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Some extensions of a dual of the

Hahn-Banach Theorem, with applications

to separation and Helly type theorems

Ivan Singer

In previous papers we have proved that if G is a W*-closed

subspace of the conjugate space B* of a normed linear space

B , then every b € B can be extended within B , from G to

the whole B* , with an arbitrarily small increase of the norm.

Here we give some extensions of this result to the case when B*

is replaced by a.normed linear space E and B by any linear

subspace V of E* 5 and some applications to separation and

Helly type theorems.

1 .

In [7], [8], [9] we have proved and given some applications of the

following theorem, which is dual, in a certain sense, to the classical

theorem of Hahn-Banach on the norm-preserving extension of continuous

linear functionals.

THEOREM DHB. Let B be a (real or complex) normed linear space and

G a a{B*, B)-closed linear subspace of the conjugate space B*. Then for

every b £ B and e > 0 there exists an element b EB such that

(1) x[b£) = x(b) (x € G) 3

(2) ||fc || 5 sup \x(b)\ + e .
xtG
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Some results related to Theorem DHB have been obtained by Giinzler [6].

Recently Alfsen and Effros have rediscovered Theorem DHB ([/], p. 116),

with our proof given in [9] and they have given a sufficient condition on

G under which it is possible to delete the e > 0 in (2) above ([/],

Corollary 5-5), as well as some related extension theorems (see, for

example, [7], Theorem 5-1*)- Apparently Alfsen and Effros [7] have been

unaware of the papers [7], [£], [9], and [6].

In §2 of the present paper we shall give an extension of Theorem DHB

to the more general case when B* is replaced by an arbitrary normed

linear space E and B 'is replaced by an arbitrary linear subspace V of

E* (Theorem 1), and some applications to separation and Helly type results

(Theorems 2-k). In §3 we shall give some related results on the factor

—;— and the e > 0 occurring in Theorem 1 (Propositions 1-k), which may

have their own interest even in the particular case when E = B* and

V = TT(B) , where it : B -*• B** is the canonical embedding (Corollaries 1

and 2).

Let us recall the terminology and notations, which we shall use in the

sequel.

Let £ be a normed linear space and V a linear subspace of E* .

We shall denote by V the a(E*, £)-closure of V in E* . Following

Dixmier [4], the characteristic r~(V) of V with respect to V is the

greatest number r' such that the unit ball Sy = {/ 6 V \ \\f\\ 5 1} of V

is a(E*, £)-dense in the r'-ball r'S^ = {h € V \ \\h\\ < r'} of V . It

is known ([4], Theorem 7') that

sup \f{x) |

suP|Mx)|

where VL = {x € E \ f(x) = 0 (/ E V)) . Clearly, 0 5 r~.( V) £ 1 . The

characteristic r(V) of V is [4] the number
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CO rtv) =

= inf sup f if V = E* ,

0 if V * E* .

The canonical mapping u of E into V* is the continuous linear

mapping defined by

(5) u(x)(f) = f(x) (x € E, f I V) .

Clearly, u is one-to-one if and only if V is total on E (that

is, Vx = {0} , or, what is equivalent, V is o(E*, £)-dense in E* ).

Also, by (5)> u is an isomorphism of E into V* if and only if

r{V) > 0 , and in this case

( 6 ) ll*"1!! = ̂  .

Finally, dually to the notation V , for a subspace G of E we

shall use the notation G^ = {f € E* | f(x) = 0 (x € G)} .

2.

We have the following extension of Theorem DHB (the proof is rather

short, since it uses Theorem DHB itself).

THEOREM 1. Let E be a normed linear space, G a linear subspace

of E , and V a linear subspace of E* . Then for every f t V and

e > 0 there exists an element f € V such that

fe(x) = f(x) (x € G) ,(T)

(8)

where u is the canonical mapping of E into V* .

Proof. If either r'r\j [u(G)) = 0 or r( V) = 0 , then condition (8)

u{G)

is void, so we may take / = / .

Assume now that both r'r\J [u(G)) = r' > 0 and r(V) = r > 0 . Then,

u(G) f^j
by Theorem DHB applied to V and u{G) c V* , for every / € V and e > 0
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there exists an / € V such that

f£(x) = u(x){f£) = u(x)(f) = fix) (x Z G) ,

sup

sup | / (*) | + e = ^ l l / | II + e

which completes the proof of Theorem 1.

