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Abstract. We provide a combinatorial characterization of LG(3, 6)(�) using an
axiom set which is the natural continuation of the Mazzocca–Melone set we used to
characterize Severi varieties over arbitrary fields (Schillewaert and Van Maldeghem,
Severi varieties over arbitrary fields, Preprint). This fits within a large project aiming
at constructing and characterizing the varieties related to the Freudenthal–Tits magic
square.
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1. Introduction. Classical varieties such as Veronese varieties, Segre varieties
and Grassmann varieties are intensively studied in algebraic geometry, but are also
important in combinatorial geometry, in particular in the area where groups and
geometries meet and where the Tits buildings play a central role. However, in
combinatorial geometry, the underlying field, if any, is arbitrary, and in this case a
variety of tools from algebraic geometry can no longer be used. In 1984, Mazzocca &
Melone suggested an axiom system for the Veronesean varieties over finite fields that
was based on the very basic properties of these varieties as smooth complex varieties,
but which can be phrased over any field (and they restricted to finite fields). The main
property of such varieties responsible for allowing such an approach is the fact that they
are the union of maximal quadratic varieties whose corresponding subspaces pairwise
meet on the variety. This makes it possible to define the dimension of the variety via a
condition on the tangent spaces to these quadrics over an arbitrary field, the variety is
just a set of points, whereas tangent spaces to quadrics are defined over any field. The
success of such an approach is illustrated in [9], where the authors generalize Zak’s
classification of complex Severi varieties [14] to their analogues over an arbitrary field,
just using a straightforward extension of the axioms of Mazzocca & Melone. Another
example is the recent characterization of the Veronese representation of projective
planes over non-associative alternative division rings (Cayley-Dickson algebras) by
Krauss [6]. Also, his axioms are based on the Mazzocca–Melone approach.

The Mazzocca–Melone approach, however, was, up to now, only applied when
it concerned geometries with point-line diameter 2, and then the first axiom says
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that every pair of points is contained in a quadric. The types of the geometries thus
characterized mainly belong to the second row of the so-called Freudenthal–Tits magic
square. The latter is an arrangement of 16 Dynkin diagrams in a four-by-four square
symmetric along the main diagonal. Chosen a field, the ith column is parametrized
by a (split or non-split, depending on the point of view) quadratic alternative algebra
of dimension 2i−1, whereas the jth row is parametrized by a Jordan algebra over a
quadratic alternative algebra of dimension 2j−1. Each cell thus corresponds with an
ordered pair of algebras, in a non-symmetric way, and a general construction method of
Tits [11] associates to this pair a Lie algebra of the type indicated by the magic square.
To each Lie algebra in the square can be associated a variety, which turns out to be
a point-line geometry of a building with corresponding Dynkin type. The geometries
of the second row all have diameter at most two (these comprise projective planes,
products of two projective planes, line Grassmannians of projective 5-space, and the
exceptional E6,1-geometry). In the present paper, we start to apply this approach to
geometries of larger diameter. The first natural choice is the Lagrangian Grassmannian
LG(3, 6)(�), which is the geometry of totally singular planes of a symplectic space in
five-dimensional projective space �5(�). Not coincidently, it corresponds to the first
cell of the third row of the Freudenthal–Tits magic square. The first cell of the third
row is intimately related to the first cell of the second row, which contains the ordinary
quadratic Veronesean representations of projective planes. To prove our main result, we
strenghten the Mazzocca–Melone approach to these geometries: we basically show that
the third axiom can be deleted, if one assumes the right bound on the dimension of the
ambient space (the third axiom expresses the dimension of the variety by means of the
tangents). This assumption cannot further be weakened as there exist counterexamples
for higher dimensions.

NOTATION. In this paper, we will use the following notation: the subspace spanned
by a set S of points will be denoted by 〈S〉. The finite field of q elements will be denoted
by �q. The n-dimensional affine (projective) space over the skew field � will be denoted
by �n(�) (by �n(�)).

