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ABSTRACT 

A simple numerical method is proposed in the paper for fluid flow around a moving boundary of 
irregular shape.  The unsteady term is discretized with the implicit scheme such that large time step is 
allowed.  All of the computations are performed on non-staggered Cartesian grid system.  Fine Carte-
sian patch grid system covering the moving object is employed to resolve the solution around the solid 
body.  A closed curve defined by connecting the solid grid points adjacent to the solid-liquid interface is 
referred to as virtual boundary.  The narrow irregular strip of solid between the virtual boundary and the 
actual solid-fluid interface is called pseudo-fluid.  The general fluid region consisting of both fluid and 
pseudo-fluid is a regular domain that can be efficiently solved with conventional numerical method.  In 
this connection, external force is imposed at each fluid grid point adjacent to the solid-fluid interface to 
compensate for the numerical error arising from the assumption of pseudo-fluid.  The solution procedure 
is iterated until the required external force converges.  Accuracy of the new numerical method is vali-
dated through three test problems.  The numerical method then is used to investigate the flow induced by 
the flapping wings of a tethered dragonfly in literature.  The corresponding CFL numbers of the four 
examples are infinity, 20, 100, and 3.29. 

Keywords: Implicit virtual boundary method, Moving boundary problem, Moving grid patch, Dragon-
fly flight. 

1.  INTRODUCTION 

There are a few numerical methods for fluid flow 
around moving objects of irregular shape encountered in 
many applications in industry and in nature.  One of 
them is to solve the problem on a boundary-fitted curvi-
linear grid system.  In this branch of numerical methods, 
the grid system should be re-meshed at each time step 
and thus large CPU time is generally needed [1].  To 
improve the computational efficiency, the method of 
moving overset grids [2-4] generates a local non-inertial 
boundary-fitted grid system for each moving object that 
is allowed to move on the fixed global Cartesian grid 
system.  However, the solution interpolation and data 
transfer among the grid systems are very complex and 
time consuming.  Besides, it poses additional numerical 
errors. 

Another important approach known as immersed- 
boundary method for fluid flow around moving object 
was introduced by Peskin [5].  The problem is solved 
on fixed Cartesian grid system.  The main concept of 
this particular numerical method is to impose an external 
force field at the fluid grid points adjacent to the solid 

boundary in the same manner as would the solid bound-
ary.  This branch of numerical methods was studied 
extensively for biological flow, multi-phase flow and 
problems with elastic boundary [6-12].  One of the ma-
jor drawbacks of the immersed-boundary method is the 
smoothing of the external force field that could lead to 
smearing of interface information.  The immersed- 
boundary method was further improved by Mohd-Yusof 
[13] and Fadlum et al. [14].  They proposed a direct 
forcing approach such that the desired velocity distribu-
tion on the immersed boundary is satisfied explicitly.  
Various formulations for the direct forcing approach have 
been developed subsequently [15-25]. 

In the use of the immersed-boundary method with di-
rect forcing, the numerical procedure in the time coordi-
nate is performed explicitly.  Thus, the time step should 
be sufficiently small due to the CFL restriction.  The 
interface cannot move by more than one grid mesh in 
each time step as remarked by Yang and Balaras [20].  
To maintain the same CFL number, the time step should 
be reduced to one fourth of the origin size when the grid 
mesh is halved [26].  Unfortunately, small grid mesh is 
generally needed to properly describe the shape of the 
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moving object on Cartesian grids.  This implies that the 
time step would be very small in the use of the im-
mersed-boundary method. 

In the present study, the implicit virtual boundary 
method is proposed for moving boundary problems.  
The implicit scheme is employed to discretize the un-
steady term such that large time step is allowed [26].  
The external force imposed at the fluid grid points adja-
cent to the solid-fluid interface is determined numerically.  
The solution procedure is iterated until the desired veloc-
ity distribution on the solid-fluid interface is achieved.  
All of the computations are performed on a non-stag- 
gered Cartesian grid system.  Performance of the new 
numerical method will be examined through four test 
problems. 

2.  BRIEF REVIEW OF THE NAPPLE 
ALGORITHM 

The dimensionless governing equations for a two- 
dimensional incompressible viscous flow are expressible 
as 
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where the coordinates (x, y), velocity (u, v), and time t 
have been normalized with the reference quantities, L, Uc, 
and L/Uc, respectively.  The body force (sx, sy) is nor-
malized with μUc/L

2 if any.  The dimensionless pressure 

is defined by 2( ) /level cp P P U   and ˆ cp Re p , 

where the reference Reynolds number is Rec = ρUcL/μ.  
The reference quantities (L and Uc) are to be defined for 
each individual application. 

Let the partial differential Eqs. (1)-(3) be discretized 
on a uniform Cartesian grid system (xi, yj), i.e. 

 1 1( 1) , ( 1)i jx x i x y y j y         (4) 

with i = 1, 2, 3,…, m, and j = 1, 2, 3,…, n.  For conven-
ience of numerical procedure, (xi, yj) is numbered as the 
k-th grid point with k being k = (i  1)n + j, k = 1, 2, 3, …, 
mn (see Fig. 1).  Based on the weighting function 
scheme [27], the resulting algebraic equation for the 
momentum Eq. (2) at the k-th grid point can be written as 
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where the weighting factors are defined by 

 

Fig. 1 Numbering of grid points on Cartesian grid sys-
tem. 
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(6)

 

The subscript k represents the physical quantity at the 
k-th grid point.  The grid Peclet numbers are 
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where iu  and v j  denote the mean velocity compo-

nents in the intervals 1i ix x x    and 1j jy y y   , 

respectively.  To conserve CPU time, the weighting 
function wf (z) is computed with the power-law approxi-
mation [27, 28].  As suggested by Lee [26], the un-
steady term has been discretized with the implicit 
scheme 

 0u u u

t t

 


 
 (8) 

in formulation (6) to achieve the best numerical stability, 
where u0 represents the velocity at the previous time 
level (t0 = t  Δt).  The CFL number λ = Δt/(Δx)2 is the 
key factor for numerical stability in time marching 
scheme [26].  The well-known CFL restriction is λ < 0.5 
when an explicit scheme is used. 