REMARK I. (a) Theorem DEB can be obtained as a consequence of

Theorem 1, as follows. Let B be a normed linear space, E = B* ,

V = TT(B) C 5** = E* , where TT : B -*• B** is the canonical embedding, and

let G be a o(B*, B)-closed subspace of B* = E . Then r(V) = 1 and

the canonical mapping u : E •*• V* is an isometry of E onto V

(actually, u = (IT ) ) . Also, u is an isomorphism for a(B*, B) ,

o(V*, V) , whence, since G is 0(3", B)-closed, u(G) = u(G) and there-

fore 2"ovi (M(G)J = 1 . Consequently, by Theorem 1, we obtain Theorem DHB.
u{G)

(b) If E = B* , V = ir(B) , and G c B* is not necessarily

o(B*, B)-closed, we still have r(V) = 1 and, since u is an isometry and

a w*-isomorphism of E = B* onto V* , we have rf-^j [u(G)) = r~(G) .

Hence, in this case, from Theorem 1 we obtain the following generalization

of Theorem DHB, due to Gunzler ([6], Theorem 3). If B is a normed linear

space and G is a linear subspace of B* 3 then for every b € B and

e > 0 there exists an element b € B satisfying (l) and

REMARK 2. The method of Remark 1 also shows how to construct

examples of norm-closed G c E with rj~^y [u(G)j - 0 . Indeed, take again

u(G)

E = B* , V = TT(B) C S* and then take any norm-closed a(B*, B)-dense

subspace G of B* = E , with r(G) = 0 (for examples of such G c a* or

[I J or (Z )* see, for instance, [4]J. Then, since M = (TT J is an
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isomorphism for o(B*, B), o{V*, V) , and an isometry of E onto V* , we

have u{G) = V* and r'^_j [u(G)) = 0 .

REMARK 3. In other words, Theorem 1 says that

(9) d is t ( f , GL n V) = inf ||/-fc|| = inf ||7t'|| <

Hence, since | | / | c | | 5 d i s t ( / , G^ n V) = ||/+(G"L n V) II j y ^ y for a l l

f Z V , It follows that if r( V) > 0 and r ^ [u(G)) > 0 , then v\ is
u(G) G

isomorphic to V/G r\V , by the mapping f\G -*• f + {G n V) . Consequently,

in this case the subspace (G n V) = {V/G n V)* of V* is isomorphic

*° ("Ig) > by the mapping $ -»• i[i , where ^(/IJ = $(/) (f ( f) .

Let us give now some applications of Theorem 1 to separation and Helly

type theorems.

We recall the following well known results (see, for example, [5],

p. 422, Corollary 12, and [3], Chapter I, %h), which we shall use in the

sequel.

LEMMA 1. Let E be a normed linear space and V a total linear

subspace of E* . Then

(a) a linear subspace G of E is a(E, V)-closed if and only

if for each x jl G there exists f € G n V with

f{x) = 1 ;

(b) every finite-dimensional subspace G of E is a{E, V)-

closed;

(c) if G is a o(E, V)-closed linear subspace of E and F

a finite-dimensional subspace of E such that G n F = {0} 3

then G © F is a{E, V)-closed.

The following application of Theorem 1 may be also regarded as a

sharpening of part of Lemma 1 (a).

THEOREM 2. Let E be a normed linear space, V a total linear
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subspaoe of E* , and G a a(E, V)-alosed linear subspace of E . Then for

every x € E with d i s t (x , G) = d > 0 and every e > 0 there exists an

element f € G n V satisfying / e (a0 = 1

HfJI £ ^ x]))r(V)d "• '

where u is the canonical mapping of E into V* .

Proof. If either r'r^j [u(G © [x])) = 0 or r(7) = 0 , then

condition (10) is void, so we may take / to be any / as in Lemma 1

(a).

Assume now that both r'r\J (u(G ® [x])) > 0 and r( V) > 0 . By
u(C&[x])

Lemma 1 (a) l e t f (L G^ n V , f(x) = 1 . Then

ll»+*a:|| = IXI | | x G© [x]) ,

whence l l / l ^ r III - ~3 • Consequently, by Theorem 1 (applied to G @ [x] ) ,

there exis ts f € G n V satisfying f_(x) = 1 and (10), which completes

the proof.