2. Statement of the main results. Let us first recall the Mazzocca–Melone axioms
for the quadratic Veronesean of the standard projective plane �2(�) over any field �.
First note that an oval O in any projective plane is a set of points no three collinear
and such that through every point o ∈ O exactly one line does not intersect the set in
two points. Examples are conics, if � is commutative.

Let X be a spanning point set of �N(�), N ∈ � ∪ {∞}, with � any skew field,
and let � be a collection of 2-spaces of �N(�) containing at least two elements and
such that for any ξ ∈ � the intersection ξ ∩ X =: X(ξ ) is an oval in ξ (and then, for
x ∈ X(ξ ), we denote the tangent line at x to X(ξ ) by Tx(X(ξ )), or sometimes simply by
Tx(ξ )). Then, (X, �) is called a Veronesean cap if (VC1), (VC2) and (VC3) below hold.
It is called a pre-Veronesean cap if (VC1) and (VC2) hold.
(VC1) Any pair of points x and y of X is contained in an element of �, denoted by

[x, y] (its uniqueness follows straight from (VC2)).
(VC2) If ξ1, ξ2 ∈ �, with ξ1 	= ξ2, then ξ1 ∩ ξ2 ⊂ X .
(VC3) If x ∈ X , then all tangent lines Tx(ξ ), x ∈ ξ ∈ �, are contained in a plane.

It is proved in [8] that such a Veronesean cap is always the Veronesean
representation of the standard projective plane over �, and � is a field. Recall that
the Veronesean representation of �2(�) is the image V2(�) of �3 \ {(0, 0, 0)} under
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the Veronesean map (x, y, z) �→ (x2, y2, z2, yz, zx, xy), where the latter is conceived as
a point of �5(�). Writing (x2, y2, z2, yz, zx, xy) as (x, y, z)T (x, y, z) (where T means
“transposed”) it is obvious that the points of the Veronesean representation of PG(2, �)
can be seen as the points corresponding to the rank 1 symmetric (3 × 3)-matrices in the
projective space corresponding to the vector space of all symmetric (3 × 3)-matrices
over �. In the proof, Axiom (VC3) seems to play an important, if not crucial, role.
However, we will show below that, if |�| > 2 and N ≤ 5, then, we can delete Axiom
(VC3)! This is our first Main Result.

MAIN RESULT 1. If (X, �) is a pre-Veronesean cap in �N(�), N ≤ 5, with � any
skew field distinct from �2, then � is commutative, (X, �) is a Veronesean cap, and hence,
X is projectively equivalent with V2(�), the Veronesean representation of the standard
projective plane over �.

We also classify the pre-Veronesean caps if � ∼= �2, see Proposition 4.4; there is
essentially one more example besides the Veronesean cap. Furthermore, we also provide
a further weakening of the axioms by allowing X to contain lines. For the motivation
and precise statements, see Subsection 4.2.

Now we turn to the Lagrangian Grassmannian LG(3, 6)(�). As a point set, this
is the set of points of �19(�) on the plane Grassmannian of �5(�), restricted to the
planes totally isotropic with respect to a non-degenerate alternating bilinear form,
which forces this point set into a 13-dimensional subspace �13(�). As natural point-
line geometry (lines are those from �13(�) completely contained in LG(3, 6)(�)),
LG(3, 6)(�) has diameter 3, but we want to leave the diameter open in the axioms
(even infinite diameter will in principle be possible). Also, in the real case, LG(3, 6)(�)
has dimension 6; in the finite case, LG(3, 6)(�q) has (q3 + 1)(q2 + 1)(q + 1) points,
confirming the six-dimensionality. All this leads to the following definition (noting
that quadrics only exist in projective spaces over fields, hence there is no point in
starting from a skew field).