Equation (5) can be recast into the simple form 
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where 
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Similarly, discretization of Eq. (3) for the velocity com-
ponent v yields 
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and thus 
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Next, substitute the velocity expression (9) and (12) into 
the discretized continuity equation 
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to yield the pressure-linked equation 
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Use of the approximation (14) and (15) is to prevent the 
checkerboard pressure error.  Finally, discretize Eq. (16) 
with the harmonic mean scheme [28] to obtain the alge-
braic equation 
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Fig. 2 Virtual points (black dots), virtual boundary, 
pseudo-fluid, and forcing points (black trian-
gles). 

 
 
where the “pressure conductivity”  is evaluated from 

 
1 1

2 2 
( )

( ) ( )( ) ( )
w k

P k P k nk k n a a


  



 


 (20) 

 
1 1

2 2 
( )

( ) ( )( ) ( )
e k

P k P k nk k n a a


  



 


 (21) 

 
1 1

11

2 2 
( )

( ) ( )( ) ( )
s k

P k P kk k a a


  



 


 (22) 

 
1 1

11

2 2 
( )

( ) ( )( ) ( )
n k

P k P kk k a a


  



 


 (23) 

To achieve a good numerical stability, the algebraic Eqs. 
(5), (11), and (18) are solved with the strongly implicit 
solver [29].  The numerical procedure described in this 
section is called the NAPPLE algorithm [30].  It has 
been proved to solve fluid flow and heat transfer prob-
lems very efficiently in the past decades. 

3. FLOW AROUND OBJECT OF IRREGULAR 
SHAPE 

3.1  The Implicit Virtual Boundary Method 

Consider the fluid flow around an immersed body of 
irregular shape as illustrated in Fig. 2.  A grid point in 
the solid region having at least one neighbor grid point in 
the fluid region is called virtual point as that marked 
with black dot in Fig. 2.  A closed curve formed by 
connecting the adjacent virtual points is referred to as the 
virtual boundary in the present study.  The narrow ir-
regular strip of solid between the virtual boundary and 
the actual solid-fluid interface is called pseudo-fluid.  
Similarly, fluid grid point marked with black triangle in 
Fig. 2 is called forcing point.  They have at least one 
neighbor grid point in the solid region.  Obviously, the 
general fluid region consisting of both fluid and 
pseudo-fluid is a regular domain that can be efficiently  
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Fig. 3 Bi-linear interpolation stencil on a schematic 
solid-fluid interface. 

 
 
solved with the numerical method described in section 2, 
if the velocity expressions (9) and (12) are employed at 
the virtual point with the particular values of ˆk vpu u , 

v̂ vk vp , and (ap)k = ∞, where (uvp, vvp) is the velocity of 

the solid body at the same grid point.  There is no need 
to impose pressure boundary condition at the virtual 
boundary.  However, some numerical treatment is re-
quired to evaluate the pressure gradients at the forcing 
points as well as to correct the numerical error arising 
from the assumption of pseudo-fluid. 

As suggested by Yang and Balaras [20], the velocity 
and pressure at the forcing points are interpolated from 
the updated solution of the fluid region and the known 
boundary condition at the solid-fluid interface.  Figure 3 
shows a schematic solid-fluid interface with a tan-
gent-normal coordinate system (s, n) at point B(xB, yB).  
The directional cosines of the s-axis are l and m in the 
global coordinate system (x, y), i.e. 
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The line 0B  (the n-axis) is normal to the solid-fluid 
interface at point B.  The grid point marked with 0 is the 
forcing point.  The velocity and pressure inside the tri-
angle formed by point B and the two fluid grid points 
marked with 1 and 2 are assumed the bi-linear form 
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In the conventional formulation [20] one has to impose 
the constraint that the stencil of the bi-linear interpola-
tion does not involve other forcing points.  Fortunately, 
there is no such a constraint in the present formulation 
due to the use of the implicit scheme for the time coor-
dinate (8).  This greatly simplifies the programming of 
the numerical algorithm. 

After substituting the velocity components u1, u2, uB at 
the three points (x1, y1), (x2, y2), (xB, yB) into Eq. (25), one 
has 
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Coefficients of Eq. (26) are determined similarly, i.e. 
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Generally speaking, the pressure at the boundary point B 
is not known in practical applications.  Nevertheless, 
the normal pressure gradient ˆ( / )Bp n   on the solid- 

fluid interface can be estimated from the momentum 
equations with the bi-linear approximation (25)-(27), i.e. 
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The coefficients of Eq. (27) turn out to be 
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After the interpolation coefficients are all available, the 
velocity and pressure at the forcing point 0 0( , )x y  are 

determined by 

 11 12 0 13 0fpu c c x c y    (33) 

 21 22 0 23 0fpv c c x c y    (34) 
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 31 32 0 33 0ˆ fpp c c x c y    (35) 

Similarly, the pressure gradients at the forcing points are 
determined from 
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before the momentum Eqs. (5) and (11) are solved, be-
cause they cannot be obtained by the conventional cen-
tral difference scheme. 

Once the pressure gradients at the forcing points are 
available, the flow solution in the fluid region is updated 
by solving Eqs. (5), (11), and (18).  To compensate for 
the numerical error arising from the assumption of 
pseudo-fluid, an external force (fx, fy) is applied at the 
forcing point to yield 
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when the momentum Eqs. (2) and (3) are discretized at 
the forcing point.  Suppose that the velocity ( u , v ) has 

been obtained based on a guessed external force ( xf , yf ) 

at the forcing point, i.e. 
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For the next iteration, one makes a correction (Δfx, Δfy) to 
the external force to eliminate the discrepancy between 
the resulting velocity and that from the interpolation 
procedure (33) and (34), i.e. 
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This leads to 
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by subtracting Eq. (38) from Eq. (39).  Similarly, one 
adds a forcing term (fp)k to the right-hand side of the 
pressure-linked Eq. (18) and then corrects the forcing 
term with 

 ˆ ˆ( ) ( ) (( ) )p k P k k fp kf b p p     (41) 

where ˆ( )k fpp  is the desired pressure (35) and ˆ kp  is 

the pressure solution of the previous iteration. 

