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Abstract

The first publication demonstrating that major depressive disorder (MDD) is associated
with alterations in the gut microbiota appeared in 2008 (Maes et al., 2008). The purpose
of the present study is to delineate a) the microbiome signature of the phenome of depres-
sion, including suicidal behaviours (SB) and cognitive deficits; the effects of adverse child-
hood experiences (ACEs) and recurrence of illness index (ROI) on the microbiome; and the
microbiome signature of lowered high-density lipoprotein cholesterol (HDLc). We deter-
mined isometric log-ratio abundances or prevalences of gut microbiome phyla, genera, and
species by analysing stool samples from 37 healthy Thai controls and 32 MDD patients
using 16S rDNA sequencing. Six microbiome taxa accounted for 36% of the variance in
the depression phenome, namely Hungatella and Fusicatenibacter (positive associations)
and Butyricicoccus, Clostridium, Parabacteroides merdae, and Desulfovibrio piger (inverse
association). This profile (labelled enterotype 1) indicates compositional dysbiosis, is
strongly predicted by ACE and ROI, and is linked to SB. A second enterotype was developed
that predicted a decrease in HDLc and an increase in the atherogenic index of plasma
(Bifidobacterium, P. merdae, and Romboutsia were positively associated, while
Proteobacteria and Clostridium sensu stricto were negatively associated). Together, enter-
otypes 1 and 2 explained 40.4% of the variance in the depression phenome, and enterotype 1
in conjunction with HDLc explained 39.9% of the variance in current SB. In conclusion, the
microimmuneoxysome is a potential new drug target for the treatment of severe depression
and SB and possibly for the prevention of future episodes.

Summations
• This study developed an enterotype dysbiosis index of major depression based on
microbiota phyla, genera, and species.

• This depression enterotype is associated with the recurrence of illness (ROI), sui-
cidal behaviours, and the severity of depression and is modulated by adverse child-
hood experiences (ACEs).

• This enterotype indicates compositional dysbiosis with increased pathogenesis
(breakdown of the gut barrier, LPS translocation and inflammation, increased
TMAO production) and lowered salutogenesis (decreased butyric acid, hydrogen
disulphide, gut–immune protection against oxidative stress, and inflammation).
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Considerations
• The enterotypes constructed here should be cross-
validated in a new Thai study population.

• Future research should construct region- and culture-
specific dysbiosis indices of ROI, suicidal behaviours,
and severity of illness.

• The microimmuneoxysome (or gut–microbiome–
immune–oxidative-stress axis) is a new drug target
to treat depression, ‘deprogramming’ the detrimental
ACE effects and ‘desensitising’ the ROI, thus prevent-
ing new episodes.

Introduction

2008 marked the first publication demonstrating that major
depressive disorder (MDD) is associated with alterations in the
gut microbiota (Maes et al., 2008). This study demonstrated that
serum levels of IgA and IgM directed against the lipopolysacchar-
ides (LPS) of Pseudomonas putida, Hafnia alvei, Morganella mor-
ganii, Citrobacter koseri, Pseudomonas aeruginosa, and Klebsiella
pneumoniae were significantly higher in MDD compared to con-
trols (Maes et al., 2008), indicating that a significant proportion of
MDD patients exhibit increased translocation of LPS or Gram-
negative enterobacteria via increased gut permeability or leaky
gut (Maes, 2008; Maes et al., 2008). Importantly, this increased
translocation of LPS or Gram-negative bacteria was strongly asso-
ciated with numerous inflammatory, immune activation, oxidative
stress, and autoimmunity indicators (Maes et al., 2012). The pri-
mary findings of Maes et al. (2008) were corroborated by recent
findings that MDD is associated with increased gut permeability
(as measured by the lactulose/mannitol test), increased levels of
Morganella and Klebsiella, leaky gut biomarkers, and associations
between the latter and inflammatory or anti-inflammatory mark-
ers, such as T regulatory (Treg) cells (Calarge et al., 2019; Ohlsson
et al., 2019; Alvarez-Mon et al., 2021; Runners-Up, 2013; Iordache
et al., 2022; Simeonova et al., 2018).

As a result, it was proposed that increased LPS translocation
may be one of the causes of immune activation and oxidative stress
inMDD by activating the toll-like receptor-4 (TLR4) complex and,
consequently, nuclear factor-κB (NF-κB) (Lucas & Maes, 2013).
There is now evidence that MDD is a disorder characterised by
activated immune-inflammatory and nitro-oxidative pathways
and that these pathways to a large extent determine the MDD phe-
nome and accompanying suicidal behaviours (SB) (Maes et al.,
1990; 1997; Maes et al., 2021; 2022a; 2022b; Maes, 2022;
Vasupanrajit et al., 2021; 2022). Activated immune and oxidative
stress pathways may cause epithelial tight junction abnormalities
that increase intestinal permeability and bacterial translocation
(Maes et al., 2008; 2012). Consequently, there are reciprocal
associations between gut microbiota and increased bacterial trans-
location due to leaky gut, and systemic immune-oxidative path-
ways and this interconnected system is best referred to as the
‘microimmuneoxysome’.

Intestinal dysbiosis, specifically the disbalance in the gut micro-
biome between pathobionts (pro-inflammatory, causing injuries to
epithelial cells and tight junctions) and microbiota that promote
salutogenesis (including anti-inflammatory activities, support of
gut homeostasis and tight junctions, production of short-chain
fatty acids (SCFAs) and vitamins), is another potential cause of
leaky gut and bacterial translocation (Simeonova et al., 2018;

Rudzki & Maes, 2020; Slyepchenko et al., 2017). Gut dysbiosis
may also contribute to the co-occurrence of MDD and comorbid
metabolic disorders such as type 2 diabetes mellitus (T2DM),
obesity, and atherosclerosis (Slyepchenko et al., 2016; Agusti
et al., 2018).

Using second-generation sequencing of bacterial 16S RNA
genes in conjunction with Linear Discriminant Analysis Effect
Size (LefSe) analysis, it was discovered that nearly all studies report
changes in gut microbiome phyla, genera, or species (Borkent et al.,
2022). Nevertheless, the latter systematic review did not reveal con-
sistent changes in microbiome communalities across studies
(Borkent et al., 2022). Possibly, one could deduce from the several
studies in the latter systematic review that there are maybe
alterations in Lactobacillus, Streptococcus, Eggerthella, and
Faecalibacterium in patients with mental illnesses.

Several factors may account for the inconsistent nature of these
results. First, it is remarkable that the majority of authors failed to
discuss the results in terms of compositional dysbiosis, leaving the
results without any mechanistic explanation. Second, the micro-
biome is strongly influenced by diet; consequently, region- or cul-
ture-specific alterations in the microbiome may define different
microbiome profiles of MDD in different countries or cultures
(Singh et al., 2017). Last but not least, the diagnosis of MDD is
practically useless for biomarker research because MDD is an
incorrect outcome variable that can hardly be used in statistical
analysis (Maes, 2022; Maes et al., 2022a; Maes & Stoyanov,
2022). Indeed, MDD is a heterogeneous group that includes severe
depression, melancholia phenotypes, mild depression, and pos-
sibly even normal human emotional responses such as grief, sad-
ness, and despondency (Maes et al., 2022a; Maes & Stoyanov,
2022). Moreover, the DSM/ICD diagnostic criteria for MDD are
unreliable, with low inter-psychiatrist reproducibility (Maes &
Stoyanov, 2022). Furthermore, MDD is a post-hoc, higher-order
construct that is limited in scope because it is a flawed binary con-
struct that does not include the major features of depression, such
as recurrence of illness (ROI), lifetime (LT) and current SB, and the
phenome of depression (Maes & Stoyanov, 2022).

We have recently developed a new clinimetrics method,
referred to as ‘precision nomothetic psychiatry’, which allows us
to examine the causal links between causome/protectome factors,
ROI, cognitive deficits, and a quantitative score of the phenome of
depression (Maes, 2022; Maes et al., 2021; 2022b; Maes &
Stoyanov, 2022; Simeonova et al., 2021). Our models demonstrate
that adverse childhood experiences (ACEs) and increased translo-
cation of Gram-negative bacteria are strongly associated with the
phenome of depression (conceptualised as latent vectors extracted
from symptom domains, SB, etc.) and that these effects are medi-
ated by ROI, lowered antioxidant defences, including lowered
high-density lipoprotein cholesterol (HDLc), and activated
immune and oxidative stress pathways (Moraes et al., 2018;
Maes et al., 2019; 2021; 2022b; Maes, 2022). It is intriguing that
a pilot study discovered that ACE could influence the microbiome
composition during pregnancy, thus contributing to systemic
inflammatory responses (Hantsoo et al., 2019). However, there
are no data indicating whether ACE and ROImay affect the micro-
biome or whether compositional dysbiosis may mediate the effects
of ACE on the phenome of depression, which includes cognitive
deficits and SB.

