficient that we have

(16)

n n
<
.El Meg| s M“ iél %xz”

A

for all scalars Al, cees A

Proof. The necessity is obvious.

Conversely, assume now that we have (16) for all scalars Al’ vees A
Then the condition of Lemma 2 is satisfied and hence there exists an

f €V satisfying (1k4).

Now let A4 = {xl, ceey xn} and G = {A] , and let u be the

canonical linear mapping of E into V* . Then dim u(G) = dim G < o ,

whence u(G) = u(G) and thus r}\yj(u(G)] = 1 . Consequently, by Theorem
u(G)

3, there exists an fe € V satisfying fé[xi) = f(xi) =c,
(=1, ..., n) and (12), which completes the proof.

REMARK 8. (a) In the particular case when V = E* [hence
r(V) =1 ] , Theorem 4, combined with the o(E*, E)-compactness of balls in
E* | yields the classical theorem of Helly (see, for example, [31,
Chapter II, §5, Corollary 1), with M + € replaced by M in (12).

(p) If B is a normed linear space and if we take E and V as in
Remark 1, then Theorem 4 yields the “dual" Helly Theorem (see, for example,
[3], Chapter II, §5, Theorem 3), which gives a necessary and sufficient

x € B*

condition in order that for xl, cres T s

cl, ceey cn scalars,
M >0 and € > 0 , there exist an element be € B satisfying

xi(be) =c, (=1, ..., n) and “be” =M+ce .

3.

For the finite-dimensional subspaces G (and hence, more generally,

for the subspaces G with r/~, u{G) =1 ), the constant in formula (8)
u(G)

of Theorem 1 is the "best possible", in the following sense.

PROPOSITION 1. Let E be a normed linear space and V a total
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linear subspace of E* . Then r(V) <s the greatest number c¢ such that
for every finite-dimensional subspace G of E , every f €V and every

€ > 0 there exists an element f_€V satisfyin (7) and
e g

(17) I =27l + e

Proof. If dim G < « , then, as we have observed above, for any

linear subspace V of E* we have r;\z,(u(G)) =1 . Hence, by Theorem
u(&)

1, for any ¢ with 0 =¢ = »(V) and for every f € V and € > O there
exists fe € V satisfying (7) and (17).

On the other hand, assume now that ¢ > »(V) . We shall show that in
this case there exist a one-dimensional subspace G of £ and a pair
f€VvV, €>0, for which the extension property (7), (17) fails. Since

r(V) < ¢ , there exists an element x. € E , xy # 0 , such that

0
(18) sgp lf(xo)l < c“xo“ .
14
I Ali=1

Let G = Ero] , the one-dimensional subspace of E spanned by zg -
L

Then G is oO(E, V)-closed (by Lemma 1 (b)) and V ¢ G (since V is

o(E*, E)-dense in E* and ¢"# E* is o(E*, E)-closed). Consequently,

x
. 0
there exists an f € V such that f[ ] =1 ; clearly,
Iz,
ox
If| Al = sup f[ }l =1 . Assume that for each € > 0 there exists an
¢ af=1 1 Uk

f
e
f. € V satisfying (7) and (17). Then for h_ = € V we have
€ € fE}

Il =1 and

) . legh Nl
lhe(xo)l = ”fé“ lfg[x0)| = ﬂ?gn If(xo)l = ”fE" = (1je)+e = T+cc HxOH >

which contradicts (18) for € > 0 sufficiently small. Thus, there exists
€ > 0 for which there is no fé € V satisfying (7) and (17), which

completes the proof of Proposition 1.
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Now we shall give some cases in which the factor ;]f? and the € > 0
in (8) can be replaced by 1 and O respectively.

PROPOSITION 2. Let E be a normed linear space, V a linear
subspace of E* and G a linear subspace of E , such that G cv.
Then for every f € V there exists an element fo € V such that

(19) fola) = fl@) (z €@,

(20) Ifl = Hflgl -

Proof. By the Hahn-Banach Theorem, there exists fo € E* satisfying
I
(19), (20). But, by (19), ¢ <V and f € V wve have

ps
fo€f+c cf+v=v,

which completes the proof. Note that if (¢ is norm-closed, the condition
GL C V implies that ¢ is o(F, V)-closed (since G=G= 0 L ker f )
fec
PROPOSITION 3. Let E be a normed linear space, V a total linear
subspace of E* , and G a o(E, V)-closed subspace of finite codimension

in E . Then for every [ € V there exists an element fo € V satisfying

(19), (20).

Proof. Since G is also norm-closed, let {xi}z_l C E be linearly

no_
=1

® | the subspaces G @ [x’b]

independent and such that G @ [xt] E . Then, since ¢ is o(E, V)-

closed and since dim[xi]i;éj < itd
(=1, ..., n) are o(E, V)-closed (by Lemma 1 (¢)). Hence, since

Py
@ tce [xi]i;éj , there exist (by Lemma 1 (a)), fi €EG nvV

(<

f'l, ey fn are linearly independent, so dim[fi]z:l = n , whence, since

1, ..., n) such that fi(xj) = 6i,j (£, =1, ..., n) . But then

If ]n c GL and dim GL = n , we obtain |f ]n = G'L Consequentl,
7dZ=1 > idi=1 . q Y
4 n s .

G = |fi]i—l C V , whence, by Proposition 2, the conclusion follows.

If B 1is a normed linear space and if we take Z and V as in
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Remark 1, then from Propositions 2 and 3 we obtain

COROLLARY 1. Let B be a normed linear space and G a linear
subspace of B* such that ¢ c m(B) , where w : B -+ B** 4{g the
canonical embedding. Then for every b € B there exists an element

bo € B such that

(21) z(by) = z(b) (z €6),
(22) lbgll = sup |g(B)| ;
: geGc

llgll=y

in particular, if G 1is a o(B*, B)-closed linear subspace of B* , of

Ffinite codimension in B* , then for every b € B there exists bo € B
satisfying (21), (22).

PROPOSITION 4. rLet E be a normmed linear space, V a linear
subspace of E* , and G a subspace of E such that there exists a (not

necessarily linear) projection p of E ontoe G , of norm
lpll = sup ﬂ%ﬁf”m =1, satisfying

TEE

x#0
(23) pHV)c V.

Then for every f € V there exists an f, € V satisfying (19), (20).
0

Proof. Let f. =p*(f) . Then, by (23), f, € V. TFurthermore,
0=°? 0

since x € ¢ if and only if x = p(x) , and since |[[p(z)}| = [l
(z € E\{0}) , we have

Folz) = p*(filx) = flp(x)) = flz) (z€@G),
£l = lip* (Al = p*(f)(z)| = [Fe(=)) | = lIf] I =
0 :g | | p(ac?:;(E’) ( ] | p(B)
llzll=1 llp () ll<1

= Flgh = WFglgh = IFh
which completes the proof.

COROLLARY 2. Let B be a normed linear space and G a linear
subspace of B* such that there exists a (not necessarily linear)

projection q on B, of norm 1 , satisfying
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(24) q*(B*) = G .

Then for every b € B there exists b, € B satisfying (21), (22).

Proof. Take, as in Remark 1, E = B* and V = 7(B) , where
m : B+ B** is the canonical embedding, and let p = g* . Then, by our
assumption, p 1is a (not necessarily linear) projection of E onto G ,

of norm |lp]]| =1 and we have
p*(V) = p*(n(B)) = q**(n(B)) = m(q(B)) < m(B) =V ;

that is, (23). Hence, the conclusion follows by applying Proposition &4;
the proof also shows that one can take bo = q(b)
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