Let X be a spanning point set of �N(�), N ∈ � ∪ {∞}, with � any field, and let
� be a collection of at least two 4-spaces of �N(�) (called the quadratic spaces) such
that, for any ξ ∈ �, the intersection ξ ∩ X =: X(ξ ) is a non-singular parabolic quadric
Q(4, �) (which we will call a symp, inspired by the theory of parapolar spaces, see [10])
in ξ . For x ∈ X(ξ ), we denote the tangent space at x to X(ξ ) by Tx(X(ξ )) or sometimes
simply by Tx(ξ ). A line of �N(�) all of whose points are contained in X is called a
singular line, and the set of singular lines is denoted by S. Also,we denote by G(X)
the geometry (X,S) of points and singular lines, and with �(X) we denote the point
graph of G(X) (two points being adjacent if they are collinear in G(X)). We call (X, �)
a Lagrangian set if (LS1), (LS2) and (LS3) below hold.
(LS1) G(X) is connected and any pair of points x and y of X such that the distance

between x and y in �(X) is at most two is contained in at least one element of
�, denoted by [x, y], if unique.

(LS2) If ξ1, ξ2 ∈ �, with ξ1 	= ξ2, then ξ1 ∩ ξ2 ⊂ X .
(LS3) If x ∈ X , then all 3-spaces Tx(ξ ), x ∈ ξ ∈ �, generate a subspace Tx of �N(�)

of dimension at most six.
Our second Main Result says that LG(3, 6)(�) is the only Lagrangian set. More

precisely:

MAIN RESULT 2. If (X, �) is a Lagrangian set in �N(�), N ∈ � ∪ {∞}, then N = 13
and X is projectively equivalent to the Lagrangian Grassmannian LG(3, 6)(�).
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The rest of the paper is devoted to proving Main Results 1 and 2. In the next
section, we show that LG(3, 6)(�) is a Lagrangian set. Then, in Section 4 we show
Main Result 1. In Section 5, we show Main Result 2. This proof consists of two major
parts. In the first part, we show that the diameter of G(X) cannot be equal to 2. In the
second part, we show that this implies that the diameter is equal to 3 and that X is
projectively equivalent to the Lagrangian Grassmannian LG(3, 6)(�).

3. The Lagrangian Grassmannian LG(3, 6)(�). In this section, we give an explicit
description of LG(3, 6)(�) and show that it is a Langrangian set. As already
mentioned, LG(3, 6)(�) is the plane Grassmannian of �5(�) restricted to the planes
totally isotropic with respect to a non-degenerate alternating form. As a geometry,
consequently, it is isomorphic to the dual polar space denoted by DW(5, �); the points
are the planes of the symplectic polar space W(5, �) and the lines correspond to the
sets of planes of W(5, �) containing a common line of W(5, �). In this setting, a symp
is the set of points corresponding to the planes of the polar space W(5, �) containing a
common point. It is naturally isomorphic to an orthogonal polar space of rank 2, the
so-called orthogonal generalized quadrangle Q(4, �) (which is a parabolic quadric; note
that every parabolic quadric over a field of characteristic 2 admits a nucleus, which is a
point through which no secant line passes). The following construction is taken from
[2] (see also [3]).

We define certain types of points in �13(�).
Type I. A point denoted by [∞] has coordinates

(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1).

Type II. For k ∈ �, a point denoted by [k] has coordinates

(0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, k).

Type III. For k, x ∈ �, a point denoted by [x; k] has coordinates

(0, 0, 0, 0, 0, 0, 0, 0, x2, 1,−x, 0, 0, k).

Type IV. For k1, k2, x ∈ �, a point denoted by [x; k1, k2] has coordinates

(0, 1, 0, 0, 0, 0, 0, 0, k1, k2, x, 0, 0, k1k2 − x2).

Type V. For k, x1, x2 ∈ �, a point denoted by [x1, x2; k] has coordinates

(0, 0, 0, 0, 0, 0, 0, 1, x2
1, x2

2,−x1x2, x2, x1, k).