Hence, the present study was conducted to delineate a) the
microbiome signature of the phenome of depression, including
SB and cognitive deficits; b) the effects of ACE and ROI on the
microbiome; and c) the microbiome signature of lowered HDLc,
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as a major marker of antioxidant defences and increased atheroge-
nicity in depression.

Materials and methods

Participants

We recruited 37 normal controls and 32 MDD patients from the
outpatient clinic of the Department of Psychiatry at King
Chulalongkorn Memorial Hospital in Bangkok, Thailand.
Participants were of both sexes and between the ages of 19 and
58. The control group was recruited through word of mouth in
the same catchment area as the patients, Bangkok, Thailand.
Depressed patients were given a diagnosis of MDD based on
DSM-5 criteria. Participants (patients and controls) with a
DSM-5 axis 1 disorder diagnosis other than MDD were excluded
from the study, including those with autism, obsessive–compulsive
disorder, post-traumatic stress disorder, substance use disorder
(except nicotine dependence), bipolar disorder, psycho-organic
disorders, schizophrenia, and schizo-affective disorder. In addi-
tion, excluded from the study were healthy control participants
with any DSM-5 axis 1 disorder diagnosis (see above) and
MDD, and a positive family history of MDD, bipolar disorder,
or suicide. Furthermore, participants were excluded for medical ill-
ness and conditions including: a) neuroinflammatory and neuro-
degenerative disorders, such as multiple sclerosis, Alzheimer’s and
Parkinson’s disease, epilepsy, and stroke; b) immune and autoim-
mune disorders, such as cancer, diabetes type 1, psoriasis, systemic
lupus erythematosus, COPD, inflammatory bowel disease, irritable
bowel syndrome; and c) allergic or inflammatory reactions 3
months prior to the study. In addition, we excluded: a) pregnant
or lactating women; b) patients who were ever treated with immu-
nomodulatory drugs like glucocorticoids or immunosuppressive;
c) subjects who were treated with pharmaceutical dosages of anti-
oxidants or omega-3 supplements; and d) patients who had suf-
fered from moderate/critical COVID-19 and who had suffered
from mild COVID-19 6 months prior to enrolment.

Before participating in this study, all participants provided writ-
ten informed consent. The research was conducted in accordance
with international and Thai ethical standards and privacy laws.
The Institutional Review Board of the Chulalongkorn University
Faculty of Medicine in Bangkok, Thailand (#528/63) approved
the study in accordance with the International Guidelines for
the Protection of Human Subjects as required by the
Declaration of Helsinki, The Belmont Report, the CIOMS
Guideline, and the International Conference on Harmonization
in Good Clinical Practice.

Clinical assessments

A well-trained research psychologist experienced in the study of
affective disorders conducted semi-structured interviews to collect
socio-demographic information, such as gender, age, and level of
education. The same research psychologist also collected clinical
information, including the number of previous depressive epi-
sodes, family medical history, medical history, and psychotropic
medications. A senior psychiatrist diagnosed MDD utilising
DSM-5 criteria and the Mini International Neuropsychiatric
Interview (M.I.N.I.) (Udomratn & Kittirattanapaiboon, 2004).
The M.I.N.I. was used to evaluate other axis-1 diagnoses and to
exclude patients and controls accordingly. The 17-item
Hamilton Depression Rating Scale was used by the research psy-
chologist to assess the severity of depressive symptoms

(Hamilton, 1960). The Beck Depression Inventory II (BDI-II)
was used to assess the severity of self-reported depression (Beck
et al., 1996). The latter is a 21-item self-report inventory that
was translated into Thai by Thavichachart et al. (2009) to assess
the presence and severity of depressive symptoms.

ACEs were measured using a Thai translation of the Adverse
Childhood Experiences Questionnaire (Rungmueanporn et al.,
2019). This questionnaire consists of 28 questions regarding child-
hood traumatic experiences. In the present study, we used five ACE
domains, including emotional abuse (two items), physical abuse
(two items), sexual abuse (four items), emotional neglect (five
items), physical neglect (five items), and used principal component
analysis (PCA) as a feature reductionmethod to compute scores on
sexual abuse, emotional neglect, and physical neglect (see below).
In addition, we examined whether it was possible to derive PCs
from all abuse and neglect symptoms in order to create PC scores
that reflect ‘abuse’ and ‘neglect’. We utilised the Columbia Suicide
Severity Rating Scale (C-SSRS) to assess the severity of LT and cur-
rent suicidal ideation (SI) and attempts (SA). The C-SSRS was cre-
ated by Posner et al. (2011). The test measures the severity and
intensity of SI, attempts, lethality, and self-harm without suicidal
intent.We calculated the PCs extracted from LT and current SI and
SA and SB (ideation and attempts combined) as explained previ-
ously (Maes et al., 2022a). As such, we derived scores of LT_SI,
LT_SA, LT_SB, current_SI, current_SA, current_SB, and overall
SB (a PC extracted from LT and current SI and SA) (Maes
et al., 2022a; Maes, 2022). The research psychologist also examined
the Stroop colour and word test, namely part 1 (a neutral trial that
measures reaction times), part 2 (congruent trial), and part 3
(incongruent trial) (Stroop, 1935). We examined whether the first
PC could reflect aberrations in the three Stroop subtests. Tobacco
use disorder (TUD)was identified and diagnosed using DSM-5 cri-
teria. Metabolic syndrome (MetS) was diagnosed using the criteria
established by the International Diabetes Federation (Alberti et al.,
2006).Weight (in kilos) was divided by the person’s squared height
(in metres) to determine their body mass index (BMI).

Assays

Stool sample collection, DNA extraction, 16S rDNA amplification,
and 16S rDNA amplicon sequencing based on Oxford Nanopore
Technology were performed as published previously (Maes et al.,
2022c). Approximately 20 mg of stool was collected in sterile test
tubes containing 2 ml of DNA/RNA ShieldTM reagent (ZYMO
Research, USA) and stored at −20°C until analysis. The DNA
was extracted using the ZymoBIOMICSTM DNA Miniprep Kit
(ZYMO Research, USA) according to the manufacturer’s instruc-
tions. ‘The full length of the bacterial 16S rDNA gene (1.5 kb)
was amplified by PCR using specific primers: 5 0-TTT
CTGTTGGTGCTGATATTGCAGRGTTYGATYMTGGCTCA-
G-3 0 and 5 0-ACTTGCCTGTCGCTCTATCTTCCGGYTACCTT
GTTACGACTT-3 0 as described previously (Jitvaropas et al.,
2022). The first round of PCR reaction contained 1 μg of DNA
template, 0.2 μM of each primer, 0.2 mM of dNTPs, 1X
Phusion™ Plus buffer, 0.4 U of Phusion Plus DNA Polymerase
(Thermo Scientific, USA), and nuclease-free water in a final vol-
ume of 20 μl. The PCR reaction was performed under the following
thermal conditions: 98°C for 30 s; 25 cycles of amplification (98°C
for 10 s, 60°C for 25 s, 72°C for 45 s) and followed by 72°C for
5 min. After that, the barcodes were attached to the 16S rDNA
amplicon by 5 cycles of amplification (98°C for 10 s, 60°C for
25 s, 72°C for 45 s) based on PCR Barcoding Expansion 1–96
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(EXP-PBC096) kit (Oxford Nanopore Technologies, UK). The
amplicons were purified using QIAquick® PCR Purification Kit
(QIAGEN, Germany) according to the manufacturer’s protocol.
The concentrations of purified amplicons were measured using
a Qubit 4 fluorometer with Qubit dsDNA HS Assay Kit
(Thermo Scientific, USA). Then the amplicons with different barc-
odes were pooled at equal concentrations and purified using 0.5X
Agencourt AMPure XP beads (Beckman Coulter, USA). After that,
the purified DNA library was end-repaired and adaptor-ligated
using Ligation Sequencing Kit (SQK-LSK112) (Oxford
Nanopore Technologies, UK). Finally, the library was sequenced
by the MinION Mk1C platform with R10.4 flow cell (Oxford
Nanopore Technologies, UK). Guppy basecaller software v6.0.7
(Wick et al., 2019) (Oxford Nanopore Technologies, UK) was used
for base-calling with a super-accuracy model to generate pass reads
(FASTQ format) with a minimum acceptable quality score
(Q> 10). The quality of reads was examined by MinIONQC
(Lanfear et al., 2019). Then, FASTQ sequences were demultiplexed
and adaptor-trimmed using Porechop v0.2.4 (Porechop, https://
github.com/rrwick/Porechop). The filtered reads were then clus-
tered, polished, and taxonomically classified by NanoCLUST
(Rodriguez-Perez et al., 2021) based on the full-length 16S
rRNA gene sequences from the Ribosomal Database Project
(RDP) database (Cole et al., 2003)’.