 

Fig. 4 A fine grid system patched on a global grid sys-
tem of coarser grid mesh. 

 

3.2  Patch Grids and Numerical Implementation 

To conserve CPU time and memory storage, Peng et 
al. [31] proposed a local grid refinement method (nested 
Cartesian grid method).  Solutions of the global grid 
domain and the nested fine grid domain are solved 
through the use of some "ghost cells."  However, the 
values at the ghost cells should be interpolated by some 
means from the solutions of the global and the nested 
grid domains.  In the present study, Cartesian patch 
grids are proposed without recourse to the ghost cells. 

Figure 4 depicts schematically a local fine grid system 
(Δx × Δy) patched on a global grid system of coarser grid 
mesh (3Δx × 3Δy for instance).  The global grid system 
has a "hole" defined by the grid points marked with black 
dot.  For convenience of interpretation, the hole surface 
is referred to as the inner boundary of the global grid 
system.  Similarly, the patch grid system possesses an 
outer boundary represented by the grid points marked 
with white dot and black triangle.  Between the two grid 
systems, there is an overlap strip that has a width just 
equaling to one grid mesh of the global grid system.  
Practically, the object of irregular shape under study 
should be placed inside the patch grid system with an 
adequate margin from the inner boundary of the global 
grid system. 

After the flow field on the patch grid system is up- 
dated, the velocity and pressure at the particular grid 
points marked with black dot are transferred to the cor-
responding grid points on the inner boundary of the 
global grid system.  Unlike in the nested Cartesian grid 
method proposed by Peng et al. [31], no interpolation 
procedure is needed in the present study due to the fact 
that the black dots are the common grid points of the 
global and the patched grid systems.  Based on these 
Dirichlet boundary conditions on the inner boundary, the 
flow field in the global grid system is solved with a con-
ventional numerical method such as that described in 
section 2.  The resulting velocity and pressure at the 
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grid points marked with white dot then is transferred to 
the outer boundary of the patch grid system.  The other 
grid points on the outer boundary of the patch grid sys-
tem (marked with black triangle) are determined with the 
method of linear interpolation.  After this is down, the 
flow field inside the patch grid system is updated with 
the implicit virtual boundary method.  The numerical 
procedure should be iterated until the solution converges 
within a prescribed tolerance.  Finally, the pressure and 
shear stress at point B(xB, yB) on the solid-fluid interface 
are evaluated from 

 31 32 33B B

c

c c x c y
p

Re

 
  

 
2 2

13 23 12 22( )

c

l c lm c c m c

Re
   
  (42) 

where the shear stress  has been normalized with 2
cU . 

4.  RESULTS AND DISCUSSION 

Accuracy of the implicit virtual boundary method de-
scribed in the previous section is examined through three 
examples, namely, uniform flow past a stationary cylin-
der, in-line oscillating cylinder in rest fluid, and flow 
past a vertical flat plate of zero thickness.  The present 
numerical method then is employed to investigate the 
flow induced by the flapping wings of a tethered dragon-
fly.  Both truncated computational domains and grid 
sizes of the grid systems employed in the four test prob-
lems were determined after a series of grid tests.  Alt-
hough only 2D examples are demonstrated herein, the 
present numerical method applies to 3D problems as 
well. 

4.1  Uniform Flow past a Stationary Cylinder 

In this example, the implicit virtual boundary method 
is employed to simulate the flow past a stationary cylin-
der.  The reference quantities are assigned as L = D and 
Uc = U∞, where D is the cylinder diameter and U∞ is the 
free stream velocity.  For convenience, the free stream 
pressure is assigned as the pressure level p∞ = 0.  The 
velocity is zero on the cylinder surface due to the no-slip 
condition.  The normal pressure gradient on the cylinder 
surface is zero too, because of the assumption of bi- 
linear velocity variation (the viscosity effect has been 
neglected) in the vicinity of the cylinder surface.  
Computation is performed in the finite domain of 8 ≤ x 
≤ 24 and 8 ≤ y ≤ 8 with the cylinder center being 
located at (x, y) = (0, 0).  The free stream condition (u, v, p) 
= (1, 0, 0) is imposed on all of the boundaries of the 
computational domain except for ∂u/∂x = 0 at the down-
stream boundary (x = 24).  This same flow configura-
tion has been studied by Tseng and Ferziger [16] with the 
ghost-cell immersed boundary method. 

In the present computation, a patch grid system is ap-
plied in the region of 1.2 ≤ x ≤ 1.2 and 1.2 ≤ y ≤ 1.2 

 

Fig. 5 The resulting isobars with increment of 
1.0p  for 40Re . 

 
 
 
with the grid mesh Δx = Δy = 0.005, while the global grid 
system has the grid mesh 5Δx × 5Δy.  Steady state 
solution is obtained for the Reynolds number of Re = 20 
and Re = 40.  The resulting isobars for Re = 40 are 
shown in Fig. 5 with increment of Δp = 0.1.  For con-
venience of observation, the isobars in red stand for posi-
tive pressure while blue for negative pressure.  The 
isobars pass smoothly across the overlap strip of the two 
grid systems.  They are smooth in the vicinity of the 
cylinder surface too.  The corresponding pressure and 
shear stress distributions along the cylinder surface are 
revealed in Figs. 6 and 7, respectively.  The numerical 
result essentially has no change when the problem is 
solved on a single fine grid system of Δx = Δy = 0.005.  
This evidences the correctness of the patch grid formula-
tion.  The existing numerical results from the bound- 
ary-fitted grids [32] and the ghost-cell immersed bound-
ary method [16] for Re = 40 are plotted also in Figs. 6 
and 7 for comparison.  From Fig. 6, good agreements 
are observed among the three numerical results.  Simi-
larly, Fig. 7 shows good agreements on the shear stress 
among the three numerical methods. 