Type VI. For k1, k2, x1, x2, a point denoted by [x1, x2; k1, k2] has coordinates

(0, x2
2, 0, 1, 0, x2, 0, k1, k2, k1x2

2,−x1x2, k1x2, x1, k1k2 − x2
1).

Type VII. For k1, k2, x1, x2, x3 ∈ �, a point denoted by [x1, x2, x3; k1, k2] has
coordinates

(
0, x2

3, 1, x2
1,−x1,−x3x1, x3, k1, k2x2

1 + k1x2
3 + x2(x1x3) + (x3x1)x2, k2,

−x3x2 − k1x1, x2, x2x1 + k1x3, k1k2 − x2
2

)
.
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Type VIII. For k1, k2, k3, x1, x2, x3 ∈ �, a point denoted by [x1, x2, x3; k1, k2, k3]
has coordinates

(
1, k1, k2, k3, x1, x2, x3, k2k3 − x2

1, k3k1 − x2
2, k1k2 − x2

3, k1x1 − x3x2, k2x2

− x3x1, k3x3 − x2x1, k1k2k3 + 2x1x2x3 − k1x2
1 − k2x2

2 − k3x2
3

)
.

The set X of all these points, together with the lines of �13(�) contained in it
is the dual polar space DW(5, �) and defines the Lagrangian Grassmannian variety
LG(3, 6)(�). An example of a symp is given by all points of Type I, II, III and IV. These
points all lie in the subspace U defined by X1 = X3 = X4 = · · · = X8 = X12 = X13 = 0
and their (other) coordinates satisfy the equation X2X14 = X9X10 − X2

11. Conversely,
every point in U whose coordinates satisfy this equation lies on LG(3, 6)(�). Now it
is shown in Corollary 1.2 (ii) of [5] that, if |�| > 2, this is the absolutely universal
embedding of DW(5, �), i.e., every other (full) embedding arises as a quotient
(i.e., a projection from a suitable subspace) from this one. If |�| = 2, then the
universal embedding happens in a 14-dimensional projective space �14(�2) [1, 7],
and the Lagrangian Grassmannian is a projection of it. Also, for arbitrary �, the
absolutely universal embedding (and for � ∼= �2 also the Lagrangian Grassmannian) is
homogeneous, i.e., the group of collineations of the ambient projective space stabilizing
the embedding induces the full group of automorphisms of the dual polar space. In
particular, this group is transitive on the family of pairs of symps that intersect non-
trivially, and also on the family of pairs of symps that have empty intersection; this
group is also transitive on the set of points of the embedded dual polar space.

First, we want to check that the intersection of a quadratic space with the point
set X is a symp. We can take, by the transitivity properties mentioned in the previous
paragraph, the symp �1 consisting of the points of Types I, II, III and IV. Put nU =
{1, 3, 4, . . . , 8, 12, 13} and note that U = 〈�1〉 is determined by the equations Xi = 0,
for all i ∈ nU . Since, points of Type V, VI, VII and VIII have a non-zero coordinate in
position 8, 4, 3 and 1, respectively, and all these numbers belong to nU , we deduce that
X ∩ U = �1, which completes the proof.

We now verify the axioms (LS1), (LS2) and (LS3).
Axiom (LS1) follows from the fact that DW(5, �) is a strong parapolar space, see

Example 2 of Section 13.4.2 in [10].
For (LS2), we introduce the following two symps:

� �2 consists of the points of Type I, II, V (with x2 = 0) and VI (with
x2 = 0). This symp spans the subspace U2 with equations X1 = X2 =
X3 = X5 = X6 = X7 = X10 = X11 = X12 = 0, which is indeed four-dimensional.
Clearly, U ∩ U1 is the line spanned by (0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0) and
(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1), which is a line contained in both symps (namely,
the line consisting of all points of Types I and II).

� �3 consists of the points of Type V (with x1 = x2 = k = 0), VI (with x1 = x2 =
k1 = 0), VII (with x2 = x3 = k2 = 0) and VIII (with x2 = x3 = k1 = 0). This symp
spans the subspace U3 with equations X2 = X6 = X7 = X9 = X10 = · · · = X14 = 0,
which is clearly disjoint from U .