HDLc and triglyceride concentrations were measured using the
Alinity C (Abbott Laboratories, USA; Otawara-Shi, Tochigi-Ken,
Japan) with accelerator selective detergent (HDLc) and glycerol
phosphate oxidase (triglyceride) procedures. HDLc and triglycer-
ide coefficients of variation were 2.6% and 2.2%, respectively. In
our study, we used HDLc as well as a z unit-based composite scores
reflecting the atherogenic index of plasma (zAIP) as z triglycerides
– z HDLc (Morelli et al., 2021; Mousa et al., 2022).

Statistical analysis

Analysis of variance and univariate General Linear Model analysis
were used to determine the differences between study groups regard-
ing continuous variables. At p< 0.05, pairwise comparisons of group
means were performed to identify differences between the three study
groups. In addition, multiple comparisons were corrected using the
false discovery rate (FDR) p-value (Benjamini & Hochberg, 1995).
Analysis of contingency tables was used to make comparisons
between variables based on categories (Chi-square tests).
Correlations between variables were examined using Pearson’s prod-
uct-moment correlation coefficients. While allowing for the effects of
sex, age, education, and BMI, multivariate regression analyses were
conducted to determine the best predictors of the phenome of depres-
sion. In addition to the manual regressionmethod, we also utilised an
automated method with p-values of 0.05 for model entry and 0.10 for
model elimination. We calculated the model statistics (F, df, and p
values) and total variance explained (VE) (R2), and for each predictor,
the standardised beta coefficients with t statistics and exact p-values.
In addition, the variance inflation factor and tolerance were assessed
to detect any collinearity or multicollinearity issues. Using the White
andmodified Breusch–Paganhomoscedasticity tests, heteroskedastic-
ity was determined. We have used IBM, SPSS windows version 28 to
perform all the above statistical analyses. Moreover, we employed dif-
ferent automatic regression analyses to define the best microbiota
phyla, genera, and species data predicting SB, PC_STROOP, and
the phenome of MDD: a) ridge regression analysis (λ= 0.1) with tol-
erance= 0.4 (using Statistica, windows version 12); b) forward step-
wise automatic linear modelling analyses with the overfit criterion as

entry/removal criterion with maximum effects number of 6; and c)
best subsets with overfit prevention criterion performed on the 20
most importantmicrobiota obtained in regressions a and b (both per-
formed with SPSS 28). Following these analyses, we performed
manual regression analysis using SPSS 28 and Statistica 12 to check
the finalmodels for collinearity and residual distributions and to com-
pute and display partial regression analysis of clinical data on the
microbiome taxa.We used logarithmic or rank inverse-normal trans-
formations to normalise the data distribution. The phylum, genus,
and species microbiota abundance data were processed in isometric
log-ratio (ILR) Box–Cox transformation (ILR abundance), while
microbiota data with less than 35% measurable data were entered
as dummy variables (prevalence). The significance level of all statis-
tical analyses was determined using 0.05-valued two-tailed tests.

PCA was used as a feature reduction method to construct new
PCs that reflect an underlying concept. Towards this end, the VE
by the first PC should be at least> 50%, while all variables should
show high loadings on the first PC (namely > 0.66). Furthermore,
the factoriability of the correlation matrix was checked with the
Kaiser–Meyer–Olkin (KMO) measure of sampling adequacy (val-
ues <0.5 indicate that remedial actions should be taken and val-
ues> 0.7 indicate a more than adequate sampling). The
sphericity test developed by Bartlett is used in order to test the null
hypothesis that the variables included in the population correlation
matrix are uncorrelated. Moreover, we also inspected the anti-
image correlation matrix as an index of sampling adequacy.
Two-step clustering analysis was performed to discover whether
a valid cluster of MDD patients could be retrieved based on the
microbiome and clinical data (number of clusters prespecified as
3, Schwarz’s Bayesian criterion). The clustering quality was evalu-
ated using the silhouette measure of cohesion and separation,
which should be >0.5 (indicating an adequate cluster solution).
According to the results of an a priori calculation of the sample size
performed with G*Power 3.1.9.4 (multiple regression analysis with
6 covariates), the estimated sample size should be 65 when using an
effect size of 0.2 at p= 0.05 (two-tailed) and power= 0.08.

Using partial least squares (PLS) path analysis (SmartPLS)
(Ringle et al., 2012; Hair et al., 2019), we investigated the potential
causal links between ACE, ROI, the microbiome, and the phenome
of depression. PLS path analysis was only carried out if both the
inner and the outer models satisfied the quality requirements out-
lined in the following list: a) the overall model fit, namely the stand-
ardised root mean square residuals (SRMRs) is satisfactory, namely
SRMR <0.08; b) the outer latent vectors exhibit accurate construct
and convergence validity, as shown by average variance extracted
(AVE)> 0.5, composite reliability> 0.8, rho A> 0.8, Cronbach’s
alpha> 0.7, and all outer loadings> 0.66 at p<0.001, c) the model’s
prediction performance is adequate using PLSPredict, and d) con-
firmatory tetrad analysis shows that the outer models are not
mis-specified as reflective models. In the event that all of the afore-
mentioned model quality data satisfy the predetermined criteria, we
carry out a complete PLS path analysis with 5,000 bootstrap samples,
produce the path coefficients (with exact p-values), and additionally
compute the specific and total indirect (i.e. mediated) effects in
addition to the total effects.

Results

Results of PCA

We were able to extract reliable PCs from the four ACE items
denoting sexual abuse (labelled PC_sexabuse) (KMO = 0.565,
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Bartlett’s sphericity test χ2= 126.547, df = 6, p< 0.001,
VE= 59.00%, all loadings> 0.646) and five ACE items denoting
emotional neglect (labelled PC_ emneglect) (KMO= 0.869,
Bartlett’s sphericity test χ2= 409.137, df= 10, p< 0.001,
VE= 86.82%, all loadings> 0.919). Since we were unable to extract
one PC from the five ACE physical neglect data, we used the z
composite score of the sum of the five items in the analyses
(dubbed: Comp_physneglect). We also extracted PCs from the
physical and emotional abuse items (dubbed as PC_physabuse
and PC_emabuse, respectively). We were able to extract one reli-
able PC from PC_sexabuse, PC_emabuse, and PC_physabuse
(labelled PC_abuse) (KMO = 0.565, Bartlett’s sphericity test
χ2 = 25.014, df = 3, p< 0.001, VE= 56.08%, all loadings> 0.676).
Overall neglect was conceptualised as the first PC extracted from
PC_emneglect and Comp_physneglect scores (labelled as
PC_neglect). We were able to extract one PC from the three
Stroop subtest scores (KMO= 0.572, Bartlett’s sphericity test
χ2 = 60.108, df = 3, p< 0.001, VE= 65.75%, all loadings> 0.719),
labelled PC_Stroop.

Table 1 shows that we were able to extract one reliable PC from
the total number of episodes, LT_SI and LT_SA (labelled ROI);
and one reliable PC from the total BDI and HAMD scores and
current SBs (labelled PC_phenome). We were also able to extract
one reliable PC from the number of depressive episodes, LT_SB,
total BDI and HAMD scores, and Curr_SB (labelled PC_ROIþ
phenome).