REMARK 4. In general , r ^ ( M ( G © [ X ] ) ) t r'^^j [U(G)) .
( [ ] ) u{G)

- -,1Indeed, for example, l e t E = c* = I , V = ir (e ) c Z and l e t G be a

a(c*, e)-dense norm-closed hyperplane in o* . Then r ̂ (G) £ % (by

[4]), but for any x € c*\G we have G © [*] = c* , whence

r f-^i (G © [a;]) = 1 . Consequently, as in Remarks 1 and 2 above, we have

[u{G ®[x])) = 1 / % =
)

REMARK 5. (a) In the particular case when V = E* , we have

r(V) = 1 and w = IT , the canonical embedding of E into E** , whence

ri-^ (w(G)) = 1 for every subspace G of E . Consequently, Theorem 2
()

yields that for every o{E, £*)-closed (and hence for every) linear
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subspace G of E , every x i E with dist(x, G) = d > 0 and every

e > 0 there exists / € G satisfying / (x) = 1 and

11/ II — "j + e • Combining this result with the a(E*, ffj-compactness of

balls in E* we obtain that there also exists / ' € G satisfying

/.(a;) = 1 and ll/nll — ~l , which is a well known corollary of the Hahn-

Banach Theorem.

(b) If B is a normed linear space and G a o{E*, £')-closed

subspace of B* and if we take E and V as in Remark 1, then Theorem 2

yields that for every x € B* with dist(x, G) = d > 0 and every e > 0

there exists b € G±
 c S satisfying a;(ib ) = 1 and

« M 5 1 + E •
This result is nothing else than a well known theorem of Banach ([2],

p. 122, Theorem 1), which has been reproved also in LSI, [9] as a

consequence of Theorem DHB.

THEOREM 3. Let E be a normed linear space, V a linear subspace

of E* with r{V) = 1 3 A a set in E such that G = [A] satisfies

[U{G)) = 1 (where [A] is the closed linear subspace spanned by A
uiG)

and u is the canonical mapping of E into V* ) , f € V , and M > 0 .

In order that for every e > 0 there exist an f € V satisfying

(11) feix) = fix) ix Z A) ,

(12) | | / e l | < M + e ,

it is necessary and sufficient that we have

n
(13)

for every finite collection of scalars \ , ..., X and of elements

Proof. If for every e > 0 there exists an / i V satisfying (11),
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( 1 2 ) , t h e n f o r e v e r y X , . . . , X and x , . . . , x (.A and e v e r y e > 0 ,

we h a v e

n n
x..*-.l

i=l

whence, since e > 0 was arbitrary, we obtain (13).

Conversely, if we have (13), then ||.f| J| £ M and hence, by Theorem 1,

for every £ > 0 there exists an / f 7 satisfying (ll), (12), which

completes the proof.

REMARK 6. If B is a normed linear space and if we take E and V

as in Remark 1, then Theorem 3 yields the extension of a "dual" theorem of

Hel ly, which was obtained in [S], [9] (as a consequence of Theorem DHB).

LEMMA 2. Let E be a normed linear space, V a total linear

subspace of E* , x.,-..,x £E and let a., ..., c be scalars. In

order that there exist an f € V satisfying

(lit) /(*•) = o. (i = 1, ..., n) ,

is Is

it is necessary and sufficient that for any scalars X , ..., X the

n n
relations ]T X.x. = 0 imply £ X.e. = 0 .

Proof. The necessity is an immediate consequence of the linearity of

We shall prove the sufficiency by induction on n .

Let n = 1 and assume that for any scalar A the relation -̂î -. = 0

implies X c = 0 . If x.. £ 0 , then, since V is total on E , there

exists fQ f V such that fo[x-J = ! • Hence / = e / t V and satisfies

(lit). If x = 0 , then, by our assumption, Ka-, ~ ° for a 1 1 scalars

X , whence c = 0 ; so any / € V satisfies (lit).

Assume now that the sufficiency part is true for n - 1 and that the

condition is satisfied (for n ). Then the condition is also satisfied for
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n - 1 and hence, by the induction hypothesis, there exist / ' . € V
3

(.7 = 1, ..., n) such that /'•(*•) = a. {i t j ; i, 3 = 1, ... , n) .

Now if x , ..., x are linearly independent, then, since by Lemma 1

(b), G. = [«•]•-. is a{E, V)-closed (j = 1, ... , n) , there exist, by

3 * 1-rJ
Lemma 1 fa;, f. € F satisfying f-[x-) = 6.. (i, J = 1, ..., n) .

il 3 I* I'd

n
Consequently, / = £ a .f. € V and satisfies {lk).