For both cases of Re = 20 and Re = 40, there is a sta-
ble recirculation zone behind the cylinder that contains a 
pair of symmetric vortices.  To examine the accuracy of 
the predicted wake structure, the present numerical re-
sults for the length of the recirculation zone l/D, distance 
from the cylinder to the centers of the vortices a/D, the 
gap between the centers of the vortices b/D, the separa-
tion angle θs, and the drag coefficient CD are compared 
with that from the existing experimental and numerical 
studies [33-36] in Table 1.  Good agreements among the 
results are seen.  The present numerical method seems 
to predict a drag coefficient that is slightly smaller than 
the existing numerical results [34-36].  This will be 
discussed later. 
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Fig. 6 The resulting pressure distributions along the 
cylinder surface for 40Re . 

 

 

Fig. 7 The resulting shear stress distributions along the 
cylinder surface for 40Re . 

 
 

Table 1  Results of wake dimension and drag coefficient for uniform flow past a cylinder 

case references method l/D a/D b/D θs CD 

Re = 20 

Coutanceau and Bouard [33] experiment 0.93 0.33 0.46 135.0° -- 

Dennis and Chang [34] numerical 0.94 -- -- 136.3° 2.05

Linnick and Fasel [35] numerical 0.93 0.36 0.43 136.5° 2.06

Taira and Colonius [36] numerical 0.94 0.37 0.43 136.7° 2.06

Present study numerical 0.95 0.35 0.43 136.6° 2.01

Re = 40 

Coutanceau and Bouard [33] experiment 2.13 0.76 0.59 126.2° -- 

Dennis and Chang [34] numerical 2.35 -- -- 126.2° 1.52

Linnick and Fasel [35] numerical 2.28 0.72 0.60 126.4° 1.54

Taira and Colonius [36] numerical 2.30 0.73 0.60 126.3° 1.54

Present study numerical 2.27 0.70 0.61 127.3° 1.48

 
 
 

4.2  In-Line Oscillating Cylinder in Rest Fluid 

Flow around an in-line oscillating cylinder in rest 
fluid has been well-documented in the literature.  In this 
test case, the reference length and reference velocity are 
assigned as L = D and Uc = f D, respectively, where D is 
the cylinder diameter and f is the frequency of the oscil-
lating cylinder.  The ambient pressure is set as the 
pressure level p∞ = 0.  Computation is performed in the 
finite domain of 25 ≤ x ≤ 25 and 15 ≤ y ≤ 15 with the 
cylinder center being located at 

 ( ) cos(2  ), ( ) 0
2

c c

KC
x t t y t


   (43) 

for the Reynolds number Rec = Re = ρ f D2/μ = 20 and 
the Keulegan-Carpenter number KC = 5.  The KC 
number represents the maximum velocity of the oscillat-
ing cylinder.  The amplitude of the motion is 5/(2π) = 

0.7958.  Hence, a patch grid system is employed in the 
region of 3 ≤ x ≤ 3 and 2 ≤ y ≤ 2 that covers the entire 
oscillating cylinder with a proper margin.  The grid 
mesh of the patch grid system is Δx = Δy = 0.01, while 
that of the global grid system is 5Δx × 5Δy.  Static fluid 
condition (u, v, p) = (0, 0, 0) is set on the outer boundary 
of the global grids. 

This test case deals with moving boundary.  In most 
previous studies, the time coordinate is discretized with 
some explicit scheme such that the solid-fluid interface 
cannot move by more than one grid mesh in each time 
step due to the CFL restriction [20].  In the present 
study, the unsteady term is discretized with the implicit 
scheme (8), and thus large time step is allowed as men-
tioned earlier.  For a retreating solid body as illustrated 
in Fig. 8, the grid points that the solid-fluid interface 
sweeps through within a time step are referred to as the 
"ghost" points (see the white nodes) when the time 
elapses from t0 = t  Δt to t.  Suppose that the moving  
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Fig. 8 The ghost points (marked with white dots) ap-
pearing from a retreating solid body. 

 
 
 
boundary arrive at a ghost point at the time t0 + Δt with 
0 <  < 1.  At this particular moment, the fluid velocity 
at this ghost point should be the same as that of the 
solid-fluid interface (uB, vB).  Hence, the unsteady term 
is discretized with 

 
(1 )

Bu u u

t t
 


  

 (44) 

instead of Eq. (8) at the ghost point.  A similar implicit 
scheme was proposed by Lee and You [37].  In their 
formulation, however, the pressure gradient at the ghost 
cell needs to estimate for the time t0 + Δt to refresh the 
ghost cell at time t.  Such a tedious numerical procedure 
is not required in the present study. 

Computation is undertaken with Δt = 0.002.  The 
corresponding CFL number is λ = 20.  The resulting 
isobars are depicted in Fig. 9 with increment Δp = 3 at 
five representative times in a half period of the oscilla-
tion (0 ≤ t < 0.5) after the fluid flow has reached the 
quasi-steady state.  Again, smooth isobars are observed 
in the vicinity of the cylinder surface.  Figure 9 indi-
cates that positive pressure (in red) occurs on the 
left-side surface of the cylinder at t = 0 due to the decel-
eration of the cylinder when it moved rightwards in the 
fourth quarter of the previous cycle (0.25 < t < 0).  
This causes also negative pressure (in blue) on the 
right-side surface of the cylinder.  The negative pressure 
is strengthen when the cylinder accelerates leftwards in 
the first quarter of the cycle (0 < t ≤ 0.25).  In the 
course of the stroke a detached positive pressure bubble 
is found to nucleate behind the moving cylinder.  In the 
second quarter of the cycle (0.25 ≤ t < 0.5), an attached 
positive pressure bubble appears on the right-side surface 
of the cylinder due to the deceleration of the cylinder.  
The two positive pressure bubbles eventually merge to-
gether at t = 0.38, while the positive pressure on the 
left-side surface of the cylinder disappears completely.  
The isobars at the end of the stroke (t = 0.5) is the same 
as that at t = 0. 