Construction of the first enterotype

Table 2 shows the outcome of two different multiple regression
analyses with PC_phenome as the dependent variable and the
microbiome taxa as explanatory variables. Both linear modelling
analysis and ridge regression analysis showed basically the same
results. Using linear modelling analysis, up to 36.1% of the variance
in PC_phenome was explained by six taxa, namely Hungatella and
Fusicatenibacter (both positively) and Butyricicoccus, Clostridium,
Parabacteroides merdae, and Desulfovibrio piger (all inversely asso-
ciated). Figure 1 shows the partial regression of PC_phenome on
Butyricicoccus. Ridge regression showed that 34.3% of the variance
in PC_phenome was explained by the same taxa, except P. merdae.
Consequently, we have computed a z unit-based composite score
(labelled enterotype 1) based on the sum of the six taxa with z trans-
formation of z Fusicatenibacter þ Hungatella (0 or 1 score) –
z Butyricicoccus – z Clostridium – z P. merdae – D. piger (0 or
1 score).

Table 1 shows that one reliable PC could be extracted from the
three ROI indices and enterotype 1 (PCA #4), indicating that the
latter is strongly associated with ROI. Moreover, one validated PC
(PCA#5) could be extracted from ROI, BDI, HAMD, Curr_SB, and
enterotype 1, indicating that the latter belongs to the same core as
the ROI–phenome association. Finally, we were also able to extract
one PC from PC_abuse, ROI, PC_phenome, and enterotype
1 (PCA#6).

Consequently, we have examined whether we could retrieve a
more severe MDD class and, therefore, performed clustering
analysis with diagnosis, ROI, enterotype 1, and PC_phenome data
as clustering variables. Table 3 shows that three clusters were
formed, namely healthy controls (n= 37), MDD patients with less
severe features (labelled simple dysmood disorder or SDMD, n
= 17), and those with more severe features (labelled major dys-
mood disorder or MDMD, n= 12). Of course, we did not carry
out this analysis to define diagnostic criteria for both clusters as Ta
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this would need a larger study group and cross-validation. The only
aim is to show the demographic, clinical, and biomarkers data
measurements in controls versus patients divided into less and

more severe patients. It should be stressed that the primary out-
come data of this study are the multiple regression (including
PLS) analyses.

Table 2. Results of linear modelling analyses with the phenome scores as dependent variables, and microbiota assessments as explanatory variables, while allowing
for the effects of age, sex, body mass index, and drug status

Dependent variable Explanatory variables

Coefficients of input variables
Corrected model statis-

tics

B/SE t p 95%CI Importance F df p

#1. PC_Phenome Model (36.1%) 6.83 6/56 <0.001

Butyricicoccus* −0.327 (0.105) −3.13 0.003 −0.537; −0.117 0.196

Clostridium* −0.328 (0.108) −3.04 0.004 −0.543; −0.112 0.186

Hungatella** 0.832 (0.275) 3.03 0.004 0.281; 1.382 0.184

Fusicatenibacter* 0.304 (0.104) 2.91 0.005 0.095; 0.513 0.171

Parabacteroides merdae* −0.307 (0.110) −2.78 0.007 −0.528; −0.086 0.155

Desulfovibrio piger** −0.626 (0.270) −2.31 0.024 −1.167; −0.084 0.108

Dependent variable Explanatory variables β SE t p R2 F df p

#2. PC_Phenome Model 0.343 5.95 5/57 <0.001

Clostridium* −0.2600 0.1112 −2.34 0.023

Butyricicoccus* −0.3586 0.1106 −3.24 0.002

Desulfovibrio piger** −0.2671 0.1133 −2.36 0.022

Fusicatenibacter* 0.2447 0.1083 2.26 0.028

Hungatella** 0.2402 0.1075 2.23 0.029

Dependent variable Explanatory variables B/SE t p 95% CI Importance F df p

#3. HDLc Model 9.57 5/55 <0.001

Bifidobacterium* 0.451 (0.96) 4.71 <0.001 0.259; 0.643 0.299

Proteobacteria* −0.379 (0.095) −3.97 <0.001 −0.570; −0.188 0.213

Clostridium sensu stricto* −0.421 (0.116) −3.63 0.001 −0.654; −0.188 0.177

Romboutsia* 0.341 (0.117) 2.92 0.005 0.107; 0.575 0.115

Parabacteroides merdae* 0.284 (0.100) 2.85 0.006 0.084; 0.484 0.109

Regression #1: results of forward stepwise with overfit prevention criterion; regression #2: results of ridge regression and tolerance (0.4); * abundance data processed in ILR Box–Cox
transformation; ** prevalence.
PC_Phenome, first principal component extracted from measurements of severity of depression combined with current suicidal behaviours; HDLc, high-density lipoprotein cholesterol.

Figure 1. Partial regression of the phenome of
depression (PC_phenome) on the isometric log-
ratio abundance of Butyricicoccus.
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Features of MDD, SDMD, and MDMD

Table 3 shows the socio-demographic, clinical, and biomarker data
measurements in controls and patients with MDMD and SDMD.
There were no significant differences in age, sex, education, BMI,
MetS, TUD, and prior mild COVID-19 infection between the three
groups. There were no differences in the drug state (use of anti-
depressants or other psychotropic drugs, namely, atypical antipsy-
chotics: n= 4, mood stabilisers: n= 1, benzodiazepines: n= 8)
between MDMD and SDMD. PC_emabuse was significantly
greater in patients than in controls. PC_physabuse was

significantly higher in MDMD than in the two other groups,
whereas PC_sexabuse was greater in MDMD than controls.
PC_abuse was significantly different between the three groups
and increased from controls to SDMD to MDMD. The number
of depressive episodes was significantly higher in MDMD than
in SDMD. LT_SB and LT_SA were significantly higher in patients
than in controls, while LT_SI was higher in MDMD than in con-
trols and SDMD. ROI was significantly higher in MDMD than in
SDMD. Patients with MDD showed significantly lower PC_Stroop
values than controls. The total BDI, HAMD, Curr_SB, and

Table 3. Socio-demographic, clinical, and biomarker data in healthy controls (HC) and major depressed (MDD) patients divided into those with major (MDMD) and
simple (SDMD) dysmood disorder

Variables HC (n= 37)A SDMD (n= 17)B MDMD (n= 12)C F df p-value

Age (years) 28.4 (6.9) 26.5 (9.0) 26.1 (10.6) 0.53 2/63 0.593

Sex (female/male) 31/6 14/3 9/3 0.47 2 0.789

Education 16.0 (2.1) 17.2 (3.5) 15.2 (2.8) 2.21 2/63 0.118

BMI 22.59 (4.91) 25.05 (6.35) 25.51 (5.64) 1.96 2/63 0.150

MetS (no/yes) 32/5 15/2 11/1 FFHET 1.0

TUD (no/yes) 35/2 13/4 10/2 FFHET 0.116

Prior mild COVID (no/yes) 31/6 16/1 9/3 FFHET 0.367

Antidepressants (no/yes) – 4/13 2/10 FEPT 1.0

Other psychotropic drugs (no/yes) – 12/5 5/7 2.43 1 0.119

PC_emabuse (z scores) −0.396 (0.511)B,C 0.311 (1.100)A 0.641 (1.334)A 8.06 2/63 <0.001

PC_physabuse (z scores) −0.301 (0.405)C −0.054 (0.772)C 0.958 (1.808)A,B 8.84 2/63 <0.001