3=1 3 °

On the other hand, if x , — , x are linearly dependent, say

x. - X OL.X. = 0 for some j , then by our assumption
3 i*3 * t'

c . - X o.e. = 0 , whence

f'Ax.) = I af'.(x) = I ae = c ,3 3 ui 1 3 1 Uj i> i 3

so / = /'. € V satisfies (1^), which completes the proof.
t7

REMARK 7. More generally, both Lemma 1 and Lemma 2 are valid, with

the same proof,for E* replaced by E , the linear space of all linear

u

functionals on E . In the particular case when V = E , Lemma 2 has been

given in [3], Chapter I, §2, Lemma 1, and in the particular case when

V c if is total, but x , ..., x are linearly independent (whence the

condition of the lemma is satisfied), it can be found in [3], Chapter I,

§2, Corollary 1.

The following "Helly type" application may be also regarded as a

sharpening of Lemma 2.

THEOREM 4. Let E be a normed linear space, V a linear subspaae

of E* with r{v) = 1 , x-̂  x € E , and let c^, • • •, e be

saalars and M > 0 . In order that for every e > 0 there exist an

f£ € V satisfying

(15) fe[Xi) = et U = 1, -.., n) 3
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and (12)^ it is necessary and sufficient that we have

(16)
n n
I \o S M\\ I X *

/br aZ£ scalars X , ..., X .

Proof. The necessity is obvious.

Conversely, assume now that we have (l6) for all scalars X , ..., X .

Then the condition of Lemma 2 is satisfied and hence there exists an

/ t V satisfying (ik).

Now let A = {x. , . .. , x } and G = [A] , and let u be the

canonical linear mapping of E into V* . Then dim u(G) 5 dim G < <*> ,

whence u(G) = u{G) and thus r'f-s^j ("(&)) = 1 • Consequently, by Theorem
u(G)

3, there exists an f € K satisfying f (as.) = /far.) = c.

(i = 1 n) and (12), which completes the proof.

REMARK 8. (a) In the particular case when V = E* (hence

r{V) = 1 ) , Theorem h, combined with the a(E*, E)-compactness of balls in

E* , yields the classical theorem of Helly (see, for example, [3],

Chapter II, §5, Corollary l), with M + e replaced by M in (12).

(b) If B is a normed linear space and if we take E and V as in

Remark 1, then Theorem k yields the "dual" Helly Theorem (see, for example,

[3], Chapter II, §5, Theorem 3), which gives a necessary and sufficient

condition in order that for x , ..., x € B* , o , ..., a scalars,

M > 0 and e > 0 , there exist an element b € B satisfying

x.[b ) = a. (i = l, ..., n) and \\b \\ 5 M + e .

3.

For the finite-dimensional subspaces G (and hence, more generally,

for the subspaces G with ?'r\j u(G) = 1 ) , the constant in formula (8)
u(G)

of Theorem 1 is the "best possible", in the following sense.

PROPOSITION 1. Let E be a normed linear space and V a total
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linear subspace of E* . Then r(V) is the greatest number a such that

for every finite-dimensional subspace G of E , every f € V and every

£ > 0 there exists an element f d V satisfying (7) and

(17) ttfj 5 \ ||/|c|| + e .

Proof. If dim G < °° , then, as we have observed above, for any

linear subspace V of E* we have r' . (w(G)l = 1 . Hence, by Theorem

1, for any a with 0 5 c 5 r(V) and for every / € V and E > 0 there

exists f (. V satisfying (7) and (17).

On the other hand, assume now that a > r(V) . We shall show that in

this case there exist a one-dimensional subspace G of E and a pair

f € V , e > 0 , for which the extension property (7). (17) fails. Since

r(V) < c , there exists an element xQ £ E , x_ # 0 , such that

(18) sup |/(X n) I < a\\xJ •
f*V

Let G = [x ] , the one-dimensional subspace of E spanned by x 0 .