Figure 10 shows the velocity profiles along the y-axis 
(x = 0) at three representative times.  The velocity pro-

file in the region of 21 cy x   is uniform because it 

is inside the cylinder.  The present numerical result is 
compared with the embedded-boundary formulation [20] 
and the experiment data from Dust et al. [38] in Fig. 10.  
Good agreement is observed. 

4.3 Flow past a Vertical Flat Plate of Zero 
 Thickness 

Consider an impulsively started vertical flat plate of 
zero thickness immersed in quiescent fluid.  The veloc-
ity of the flat plate is U∞ after the onset of the motion.  
The plate length L and velocity U∞ are assigned as, re-
spectively, the reference length and reference velocity for 
the problem.  A moving coordinate system (x, y) is de-
fined such that the flat plate is always located at x = Δx/2 
and 0.5 0.5y   , where Δx is the grid mesh. 

In this test problem, the flat plate is of zero thickness.  
Care must be exercised in the treatment of the virtual 
points because there is no pseudo-fluid region.  Suppose 
that the flat plate is located in between grid point k and 
k + n.  When the governing equation is discretized at 
the forcing point k, the virtual point k + n would be in the 
fluid region behind the flat plate.  In the present study, 
the fluid on the other side of the flat plate, together with 
the flat plate itself, is regarded as a rigid solid.  The 
velocity at the virtual point k + n is evaluated with the 
theory of solid-body motion.  After discretization of the 
governing equation at the forcing point k, the term 
(aE)kuk+n involving the velocity of the virtual point is 
moved to the right-hand-side of the equation to yield 

 1 1( ) ( ) ( ) ( )W k k n S k k P k k N k ka u a u a u a u      

 
ˆ

( ) ( ) ( )u k E k k n x k
k

p
a a u f

x


     
 

 (45) 

This strategy is valid for all problems in spite of the 
thickness of the solid. 

The domain of the test problem is truncated to the re-
gion of 13 ≤ x ≤ 17 and 4 ≤ y ≤ 4.  A patch grid sys-
tem covering 3 ≤ x ≤ 5 and 2 ≤ y ≤ 2 is employed.  
The grid mesh of the patch grid system is Δx = Δy = 0.01, 
while that of the global grid system is 5Δx × 5Δy.  The 
free stream condition (u, v, p) = (1, 0, 0) is imposed on 
all of the boundaries of the computational domain except 
for ∂u/∂x = 0 at the downstream boundary as in the ex-
ample of uniform flow past a cylinder in section 4.1.  
The time step is Δt = 0.01.  The corresponding CFL 
number is as large as λ = 100 in the patch grid system.  
Numerical result is obtained for the Reynolds number of 
Re = 126.  The free stream pressure is assigned as the 
pressure level p∞ = 0.  Once the velocity solution is 
available at each time step, the stream function is evalu-
ated from 

 
0.5

( ,0, ) ( ,0, ) for 13 17
x

x
x t v x t dx x


       

0
( , , ) ( ,0, ) ( , , ) for 4 4

y
x y t x t u x y t dy y       

  (46) 

t t0

Fluid
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Fig. 9  The resulting isobars with increment Δp = 3 at (a) t = 0 (b) t = 1/6 (c) t = 1/4 (d) t = 1/3 (e) t = 0.38. 

 
 

 

Fig. 10  The velocity profiles along the y-axis at (a) 6/1t  (b) 4/3t  (c) 6/5t . 

 
 
Figure 11 reveals the resulting streamlines at four repre-
sentative times.  The photographs for this same flow 
configuration [39] are also shown in Fig. 11 for com- 
parison.  Good agreement between the present numeri-
cal result and the experimental photographs is observable.  
This evidences that the implicit virtual boundary method 
applies to problems dealing with solid of zero thickness 
as well. 

4.4 Flow around the Flapping Wings of a Tethered 
 Dragonfly 

Wang and coworkers [40, 41] filmed the wing flap-
ping of a tethered dragonfly at 1500 frames per second.  
The mean flapping frequency was f = 33.4 Hz.  Their 
results included 19 frames from the film sequence for the 
chord positions of the fore and hind wings at 2/3 wing-
span during one wingbeat (see Fig. 12).  This dragonfly 
was found to beat its forewing and hindwing at different 
phase, with the hindwing about 22° ahead of the fore-
wing.  In the present study, the flow field induced by 
the flapping wings is computed with the implicit virtual 
boundary method.  The chord length L = 0.0103m and 
the wing flapping period tc = f 1 are assigned as the ref-
erence length and time, respectively.  The correspond-

ing reference velocity and Reynolds number are Uc = f L 
= 0.344m/s and Re = ρ f L2/μ = 275. 

Computation is performed in the range of 2 ≤ x ≤ 5.8 
and 2 ≤ y ≤ 7.  A moving patch grid system is employed 
in the region of 0 ≤ (x  xk) ≤ 3 and 0 ≤ (y  yk) ≤ 3, 
where (xk, yk) is the k-th grid point in the global grid sys-
tem.  The reference point (xk, yk) is assigned for each 
time step such that the patch grids always cover both 
forewing and hindwing with an adequate margin.  The 
computation domain as well as two representative patch 
grids for frames 1 and 12 is illustrated in Fig. 13.  
Uniform square grid meshes of Δx = Δy = 0.02 and Δx = 
Δy = 0.06 are employed in the patch grid system and the 
global grid system, respectively.  The ambient pressure 
is set as the pressure level p∞ = 0.  Static fluid condition 
(u, v, p) = (0, 0, 0) is assigned on the outer boundary of 
the global grids.  The wings are assumed rigid and of 
zero thickness.  The chord positions of the wings are 
interpolated in the time coordinate with the method of 
cubic spline.  The time step for the computation is Δt = 
1/760 that corresponds to a CFL number of λ = 3.29 for 
the patch grid system.  In some particular regions the 
wings sweep through more than 2 grid points during a 
single time step.  The numerical procedure starts from a 
flow field of zero velocity with the wings being at frame  
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Fig. 11  The resulting streamlines at (a) t = 0.04 (b) t = 1.45 (c) t = 2.56 (d) t = 3.36. 