PC_sexabuse −0.343 (0)C −0.211 (0.977) 0.784 (1.903)A KWT <0.001

PC_emneglect −0.020 (1.132) 0.133 (0.774) −0.196 (0.911) 0.37 2/63 0.692

Comp_physneglect −0.081 (1.070) 0.180 (0.933) −0.006 (0.754) 0.39 2/63 0.680

PC_abuse −0.458 (0.292)B,C 0.190 (0.758)A,C 1.069 (1.709)A,B 15.66 2/63 <0.001

PC_neglect −0.053 (1.135) 0.166 (0.836) −0.107 (0.810) 0.34 2/63 0.711

Depressive episodes – 1.53 (0.80)C 4.58 (5.33)B 5.48 1/27 0.027

LT_SI −0.753 (0.501)C 0.828 (0.648)C 1.079 (0.617)A,B 73.63 2/63 <0.001

LT_SA −0.541 (0)B,C 0.513 (1.154)A 0.956 (1.324)A KWT <0.001

LT_SB −0.693 (0.270)B,C, 0.728 (0.852)A 1.101 (0.974)A 52.65 2/63 <0.001

ROI −0.780 (0.211)B,C 0.764 (0.615)A,C 1.310 (0.691)A,B 129.34 2/63 <0.001

PC_Stroop 0.365 (0.779)B,C −0.367 (0.774)A −0.688 (1.003)A 9.55 2/63 <0.001

BDI 5.8 (7.3)B,C 20.3 (10.5)A,C 28.3 (12.2)A,B 33.27 2/63 <0.001

HAMD 1.8 (1.8)B,C 13.4 (4.7)A,C 17.8 (4.9)A,B 132.25 2/63 <0.001

Curr_SB −0.588 (0)B,C 0.263 (0.781)A,C 1.276 (1.433)A,B KWT <0.001

PC_phenome −0.761 (0.312)B,C 0.525 (0.642)A,C 1.316 (0.736)A,B 91.78 2/63 <0.001

Enterotype 1 −0.837 (1.222)B,C 0.194 (1.594)A,C 1.841 (1.509)A,B 17.60 2/63 <0.001

Enterotype 2 −0.242 (2.016) −0.655 (1.693) −1.117 (2.068) 0.98 2/63 0.380

HDLc mg/dL 60.18 (12.59) 55.52 (14.31) 60.50 (16.43) 0.75 2/63 0.477

Triglycerides mg/dL 96.08 (57.78) 89.23 (27.93) 96.08 (51.06) 0.12 2/63 0.891

zAIP −0.051 (1.054) 0.067 (0.756) −0.065 0.092 2/63 0.912

All results of univariate GLM analysis; df, degrees of freedom; data are expressed as mean (SD). BMI, body mass index; MetS, metabolic syndrome; TUD, tobacco use disorder; PC, first principal
component; Comp, composite score; Emneglect, emotional neglect; physneglect, physical neglect; PC_abuse, index of physical þ emotional þ sexual abuse; LT_SI, lifetime suicidal ideation;
LT_SA, lifetime suicidal attempts; ROI, recurrence of illness index; PC_Stroop, first PC extracted from 3 Stroop subtest scores; BDI, Beck Depression Inventory score; HAMD, Hamilton Depression
Rating Scale score; Curr_SB, current suicidal behaviours; PC_phenome, PC extracted from BDI, HAMD, and Curr_SB; Enterotype 1 and 2, two dysbiosis indices with the first reflecting depression
and the second antioxidant-metabolic alterations of depression; HDLc, high-density lipoprotein cholesterol; AIP, atherogenic index of plasma.
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PC_phenome scores increased from controls à SDMD à MDMD.
All differences among these phenome data remained significant
after FDR p-correction. The enterotype 1 score was significantly
different between the three study groups and increased from con-
trols à SDMD à MDMD. There were no significant differences in
HDLc and AIP between the three study groups. Univariate GLM
analysis showed no associations between the use of antidepressants
and other psychotropic drugs and mild COVID-19 some months
earlier and any of the microbiota and clinical data (even without
FDR p-correction).

Enterotype 1 and clinical features of MDD

Table 4 shows that enterotype 1 is associated with PC_abuse (but
not PC_neglect), ROI and its components (number of episodes and
LT_SB), PC_phenome (bot not PC_Stroop), and Current_SB.
Table 5, regression #1 shows that 38.9% of the variance in enter-
otype 1 was explained by ROI and male sex (both positively corre-
lated). Figure 2 shows the partial regression of enterotype 1 on ROI.
Removal of ROI from this analysis (regression #2) shows that
PC_abuse and male sex explained 19.6% of the variance in enter-
otype 1. A large part of the variance (70.2%) in PC_phenome
(regression #3) was explained by ROI, PC_abuse, and enterotype
1. Deleting ROI from this analysis (regression #4) showed that
56.2% of the variance in PC_phenomewas explained by enterotype
1, PC_emabuse, and PC_sexabuse (all positively associated).

Table 5, regression #5, shows that 50.4% of the variance in
Curr_SB is explained by PC_emabuse, enterotype 1, and sex. In
order to further explore the associations between SB and entero-
type 1, we have carried out PCA and were able to extract one reli-
able PC from enterotype 1 (loading = 0.760), LT_SB (0.877), and
current_SB (0.798) (KMO= 0.663, Bartlett’s sphericity test
X2= 62.421, df = 3, p< 0.001, VE= 71.51%). In addition, 39.9%
of the variance in Curr_SB (regression #6) could be explained
by the regression on enterotype 1 (positive) and HDLc (inversely).

Table 6 shows the results of forward stepwise regressions with
overfit prevention criterion on microbiome taxa. Overall, SB
(regression #1) was best predicted by enterotype 1 and
Proteobacteria (both positively associated). PC_Stroop (regression
#2) was best predicted by Intestinimonas (positively) and Dialister
(inversely) abundances.

Enterotype of atherogenicity in MDD

Table 2, regression #3, shows the results of a forward stepwise
analysis with overfit prevention criterion. We found that
Proteobacteria and Clostridium sensu stricto abundances were sig-
nificantly and inversely associated with HDLc, and that
Bifidobacterium, Romboutsia, and P. merdae were positively asso-
ciated. Consequently, we built a z unit-based composite score
based on those five microbiota taxa, dubbed enterotype 2.
Figure 3 shows the partial regression of HDLc on the ILR abun-
dance of Bifidobacterium.

Table 3 shows that this enterotype was not significantly differ-
ent between controls and patients. Table 4 shows that enterotype 2
was significantly associated with PC_abuse but not with the num-
ber of episodes, LT_SB, ROI, PC_phenome, PC_Stroop,
current_SB, and enterotype 1. Table 5, regression #6, shows that
45.8% of the variance in PC_phenome was explained by both
enterotypes 1 and 2 and sex. Figures 4 and 5 show the partial
regressions of PC_phenome on enterotype 1 and 2, respectively.
Enterotype 1 (p< 0.001) and enterotype 2 (p= 0.036) together
explained 40.4% of the variance in the phenome (F= 20.35, df= 2/
60, p< 0.001).

Table 6 shows the outcome of linear modelling with overfit pre-
vention with AIP as the dependent variable and the microbiome
taxa as explanatory variables. Regressions #3 shows that
Acidaminococcus, Sutterella, and Clostridium sensu stricto were
significantly and positively associated with increased AIP, whereas
Verrucomicrobia and Bifidobacterium were inversely associated.
AIP was significantly correlated with BMI (r= 0.573, p< 0.001)
and enterotype 2 (r = −0.609, p< 0.001). Both HDLc
(r = −0.521, p< 0.001) and enterotype 2 (r = −0.399, p= 0.001,
n=63) were significantly and inversely correlated with BMI. We
were able to extract one PC from BMI, HDLc, and enterotype 2
(KMO= 0.627, Bartlett’s sphericity test X2 = 58.691, df = 3,
p< 0.001, VE= 69.56%, all loadings> 0.744).

Results of PLS analysis

Figure 6 shows the final PLS model after feature reduction (only
the significant paths are shown). We entered two latent vectors,
one reflecting the phenome (extracted from BDI, HAMD, and
Current_SB) and a second reflecting ROI (extracted from the

Table 4. Intercorrelation matrix

Variables Enterotype 1 PC abuse #Episodes LT_SB ROI PC_Stroop HDLc

PC_abuse 0.340 (0.006) 0.426 (<0.001) 0.534 (<0.001) 0.544 (<0.001) −0.315 (0.008) −0.296 (0.014)

PC_neglect −0.048 (0.709) −0.191 (0.115) −0.007 (0.956) 0.035 (0.782) 0.029 (0.819) 0.014 (0.911) 0.128 (0.297)

# episodes 0.526 (<0.001) 0.461 (<0.001) – 0.593 (<0.001) 0.844 (<0.001) −0.306 (0.011) −0.131 (0.288)

LT_SB 0.471 (<0.001) 0.534 (<0.001) 0.593 (<0.001) – 0.952 (<0.001) −0.386 (0.001) −0.146 (0.243)

ROI 0.531 (<0.001) 0.544 (<0.001) 0.810 (<0.001) 0.952 (<0.001) – −0.436 (<0.001) −0.129 (0.301)

PC_Stroop −0.105 (0.414) −0.315 (0.008) −0.306 (0.011) −0.386 (0.001) −0.436 (<0.001) – 0.091 (0.458)

PC_phenome 0.599 (<0.001) 0.569 (<0.001) 0.743 (<0.001) 0.746 (<0.001) 0.822 (<0.001) −0.381 (0.001) −0.298 (0.013)

Current_SB 0.524 (<0.001) 0.586 (<0.001) 0.709 (<0.001) 0.755 (<0.001) 0.744 (<0.001) −0.347 (0.003) −0.273 (0.024)

Enterotype 2 −0.012 (0.929) −0.275 (0.029) −0.152 (0.212) −0.162 (0.190) −0.183 (0.157) 0.168 (0.167) 0.696 (<0.001)

PC_abuse, first principal component (PC) extracted from physical þ emotional þ sexual abuse; PC_neglect, PC extracted from childhood neglect scores; #episodes, number of depressive
episodes; LT_SB, lifetime suicidal behaviours; ROI, recurrence of illness index; PC_Stroop, PC extracted from 3 Stroop test results; PC_phenome, PC extracted from severity of depression and
Curr_SB (current suicidal behaviours); enterotype 1 and 2, two dysbiosis indices with the first reflecting depression and the second antioxidant-metabolic alterations of depression; HDLc, high-
density lipoprotein cholesterol.