The transitivity properties of the automorphism group of the Lagrangian
Grassmannian variety mentioned before conclude the proof of (LS2).

Finally, (LS3) follows by (1) of Theorem 1.3 of [2].
Let x ∈ X be a point of the variety LG(3, 6)(�). Then, we denote by ηx the subspace

of �13(�) generated by all points of X collinear to x in DW(5, �), and by ζx the subspace
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of �13(�) generated by all points of X contained in a common symp with x in DW(5, �).
Obviously, we have ηx ⊆ ζx, and it follows by (1) of Theorem 1.3 of [2] that dim ηx = 6
and dim ζx = 12, for all x ∈ X .

LEMMA 3.1. Let x ∈ X. Then, every seven-dimensional subspace U containing ηx

and not contained in ζx contains a unique point y ∈ X not in a common symp with x.

Proof. By homogeneity, we may take x = [∞]. It follows from the definition of
X in [2] (see also [3]) that ηx is generated by the points of Types I, II, III and V,
whereas ζx is generated by the points of Types I, II, III, IV, V, VI and VII. It is easy
to see that ζx has equation X1 = 0. Hence, an arbitrary point z outside 〈ζx〉 can be
written as (1, �1, �2, �3, y1, y2, y3, . . .). Then, one also calculates that ηx has equations
X1 = X2 = · · · = X7 = 0. Now, there is a unique point y of Type VIII in X sharing
the same initial seven coordinates with z, we see that y ∈ 〈ηx, z〉 and the lemma is
proved. �

We now want to show that no non-trivial projection of the Lagrangian
Grassmannian is a Lagrangian set. We first need a lemma.

LEMMA 3.2. Let Y be a point set of �5(�) isomorphic to V2(�), and let p be a point
in �5(�) not belonging to Y. Then, there exists a point y ∈ Y such that some plane
containing a conic on Y shares a point with 〈p, y〉 distinct from y.

Proof. We identify Y with the rank 1 symmetric 3 × 3-matrices over �, up to a
scalar non-zero multiple. Those of rank 2 correspond to points contained in a plane of
one of the conics of V2(�), and those of rank 3 correspond to points not contained in
any such plane. Clearly, we may assume that p corresponds to a rank 3 symmetric matrix
M. Let y ∈ Y correspond to the matrix with a 1 in one place somewhere on the diagonal
and 0 elsewhere. Then, clearly the line 〈p, y〉 contains a point t corresponding to a rank
≤ 2 matrix (in which case the assertion easily follows) if and only if the corresponding
cofactor is non-zero. Hence, we may assume that all diagonal cofactors vanish. If the
characteristic of � is 2, then, this implies that M is singular, a contradiction.

If the characteristic of � is not 2, then, we play the same game with the point
z ∈ Y corresponding with the rank 1 matrix all entries of which are 0 except for the
entries in the north-west 2 × 2-square which are all 1. Since, M is non-singular, an easy
calculation implies that 〈p, z〉 must contain a point distinct from z corresponding to a
rank ≤ 2 matrix. �

PROPOSITION 3.3. No non-trivial projection of the Lagrangian Grassmannian is a
Lagrangian set.

Proof. Since, (LS3) holds for the Lagrangian Grassmannian, it will hold for all
its projections. Hence, we have to find a contradiction against (LS1) or (LS2), and it
suffices to do so for the projection X ′ of LG(3, 6)(�) from an arbitrary point p.

Suppose first that p is contained in ζx, for each x ∈ X . By [2] we have char (�) = 2,
p is contained in a unique quadratic space and it is the nucleus of the corresponding
symp. Hence, the projection of this symp reduces to a 3-space, violating (LS1).