 
 

 

Fig. 12 The chord positions of the fore and hind wings 
during one wingbeat. 

 

 

Fig. 13 The computation domain and two representative 
patch grids. 

 
 

1.  Quasi-steady state solution is reached within 4 
wingbeats.  The computation is carried out on an Intel 
Core i5-4200M CPU @ 2.50GHz.  It takes 0.04 s for 
one solution iteration. 

Figure 14 shows the numerical results of isobars and 
velocities at the 19 frames under quasi-steady state.  
The increment of the isobars is Δp = 10.  Again, the 
isobars in red and in blue denote positive and negative  
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Fig. 14  The resulting isobars ( 10p ) and velocity vectors at the 19 frames. 

 
pressures, respectively.  The net surface force acting on 
the forewing and hindwing during a complete cycle of 
wingbeat is revealed in Fig. 15, where the frame number 
i corresponds to the dimensionless time t = (i  1)/19.  

Frame 20 is identical to frame 1.  It is noted from 
Fig. 12 that the attack angle of the flapping wings is 
close to 90° at the beginning of the downstroke (see 
frame 3 or t = 0.105 for instance).  Under this situation,  
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Fig. 15 The net force acting on the forewing and hindwing during a complete cycle of wingbeat (a) vertical component 
(b) horizontal component. 

 
the vertical force Fy (the vertical components of the re-
sulting force) of both forewing and hindwing reaches the 
maximum value (see Fig. 15(a)).  The vertical force is 
weaken later at frame 8 or 368.0t  due to the "leak-
age" of the positive pressure from the downside of the- 
forewing to the upside of the hindwing.  Subsequently 
in the time interval 6.04.0  t  (see frames 9-13), the 
vertical force is essentially zero when the wings are 
turning around for the upstroke.  From frames 14-15, 
one sees two large low pressure vortexes shedding from 
the hindwing.  In the upstroke the attack angles of the 
wings are small.  Surprisingly, the wings produce up-
ward vertical force even during the upstroke.  Moreover, 
the horizontal force Fx (see Fig. 15(b)) is very strong in 
the entire wingbeat except for a short time near the end 
of the downstroke ( 5.04.0  t ).  The back-and-forth 
horizontal force, together with the upward vertical force, 
might account for the fact that the dragonfly is trying to 
escape from being tethered, rather than being hovering.  
The hindwing seems to offer more force (both vertical 
and horizontal forces) than the forewing. 

4.5  Solution Accuracy and Numerical Stability 

Theoretically, the weighting function scheme (6) is a 
locally analytical formulation.  In the conventional 
NAPPLE algorithm [30], however, the accuracy in space 
is only of the second-order.  This is attributed to the use 
of the central difference scheme when the continuity 
equation is discretized in Eq. (13).  In the present im-
plicit virtual boundary method, the accuracy would fur-
ther reduce to the first-order in the vicinity of the 
solid-fluid interface due to the assumption of the 
bi-linear function (25)-(27).  The major drawback is 
that the viscosity effect has to be neglected from Eq. (31), 
and therefore the drag coefficient is slightly un-
der-predicted as revealed in Table 1 when the solid-fluid 
interface is stationary.  Nevertheless, use of the bi-linear 
function (25)-(27) provides a great numerical stability 

during the computation.  Numerical stability could be 
no less important than the order of truncation error that a 
high-order scheme offers especially when the solid-fluid 
interface is dynamically moving.  On an accelerating 
boundary, the viscosity effect might not be so significant 
(see Eq. (31)). 

In 1910, Richardson [42] proposed an explicit 
three-time-level scheme for solving transient heat con-
duction.  The unsteady term was discretized with the 
standard central difference method such that the scheme 
is second-order accurate in the time coordinate.  Unfor-
tunately, the Richardson method [42] proves to be un-
conditionally unstable and cannot be used to discretize 
the unsteady term.  This evidences that the accuracy of 
a numerical scheme in time coordinate cannot be as-
sessed by the order of truncation error alone.  Numeri-
cal stability should be taken into account.  For the case 
of flow past a stationary cylinder, the CFL number em-
ployed in the present computation is λ = ∞, i.e. the 
steady-state solution is solved directly.  By contrast, 
Taira and Colonius [36] found that their numerical 
method is stable up to only λ = 0.46 for this same case.  
Similarly, for the case of in-line oscillating cylinder in 
rest fluid, the CFL number employed in the present 
computation is λ = 20.  Hence, only 250 time steps are 
needed in a half period of oscillation as compared to 
more than 10,000 time steps (due to the CFL restriction 
λ < 0.5) required by many previous studies that em-
ployed an explicit time-marching scheme at the same 
spatial resolution.  A detailed study on the numerical 
stability and CFL number can be found in Ref. [26]. 

5.  CONCLUSIONS 

The implicit virtual boundary method is proposed in 
the paper for fluid flow around a moving boundary of 
irregular shape.  Performance of this new numerical 
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method is examined through four test problems.  Based 
on the numerical results, the following conclusions are 
drawn. 

(a) The algorithm of the implicit virtual boundary 
method is very simple, and thus the computer pro-
gramming is easy. 

(b) The external force imposed at the forcing point is 
determined numerically.  Its value converges 
stably due to the use of the implicit scheme. 

(c) Use of the path grid system conserves both CPU 
time and memory storage significantly. 