Acta Neuropsychiatrica 335

https://doi.org/10.1017/neu.2023.21 Published online by Cambridge University Press

https://doi.org/10.1017/neu.2023.21


Table 5. Results of multiple regression analyses with phenome or microbiota set scores as dependent variables

Dependent variables Explanatory variables

Coefficients of input variables Model statistics

β t p R2 F df p

#1. Enterotype 1 Model 0.389 18.43 2/58 <0.001

ROI 0.529 5.16 <0.001

Male sex 0.327 3.18 0.002

#2. Enterotype 1 Model 0.196 7.31 2/60 0.001

PC_abuse 0.320 2.76 0.008

Male sex 0.284 2.45 0.017

#3. PC_phenome Model 0.702 43.97 3/56 <0.001

ROI 0.592 6.38 <0.001

PC_abuse 0.220 2.64 0.011

Enterotype 1 0.199 2.36 0.022

#4. PC_phenome Model 0.562 25.22 3/59 <0.001

Enterotype 1 0.441 4.83 <0.001

PC_emabuse 0.410 4.50 <0.001

PC_sexabuse 0.186 2.10 0.040

#5. Curr_SB Model 0.504 20.02 3/59 <0.001

PC_emabuse 0.401 4.14 <0.001

Enterotype 1 0.357 3.67 <0.001

PC_sexabuse 0.251 2.67 0.010

#6. Curr_SB Model 0.399 19.61 2/59 <0.001

Enterotype 1 0.575 5.68 <0.001

HDLc −0.221 −2.18 0.033

#7. PC_phenome Model 0.458 16.32 3/58 <0.001

Enterotype 1 0.671 6.60 0.001

Enterotype 2 −0.241 −2.48 0.016

Female sex −0.227 −2.21 0.031

Enterotype 1 and 2, two dysbiosis indices with the first of the depressive phenome and the second of antioxidant-metabolic alterations in depression; PC_phenome, first principal component
(PC) extracted from severity of depression and Curr_SB (current suicidal behaviours); ROI, recurrence of illness index; PC_abuse, PC extracted from physical þ emotional þ sexual abuse;
PC_emabuse, emotional abuse.

Figure 2. Partial regression of enterotype 1, a
gut dysbiosis index, on the recurrence of illness
index (ROI).
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number of episodes and LT_SB). All other variables were
entered as simple indicators, whereby ROI, both enterotypes,
HDLc and AIP, were allowed to mediate the effects of ACE
on the phenome. The model quality criteria were adequate:
SRMR = 0.040, and the extracted factors showed AVE values >
0.769 with Cronbach’s alpha > 0.732, composite reliability >
0.882, and rho_A > 0.732. PLS blindfolding showed that the
construct cross-validated redundancies were more than
adequate, while PLS Predict showed sufficient model replicabil-
ity. Complete PLS analysis, performed using 5,000 bootstraps,
showed that 75.6% of the variance in the phenome was
explained by enterotype 1, HDLc, and ROI. The latter explained
28.5% of the variance in enterotype 1, whereas enterotype 2
explained 42.7% of the variance in HDLc. Consequently, enter-
otype 1 was a partial mediator of the effects of ROI on the

phenome. Enterotype 2 showed a significant specific indirect
effect on the phenome (p = 0.038). PC_emabuse,
PC_sexabuse, and Comp_physneglect showed significant spe-
cific indirect effects on the phenome, which were mediated by
ROI (p < 0.001, p = 0.004, and p = 0.022, respectively) and the
path from ROI to enterotype 1 (p = 0.014, p = 0.025, and
p = 0.042, respectively). PC_physabuse had no significant effect
on the phenome (p = 0.069) but affected the AIP (p = 0.003).

Discussion

The enterotype of the phenome of depression

This study’s first key discovery is that the phenome of MDD is pre-
dicted by a composite of six microbiome taxa, designated

Table 6. Results of linearmodelling with overfit prevention criterion with clinical data as dependent variables andmicrobiota as explanatory variables, while allowing
for the effects of age, sex, body mass index, and drug status

Dependent variables Explanatory variables

Coefficients of input variables
Corrected model

statistics

B(SE) t p 95%CI Importance F df p

#1. Overall SB Model 8.99 4/58 <0.001

Enterotype 1
Proteobacteria*

0.288(0.059)
0.221(0.105)

4.93
2.11

<0.0010.039 0.171; 0.406
0.012; 0.431

0.685
0.126

#2. PC_Stroop Model 4.12 6/56 0.002

Intestinimonas* 0.382(0.132) 2.89 0.005 0.117; 0.648 0.288

Dialister* −0.288(0.119) −2.42 0.019 −0.527; −0.050 0.202

#3. AIP Model 9.23 6/55 <0.001

Female sex −1.46(0.260) −4.02 <0.001 −1.568; −0.525 0.291

Bifidobacterium* −0.309(0.097) −3.17 0.003 −0.504; −0.113 0.180

Acidaminococcus** 0.722(0.234) 3.09 0.003 0.254; 1.190 0.172

Sutterella* 0.278(0.094) 2.97 0.004 0.090; 0.466 0.158

Clostridium sensu stricto* 0.254(0.094) 2.69 0.009 0.065; 0.442 0.130

Verrucomicrobia* −0.185(0.094) −1.96 0.055 −0.374; 0.004 0.069

*Abundance data processed in ILR Box–Cox transformation; ** prevalence.
Enterotype 1, a dysbiosis index of depression; overall SB, first principal component extracted from lifetime and current suicidal behaviours; PC_Stroop, first principal component extracted from
3 Stroop tests results; AIP, atherogenic index of plasma.

Figure 3. Partial regression of high-density
lipoprotein cholesterol (HDLc) on the isometric
log-ratio abundance of Bifidobacterium.
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enterotype 1, which collectively accounted for around 35–36% of
the variance. The major taxa contributing positively to this enter-
otype 1 are Hungatella (genus of anaerobic, Gram-positive bacte-
rial; Sharma et al., 2019) and Fusicatenibacter (genus of anaerobic
Gram-positive bacteria, Takada et al., 2013), whereas four other
genera/species have inverse effects, namely Butyricicoccus (genus
of anaerobic, Gram-positive bacteria, UniProt, 2023; Eeckhaut
et al., 2008), Clostridium (genus of anaerobic Gram-positive bac-
teria, Maczulak, 2011), P. merdae (species of anaerobic,
Gram-negative bacteria, UniProt, 2023), and D. piger (aerotoler-
ant, Gram-negative bacterium, Health Matters, 2022).