Then G is c(E, K)-closed (by Lemma 1 (b) ) and V$ G (since V is

a(E* , E)-dense in E* and G*~ + E* is a[E* , E)-closed) . Consequently,

there exists an / € V such that = 1 ; clearly,

11/1/ f = 1 . Assume that for each E > 0 there exists an

/ € V satisfying (7) and (17). Then for h£ = M _ u € V we have

\\hz\\ = 1 and

which contradicts (18) for E > 0 sufficiently small. Thus, there exists

E > 0 for which there is no f € V satisfying (7) and (17), which

completes the proof of Proposition 1.
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How we shall give some cases in which the factor — 7 — and the e > 0
r r

in (8) can be replaced by 1 and 0 respectively.

PROPOSITION 2. Let E be a normed linear space, V a linear

eubspaae of E* and G a linear subspace of E , such that G c V .

Then for every f £ V there exists an element f G V such that

(19) fQ(x) = fix) (x € G) ,

(20)

Proof. By the Hahn-Banach Theorem, there exists / d E* satisfying

(19), (20). But, by (19), GX c V and / € V we have

which completes the proof. Note that if G is norm-closed, the condition

G c V implies that G is o{E, F)-closed (since G = G = fl , ker / ) .

PROPOSITION 3. Let E be a normed linear space, V a total linear

subspace of E* , and G a a(E, V)-closed subspace of finite aodimension

in E . Then for every f i V there exists an element / ( 7 satisfying

)3 (20).

Proof. Since G is also norm-closed, let {#.}"_, c E be linearly

independent and such that G © Oc-]"-n = E • T n e n> since G is o(E, V)-

closed and since dimfx.l ... < °° , the subspaces G © fa;.] . .

(j = 1, ..., n) are o(E, 7)-closed (by Lemma 1 (c)). Hence, since

x. ^ G ® [x.] . . , there exist (by Lemma 1 (a)), f. t G~ n V

(i = 1, .. ., n) such that f-[x.) = 6. . (i, 3 = 1, , n) . But then
I* 3 ^3

f.. , . .., f are linearly independent, so dim[f.J ._ = n , whence, since

[f.~\ . c G and dim G = n , we obtain \f •"] . , = G . Consequently,

G = [/•]•_-, c V , whence, by Proposition 2, the conclusion follows.

If B is a normed linear space and if we take E and V as in
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Remark 1, then from Propositions 2 and 3 we obtain

COROLLARY 1. Let B be a normed linear space and G a linear

subspace of B* such that G c T\{B) , where IT : B •+ B** is the

canonical embedding. Then for every b € B there exists an element

b € B such that

(21) x[bQ) = x{b) (x € G) ,

(22) | |i || = sup \g(b)\ ;
0 gtc

in particular, if G is a a(B*, B)-closed linear subspace of B* , of

finite codimension in B* , then for every b € B there exists i . f S

satisfying (21), (22).

PROPOSITION 4. Let E be a normed linear space, V a linear

subspace of E* , and G a subspace of E such that there exists a (not

necessarily linear) projection p of E onto G , of norm

||p|| = sup ftX\\ = 1 i satisfying
xiE "x"
x#0

(23) p*{V) c V .

T h e n f o r e v e r y f € V t h e r e e x i s t s a n f Q Z V s a t i s f y i n g ( 1 9 ) , ( 2 0 ) .

Proof. Let / = p*(f) . Then, by (23) , fQZV. ?=hjrthermore,

since x € G i f and only i f x = p(x) , and since | |p(x)| | 5 ||x||

(x € E\{0}) , we have

/ Q ( x ) = p * ( / ) ( x ) = / ( p ( x ) ) = f (x ) (x € G) ,

II/JI = llp*(/)ll = sup |p*(/)(*)| < sup |/(p(*)) | = ||/1 / - J =
xiE pp

11*11=1 llp(*)ll=l

which completes the proof.

COROLLARY 2. i e t B be a normed linear space and G a linear

subspace of B* such that there exists a (not necessarily linear)

projection q on B , of norm 1 , satisfying
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(21+) q*{B*) = G .

Then for every b € B there exists bQ € B satisfying (21), (22).

Proof. Take, as in Remark 1, E = B* and V = v{B) , where

ir : B -*• B** i s the canonical embedding, and le t p = q* . Then, by our

assumption, p i s a (not necessarily l inear) projection of E onto G ,

of norm ||p|| = 1 and we have

p*(V) = p*(ir(B)) = q**[ir(B)) = Tr(q(B)) c TT(B) = F ;

that is, (23). Hence, the conclusion follows by applying Proposition h;

the proof also shows that one can take b = q(b) .
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