(d) The tethered dragonfly in section 4.4 is trying to 
escape from being tethered, rather than being hov-
ering. 

 

ACKNOWLEDGMENTS 

The authors wish to express their appreciation to the 
Ministry of Science and Technology Taiwan for the fi-
nancial support of this work through the contract MOST 
102-2221-E-007-070.  Cyue acknowledges the scholar-
ship sponsored by CoreTech System (Moldex3D). 

REFERENCES 

 1. Chen, Y. C., Liao, Y. J., Tseng, S. C. and Giacomin, 
A. J., “Core Deflection in Plastics Iinjection Mold-
ing: Direct Measurement, Flow Visualization and 
3D Simulation,” Polymer-Plastics Technology and 
Engineering, 50, pp. 863-872 (2011). 

 2. Sun, M. and Lan, S. L., “A Computational Study of 
the Aerodynamics Forces and Power Requirements 
of Dragonfly (Aeschna juncea) Hovering,” Journal 
of Experimental Biology, 207, pp. 1887-1901 
(2004). 

 3. Wang, J. K. and Sun, M., “A Computational Study 
of the Aerodynamics and Forewing-Hindwing In-
teraction of a Model Dragonfly in Forward Flight,” 
Journal of Experimental Biology, 208, pp. 
3785-3804 (2005). 

 4 Chen, H. C., “CFD Simulation of Directional 
Short-Crested Waves on a Jack-Up Structure,” In-
ternational Journal of Offshore and Polar Engi-
neering, 23, pp. 38-45 (2013). 

 5. Peskin, C. S., “Flow Pattern around Heart Valves: a 
Numerical Method,” Journal of Computational 
Physics, 10, pp. 252-271 (1972). 

 6. Peskin, C. S., “The Immersed Boundary Method,” 
Acta Numerica, pp. 459-571 (2002). 

 7. Mittal, R. and Iaccarino, G., “Immersed Boundary 
Methods,” Annual Review of Fluid Mechanics, 37, 
pp. 239-261 (2005). 

 8. Goldstein, D., Handler, R. and Sirovich, L., “Mod-
eling a No-Slip Flow with External Force Field,” 
Journal Computational Physics, 105, pp. 354-366 

(1993). 

 9. Goldstein, D., Handler, R. and Sirovich, L., “Direct 
Numerical Simulation of Turbulent Flow over a 
Modeled Riblet Covered Surface,” Journal of Fluid 
Mechanics, 302, pp. 333-376 (1995). 

10. Saiki, E. M. and Biringen, S., “Numerical Simula-
tion of a Cylinder in Uniform Flow: Application of a 
Virtual Boundary Method,” Journal Computational 
Physics, 123, pp. 450-465 (1996). 

11. Lai, M. C. and Peskin, C. S., “An Immersed Bound-
ary Method with Formal Second-Order Accuracy 
and Reduced Numerical Viscosity,” Journal Com-
putational Physics, 160, pp. 705-719 (2000). 

12. Lima, E., Silva, A. L. F., Silveira-Neto, A. and 
Damasceno, J. J. R., “Numerical Simulation of 
Two-Dimensional Flows over a Circular Cylinder 
Using the Immersed Boundary Method,” Journal 
Computational Physics, 189, pp. 351-370 (2003). 

13. Mohd-Yusof, J., “Combined Immersed-Boundary/ 
B-Spline Methods for Simulations of Flow in Com-
plex Geometries,” Annual Research Briefs, Center 
for Turbulence Research, NASA Ames/Stanford 
University, pp. 317-327 (1997). 

14. Fadlun, E. A., Verzicco, R., Orlandi, P. and 
Mohd-Yusof, J., “Combined Immersed-Boundary 
Methods for Three Dimensional Complex Flow 
Simulations,” Journal of Computational Physics, 
161, pp. 35-60 (2000). 

15. Kim, J., Kim, D. and Choi, H., “An Im-
mersed-Boundary Finite-Volume Method for Simu-
lations of Flow in Complex Geometries,” Journal of 
Computational Physics, 171, pp. 132-150 (2001). 

16. Tseng, Y. H. and Ferziger, J. H., “A Ghost-Cell 
Immersed Boundary Method for Flow in Complex 
Geometry,” Journal of Computational Physics, 192, 
pp. 593-623 (2003). 

17. Balaras, E., “Modeling Complex Boundaries Using 
an External Force Field on Fixed Cartesian Grids in 
Large-Eddy Simulations,” Computers and Fluids, 33, 
pp. 375-404 (2004). 

18. Gilmanov, A. and Sotiropoulos, F., “A Hybrid Car-
tesian/Immersed Boundary Method for Simulating 
Flows with 3D, Geometrically Complex, Moving 
Bodies,” Journal of Computational Physics, 207, pp. 
457-492 (2005). 

19. Kim, D. and Choi, H., “Immersed Boundary Method 
for Flow around an Arbitrarily Moving Body,” 
Journal of Computational Physics, 212, pp. 662-680 
(2006). 

20. Yang, J. and Balaras, E., “An Embedded-Boundary 
Formulation for Large-Eddy Simulation of Turbu-
lent Flows Interacting with Moving Boundaries,” 
Journal of Computational Physics, 215, pp. 12-24 
(2006). 

21. Su, S. W., Lai, M. C. and Lin, C. A., “A Simple 
Immersed Boundary Technique for Simulating Com- 
plex Flows with Rigid Boundary,” Computers and 

https://doi.org/10.1017/jmech.2017.34 Published online by Cambridge University Press

https://doi.org/10.1017/jmech.2017.34


666   Journal of Mechanics, Vol. 34, No. 5, October 2018 
 

Fluids, 36, pp. 313-324 (2007). 

22. Zhang, N. and Zheng, Z. C., “An Improved Di-
rect-Forcing Immersed-Boundary Method for Finite 
Difference Applications,” Journal of Computational 
Physics, 221, pp. 250-268 (2007). 