Previously, using the same study group, we determined (via LefSe
analysis) the differences in relative abundance between MDD and
controls. In accordance with the current analyses, Hungatella hathe-
wayi (anaerobic, Gram-positive bacterium, Xia et al., 2020) was pos-
itively associated with MDD, while D. piger was inversely associated.
Nevertheless, in our previous study,MDDwas additionally associated
with some other taxa. However, the phenome of depression assessed
in our investigations (Maes, 2022; Maes et al., 2022a; Maes &

Stoyanov, 2022) is a significantlymore accuratemeasure of depression
than the binary MDD diagnosis. The phenome evaluates the severity
of the combination of several depressive features, and as a quantitative
score, and provides more information than MDD, which is an incor-
rect model (see Introduction). Comparing the results of the present
investigation conducted onThaiMDDpatients with those of previous
LefSe studies conducted in other cultures and nations reveals almost
no agreement (Zhang et al. 2022; Zhao et al., 2022; Ling et al., 2022;
Liu et al., 2022; Jiang et al., 2015; Zhu et al., 2021; Painold et al., 2018;
Tsai et al., 2022). Notably, the LefSe study published by Liu et al.
(2022) revealed a higher abundance of Clostridium in the control
group, which is consistent with a lower abundance being related to
the depressive phenome in the current study. In addition, there is
limited consensus among all previously published investigations
(see Introduction, Borkent et al., 2022). As described in our
Introduction, this lack of consistency among studiesmay be explained
by using the inaccurate diagnosis of MDD (Maes, 2022) and by the
knowledge that the composition of the microbiome is greatly influ-
enced by nutrition (Singh et al., 2017). For instance, variations in

Figure 4. Partial regression of the phenome of
depression (PC_phenome) on enterotype 1, a
dysbiosis index of depression.

Figure 5. Partial regression of the phenome of
depression (PC_phenome) on enterotype 2, a
dysbiosis index of antioxidant-metabolic aberra-
tions in depression.
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the dietary inflammatory index elicit particular alterations in micro-
biome makeup (Costa et al., 2022). Therefore, it is likely that MDD
enterotypes developed in one country will not coincide with those
established in other nations. Deciphering whether the enterotype
established here indicates compositional dysbiosis (see definition in
the Introduction) is more important than just identifying a list of
MDD-related taxa.

Compositional dysbiosis and the phenome of depression

Four of the six microbiota taxa/species of enterotype 1 may pro-
mote salutogenesis; so, a reduction in their abundance may have
negative implications. Butyricicoccus is a gut–mucosa-associated
genus that appears to regulate the functioning of tight junctions
(Devriese et al., 2017). Low levels of Butyricicoccus are associated
with dysfunctions in tight junctions and inflammatory bowel dis-
ease (Devriese et al., 2017; Eeckhaut et al., 2008). Intestinal butyr-
ate improves the gut–immune defence barrier and mucosal
inflammation and redox status and controls intestinal motility,
energy consumption, neurogenesis, and metabolic disorders such
as atherogenicity, and insulin resistance (Canani et al., 2011). In
addition, the Clostridium genus reduces inflammation, and
numerous strains and species are key producers of CSFA, including
butyrate, which inhibits ammonia absorption, supports Treg func-
tions, and inhibits pathogen invasion (Guo et al., 2020). On the
basis of these findings, Clostridium species have been recom-
mended as potential probiotics for promoting gut health and

ameliorating inflammatory bowel disease (Guo et al., 2020). The
Parabacteroides genus and its various species produce SCFA, regu-
late the host’s metabolism, possess anti-inflammatory effects, and
may strengthen the intestinal epithelium (Hiippala et al., 2020; Cui
et al., 2022). P. merdae protects against cardiovascular diseases by,
among other mechanisms, inhibiting the mTORC1 pathway and
promoting the breakdown of branched-chain fatty acids (Qiao
et al., 2022). As a consequence, Parabacteroides including
P. merdae are presented as putative probiotics (Cui et al., 2022).
Bacteroides and Desulfovibrio genera, including D. piger, are sul-
phate-reducing bacteria and are sulphidogenic, namely they
convert sulphur-containing substrates (e.g., cysteine) to hydrogen
sulphide (Nguyen et al., 2020; Loubinoux et al., 2003). Hydrogen
sulphide at low concentrations is protective and maintains mucus
layer integrity, has anti-inflammatory properties, aids in the reso-
lution of tissue damage, prevents the adhesion of microbiota bio-
films to the epithelium, and inhibits invasive pathobionts
(Blanchier et al., 2019; Buret et al., 2022; Dordevic et al., 2020).
Additionally, hydrogen disulphide produced from the gut has car-
dioprotective properties, promotes vasodilation, and reduces the
heart rate (Tomasova et al., 2016).

Two microbiota genera in enterotype 1 may have pathophysio-
logical effects, in contrast. First, the Hungatella genera and
H. hathewayi (as identified in our LefSe study, Maes et al.,
2022c) are potential pathogens related to cardiovascular illness,
Crohn’s disease, and colorectal cancer (Kaur et al., 2014;
Human Gut Microbiome Atlas, 2023). In addition, Hungatella is

Figure 6. Results of partial least squares (PLS) analysis. Phenome: first factor extracted from the BDI (Beck Depression Inventory) and HAMD (Hamilton Depression Rating Scale)
scores and current suicidal behaviours (Curr_SB) scores; ROI: recurrence of illness; HDLc: high-density lipoprotein cholesterol; enterotype 1 and 2: two dysbiosis indices, the first of
the depressive phenome and the second of antioxidant-metabolic alterations in depression; emabuse: emotional abuse; sexabuse: sexual abuse; physneglect: physical neglect;
physabuse: physical abuse. Shown are path coefficients with p-values of the inner model, and loadings with p-values of the outer model; figures in blue circles: explained variance.
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one of the genera that creates trimethylamine (TMA), a uremic
toxin and precursor of trimethyl-N-oxide (TMAO), from choline,
carnitine, and betaine present in meat, eggs, and shellfish (Genoni
et al., 2020; Macpherson et al., 2020). After being delivered to the
liver, TMA is oxidised into TMAO, which may trigger systemic
inflammation via increased production of cytokines such as inter-
leukin (IL)-12 and tumour necrosis factor (TNF)-α, and is accom-
panied by increased gut permeability (as demonstrated by elevated
plasma LPS) (Macpherson et al., 2020). In some circumstances, the
increase in TMA-producing genera (such as Hungatella) is fol-
lowed by a decrease in Bifidobacterium (Macpherson et al., 2020).

Fusicatenibacter is prevalent in insomnia sufferers, despite its
anti-inflammatory properties and decreased prevalence in inflam-
matory illnesses (Zhou et al., 2022; Zanelli et al., 2005; Lee et al.,
2019). Fusicatenibacter is nonetheless a glucose fermenter that
generates acetic acid, succinic acid, formic acid, and lactic acid
(Midas Field Guide, 2023; Takada et al., 2013). Lactate has multiple
impacts on the immune system and inflammatory response,
including actions on the G-protein coupled receptor and NF-κB
(Manosalva et al., 2022). Due to decreased tissue oxygenation
and deficiencies in mitochondrial respiration, elevated lactate
levels are observed in depressed phenotypes and chronic fatigue
(Morris and Maes, 2013; Machado-Vieira et al., 2017).
Therefore, increased gut-derived lactic acid levels could exacerbate
elevated lactate in MDD and hence exacerbate depressive symp-
toms (Chen et al., 2022). Formic acid may impede mitochondrial
cytochrome oxidase and ATP synthesis, activate oxidative stress
responses, T helper-17 responses, and the aryl hydrocarbon path-
way and so exacerbate systemic metabolic acidosis (Liesivuori &
Savolainen, 1991; Ternes et al., 2022). In addition, because formic
acid has direct decontaminating effects on Gram-negative bacteria,
it may lead to microbiota imbalances. Succinate signalling is essen-
tial for metabolic activities, the Krebs cycle, and cell-to-cell
communication, as well as chemotaxis and T-cell activation, while
its receptor (SUCNR1) synergises with the TLR to promote the
production of pro-inflammatory cytokines such as IL-1β and
TNF-α (Tretter et al., 2016; Mills & O’Neill, 2014). Generally
speaking, acetic acid is a mildly toxic chemical that promotes
mixed lymphocyte and natural killer cell reactivity (Ishizaka
et al., 1993) and directs immune cells towards an immunological
defence response (Balmer et al., 2020).

As a consequence, the enterotype 1 identified in this study may
imply compositional dysbiosis with diminished salutogenesis
(decreased butyric acid and hydrogen disulphide synthesis, dimin-
ished gut–immune protection against inflammation and oxidative
stress) and increased pathogenesis (increased formic, acetic, lactic
acid and TMAO production, breakdown of the gut barrier, LPS
translocation and inflammation). Consequently, we have devel-
oped an enterotype dysbiosis index of the phenome of depression.