23. Choi, J. I., Oberoi, R. C., Edwards, J. R. and Rosati, 
J. A., “An Immersed Boundary Method for Complex 
Incompressible Flows,” Journal of Computational 
Physics, 224, pp. 757-784 (2007). 

24. Ghias, R., Mittal, R. and Dong, H., “A Sharp Inter-
face Immersed Boundary Method for Compressible 
Viscous Flows,” Journal of Computational Physics, 
225, pp. 528-553 (2007). 

25. Liao, C. C., Chang, Y. W., Lin, C. A. and 
McDonough, J. M., “Simulating Flows with Moving 
Rigid Boundary Using Immersed-Boundary 
Method,” Computers and Fluids, 39, pp. 152-167 
(2010). 

26. Lee, S. L., “A New Numerical Formation for Para-
bolic Differential Equations under the Consideration 
of Large Time Steps,” International Journal for 
Numerical Methods in Engineering, 26, pp. 1541- 
1549 (1988). 

27. Lee, S. L., “Weighting Function Scheme and Its 
Application on Multidimensional Conservation 
Equations,” International Journal of Heat and Mass 
Transfer, 32, pp. 2065-2073 (1989). 

28. Patankar, S. V., Numerical Heat Transfer and Fluid 
Flow, Hemisphere, Washington (1980). 

29. Lee, S. L., “A Strongly-Implicit Solver for 
Two-Dimensional Elliptic Differential Equations,” 
Numerical Heat Transfer B, 16, pp. 161-178 (1989). 

30. Lee, S. L. and Tzong, R. Y., “Artificial Pressure for 
Pressure-Linked Equation,” International Journal of 
Heat and Mass Transfer, 35, pp. 2705-2716 (1992). 

31. Peng, Y. F., Mittal, R., Sau, A. and Hwang, R. R., 
“Nested Cartesian Grid Method in Incompressible 
Viscous Fluid Flow,” Journal of Computational 
Physics, 229, pp. 7072-7101 (2010). 

32. Majumdar, S., Iaccarino, G. and Durbin, P., “RNS 
Solvers with Adaptive Structured Boundary 
Non-Conforming Grids,” Annual Research Briefs, 
Center for Turbulence Research, NASA Ames/ 
Stanford University, pp. 353-366 (2001). 

33. Coutanceau, M. and Bouard, R., “Experimental De-
termination of the Main Features of the Viscous 
Flow in the Wake of a Circular Cylinder in Uniform 
Translation. Part 1. Steady Flow,” Journal of Fluid 

Mechanics, 79, pp. 231-256 (1977). 

34. Dennis, S. C. R. and Chang, G., “Numerical Solu-
tions for Steady Flow Past a Circular Cylinder at 
Reynolds Number up to 100,” Journal of Fluid Me-
chanics, 42, pp. 471-489 (1970). 

35. Linnick, M. N. and Fasel, H. F., “A High-Order Im-
mersed Interface Method for Simulating Unsteady 
Iincompressible Flows on Irregular Domains,” 
Journal of Computational Physics, 204, pp. 157-192 
(2005). 

36. Taira, K. and Colonius, T., “The Immersed Boundary 
Method: A Projection Approach,” Journal of Com-
putational Physics, 225, pp. 2118-2137 (2007). 

37. Lee, J. and You, D., “An Implicit Ghost-Cell Im-
mersed Boundary Method for Simulations of Mov-
ing Body Problems with Control of Spurious Force 
Oscillations,” Journal of Computational Physics, 
233, pp. 295-314 (2013). 

38. Dutsch, H., Dorst, F., Becker, S. and Lienhart, H., 
“Low-Reynolds-Number Flow around an Oscillating 
Circular Cylinder at Low Keulegan-Carperter Num-
ber,” Journal of Fluid Mechanics, 360, pp. 249-271 
(1998). 

39. Taneda, S. and Honji, H., “Unsteady Flow past a 
Flat Plate Normal to the Direction of Motion,” 
Journal of the Physical Society of Japan, 30, pp. 
262-272 (1971). 

40. Wang, Z. J., “Dissecting Insect Flight,” Annual Re-
view of Fluid Mechanics, 37, pp. 183-210 (2005). 

41. Wang, Z. J. and Russell, D., “Effect of Forewing and 
Hindwing Interactions on Aerodynamic Forces and 
Power in Hovering Dragonfly Flight,” Physical Re-
view Letters, 99, 148101 (2007). 

42. Richardson, L. F., “The Approximate Arithmetical 
Solution by Finite Differences of Physical Problems 
Involving Differential Equations, with an Applica-
tion to the Stresses in a Masonry Dam,” Philosophi-
cal Transactions of the Royal Society A, 210, pp. 
307-357 (1910). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

(Manuscript received October 19, 2016, 
accepted for publication April 14, 2017.)  

 

https://doi.org/10.1017/jmech.2017.34 Published online by Cambridge University Press

https://doi.org/10.1017/jmech.2017.34


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (Japan Color 2001 Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.5
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHT <FEFF005B683964DA300C0032003400300030006400700069002D0036300D005D00204F7F752890194E9B8A2D7F6E5EFA7ACB7684002000410064006F006200650020005000440046002065874EF69069752865BC9AD854C18CEA76845370524D5370523786557406300260A853EF4EE54F7F75280020004100630072006F0062006100740020548C002000410064006F00620065002000520065006100640065007200200035002E003000204EE553CA66F49AD87248672C4F86958B555F5DF25EFA7ACB76840020005000440046002065874EF63002>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks true
      /AddColorBars true
      /AddCropMarks true
      /AddPageInfo true
      /AddRegMarks true
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions false
        /ConvertStrokesToOutlines true
        /ConvertTextToOutlines true
        /GradientResolution 175
        /LineArtTextResolution 2400
        /PresetName (2400dpi)
        /PresetSelector /UseName
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 0
      /MarksWeight 0.283460
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /UseName
      /PageMarksFile /JapaneseWithCircle
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed true
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.275 841.890]
>> setpagedevice