Enterotype 1, ACE, ROI, SB, and neurocognition

The second significant finding of our study is that enterotype 1 is
affected by childhood abuse and is so closely linked with ROI and
LT SB that a latent vector could be extracted, reflecting a ROI–
enterotype pathway phenotype. In addition, we were able to extract
one latent vector from abuse, ROI, the phenome, and the entero-
type 1 dysbiosis index, demonstrating that compositional dysbiosis
is a key component of depression’s lifespan trajectory (from ACE
to ROI to the phenome).

According to a preliminary study, ACE may elicit changes in
gut microbiome composition during pregnancy, contributing to

systemic inflammatory and hypothalamic–pituitary–adrenal–axis
responses (Hantsoo et al., 2019). Recently, we discovered that
ACEs are connected with sensitised immunological and growth
factor networks, nitro-oxidative stress, and antioxidant pathways
(Maes et al., 2019; 2022b; Moraes et al., 2018). Consequently, it
was postulated that the microimmuneoxysome is a potential thera-
peutic target for deprogramming the negative effects of ACE
(Dietert & Dietert, 2022). To the best of our knowledge, no
research has linked changes in the microbiome to recurrent SI
or behaviours. However, earlier studies demonstrated that leaky
gut indicators were connected with SB (Ohlsson et al., 2019).
In addition, we determined that, apart from enterotype 1, SB were
also connected with the abundance of Proteobacteria. The latter
phylum contains numerous pathogens that can induce intestinal
(e.g. inflammatory gut disease) and metabolic diseases, in addition
to lung diseases (Rizzati et al., 2017). Additionally, the prevalence
of Proteobacteria is linked to inflammatory reactions, elevated IgA
levels, and TMA production (Li et al., 2021).

Deficits in the Stroop test (showing dysfunctions in processing
speed, cognitive flexibility, selective attention, and executive func-
tioning) were related to an increase in the abundance of Dialister
and a decrease in Intestinimonas abundance. The latter is a butyr-
ate-producing genus that may protect against type 2 diabetes (Bui
et al., 2020; NIH Clininal Trials, 2023). Dialister is a possible gut
dysbiosis marker in inflammatory bowel disease, ulcerative colitis,
and spondyloarthritis (Tito et al., 2017; Nwosu, 2011).

Enterotype 2, metabolism, and the phenome of depression

The third significant discovery of this study is that we were able to
create a second enterotype that reflects changes in HDLc and, con-
sequently, AIP and BMI. Bifidobacterium, P. merdae, and
Romboutsia were positively correlated with HDLc, whereas
Proteobacteria and Clostridium sensu stricto were negatively corre-
lated. Bifidobacterium is a protective genus that supports the gut
barrier and gut homeostasis, protects against the multiplication
of pathogens, and produces SCFAs, vitamins, and polyphenols
(Alessandri et al., 2021). Moreover, Bifidobacterium has antiobe-
sity and cholesterol-reducing actions (An et al., 2011) and is asso-
ciated with leanness (Xu et al., 2022). As mentioned previously,
P. merdae has numerous health-supporting properties, while this
species has been advocated for weight, body fat, and triglyceride
reduction (TWI609959B, 2016). The Romboutsia genus produces
SCFAs and many metabolic end products based on carbohydrate
utilisation and amino-acid fermentation (Gerritsen 2015).
Proteobacteria are the most consistently reported microbiota
related to obesity in the aforementioned systematic research
(Xu et al., 2022). Clostridium sensu stricto is a putative opportun-
istic pathogen that can lead to decreased SCFA levels and intestinal
inflammation (Hu et al., 2021). In swine, correlation heat map
analysis demonstrated that Clostridium sensu stricto is strongly
connected with total cholesterol and the pathogenesis of heat-
stress-associated inflammatory bowel disease (Hu et al., 2021).

Bifidobacterium (in a negative direction) and Clostridium sensu
stricto (in a positive direction) were also predictors of AIP, which
was also associated with decreased abundance of Verrucomicrobia
and an increased abundance of Acidaminococcus and Sutterella.
Verrucomicrobia is a phylum that promotes gut health, gut barrier
function, and insulin sensitivity and inhibits inflammatory
responses (Fujio-Vejar et al., 2017). Obese people have a lower
incidence of Verrucomicrobia (Zhang et al., 2009). The presence
of Sutterella is associated with inflammatory bowel disease

340 Maes et al.

https://doi.org/10.1017/neu.2023.21 Published online by Cambridge University Press

https://doi.org/10.1017/neu.2023.21


(Eid et al., 2017; Williams et al., 2012) and is a potential initiator of
T2DM (Gradisteanu Pircalabioru et al., 2022). The relative abun-
dance of Acidaminococcus is positively associated with obesity in
Italian adults (Palmas et al., 2021).

Importantly, we discovered that both enterotypes predicted the
depression phenome and that the latter was inversely associated
with HDLc. As a result, we have developed an enterotype dysbiosis
index that reflects decreased HDLc, which is a strong predictor of
the antioxidant defences against lipid peroxidation (Maes et al.,
2021), increased atherogenicity and elevated BMI, and conse-
quently obesity (Morelli et al., 2021). As with enterotype 1, the
second compositional dysbiosis index was associated with child-
hood abuse, but the effect size was much smaller. We have previ-
ously demonstrated that ACE and particularly sexual abuse impact
antioxidant defences (Maes et al., 2021). In this regard, our PLS
pathway analysis revealed that diverse ACEs influence the phe-
nome of depression and current SB, and that these effects aremedi-
ated by the two gut dysbiosis indices. Moreover, HDLc was
inversely associated with current, but not LT, SB. Previously, we
have shown that lowered HDLc is associated with SA in depressed
patients (Maes et al., 1997).

Limitations

This study would have been more intriguing if oxidative stress bio-
markers had been measured in addition to immune and growth
factor networks. It could be argued that the study’s sample size
and statistical power are low. Nevertheless, an a priori calculation
of the sample size revealed that a sample size of 65 is required to
achieve a power of 0.80. Moreover, the regression of the phenomes
of the six microbiota of enterotypes 1 and 2 revealed that, given the
study sample, alpha = 0.05, and 5–6 predictors, the obtained power
was 0.995 and 0.992, respectively. A previous COVID-19 infection
is yet another possible intervening factor through the onset of
Long-COVID. However, we excluded all participants with moder-
ate and severe COVID-19, as these are the types predisposing to
Long-COVID affective disorders (Al-Hadrawi et al., 2022). In
addition, there were no significant effects of previous (at least
6 months before enrolment) mild COVID-19 on the microbiome
or clinical data. Both enterotypes 1 and 2 ought to be cross-vali-
dated in a new Thai study population. Future research should con-
struct region- and culture-specific dysbiosis indices of ROI, the
phenome, SB, cognitive deficits, and metabolic abnormalities of
depression.

Conclusions

Six microbiome taxa, including positive associations with
Hungatella and Fusicatenibacter and negative associations with
Butyricicoccus, Clostridium, P. merdae, and D. piger, accounted
for 36% of the variance in the depression phenome. Based on these
data, we constructed a composite score, namely enterotype 1,
indicative of compositional dysbiosis. Enterotype 1 is strongly pre-
dicted by ACE and ROI and is associated with SB. We constructed
another enterotype 2 that reflects a decrease in HDLc and an
increase in AIP based on Bifidobacterium, P. merdae, and
Romboutsia (positively associated with HDLc), and
Proteobacteria and Clostridium sensu stricto (inversely associated
with HDLc). Together, enterotypes 1 and 2 accounted for 40.4%
of the variance in the depression phenome, and enterotype 1 in
combination with HDLc accounted for 39.9% of the variance in
current SB. In conclusion, both enterotypes are potential new drug

targets for the treatment of severe depression and SB, as well as the
possible prevention of future episodes. Moreover, the ‘microim-
muneoxysome’ is a new drug target for ‘desensitising’ the ROI
and ‘deprogramming’ the effects of ACE, leading to increased
ROI and severity of the phenome and SB. Future research should
trial the therapeutical effects of butyrate supplements, zinc and glu-
tamine (Maes et al., 2007) as well as probiotic supplements with
Clostridium species to improve the features of depression, includ-
ing ROI, SB, and the phenome in association with enterotype and
leaky gut assessments. In addition, the development of new drugs
targeting leaky gut would be more than welcome.
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