Hence, we may assume that there is some x ∈ X with p /∈ ζx. In that case the
7-space 〈p, ηx〉 contains by Lemma 3.1 a point y of X outside ηx and at distance 3
from x in �(X). So, in the projection from p the subspace generated by ηx contains the
projection of y. Hence, our assertion boils down to showing that ηx cannot contain a
point of X ′ at distance 3 from x. Let, for a contradiction, q be such a point. Lemma 3.2
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implies that there is some line L ⊆ X ′ through x such that the plane 〈q, L〉 contains a
line L′ 	= L through x which is also contained in a symp through x. Now, since some
point u on L is at distance 2 from q in �(X), (LS2) yields 〈q, u〉 ⊆ X ′ and so the distance
from q to x is at most 2, a contradiction. �

4. Proof of main result 1.

4.1. Pre-Veronesean caps. Let X be a spanning point set of �N(�), N ≤ 5, with
� any skew field, which for the moment we allow to be isomorphic to �2, and let � be
a collection of at least two 2-spaces of �N(�) such that for any ξ ∈ � the intersection
ξ ∩ X is an oval in ξ . Suppose that, (X, �) satisfies (VC1) and (VC2) above, in other
words, suppose (X, �) is a pre-Veronesean cap.

With “oval”, we will in this section always refer to the intersection of X with a
member of �. If � ∼= �2, then an oval has only three points x, y, z not on a common
line. In this case, there is a unique line L in 〈x, y, z〉 disjoint from {x, y, z}, and the
unique point in 〈x, y, z〉 not on that line and not on the oval will be denoted by
x + y + z; it is usually called the nucleus of the oval. The points of L will be denoted
by x + y, y + z, z + x, where {x, y, x + y} is a line, etc.

LEMMA 4.1. Under the above assumptions, let π ∈ � and let U be a subspace of
�N(�) complementary to π . Then, the projection of X \ X(π ) from π onto U is injective.

Proof. If x1, x2 are two points of X \ X(π ) projected onto the same point, then
〈π, x1.x2〉 is a 3-space. Hence, [x1, x2] intersects π in a point of 〈x1, x2〉, which belongs
to X by (VC2), contradicting the fact that X([x1, x2]) is an oval. �

LEMMA 4.2. Under the above assumptions, we have N = 5.

Proof. Suppose for a contradiction that N ≤ 4.
First, suppose � ∼= �2. In this case, X contains an odd number of points. Indeed,

if there are � ovals containing a point x ∈ X , then, (VC1) implies that there are 2� + 1
points in X . Since, there are at least two ovals, we have a point x and an oval C =
{x1, x2, x3} 	� x. The ovals X([x, xi]), i ∈ {1, 2, 3} are distinct, hence, |X | ≥ 7. On the
other hand, Lemma 4.1 implies that there are at most six points in X (three in the plane
π and three projected onto the at most one-dimensional subspace U), a contradiction.

Now suppose � 	∼= �2. Clearly, (VC2) implies that N ≥ 4, since |�| ≥ 2. Now
suppose N = 4. Consider two intersecting ovals C, C1, then the intersection x1 of 〈C〉
and 〈C1〉 belongs to X by (VC2). Let x2 ∈ C \ {x1}. Let C2 be an oval containing x2

and some point y ∈ C1 \ {x1}. We project (C1 ∪ C2) \ {x1, x2} from 〈C〉 onto a line L
skew to C. It is clear that the images of both these sets comprise all points of the line
L, except one, say p1 and p2, respectively (then pi, i = 1, 2 corresponds to the tangent
line in xi at Ci). Since |�| > 2, there is a point z on L in the image of both C1 \ {x1, y}
and C2 \ {x2, y}, contradicting Lemma 4.1. �

LEMMA 4.3. Every pair of ovals intersects non-trivially.

Proof. Suppose, by way of contradiction, that two ovals C and D do not meet. We
consider the projection of X \ C from 〈C〉 onto 〈D〉, which is injective by Lemma 4.1.

Again, we first suppose that � ∼= �2. Since 〈D〉 contains seven points, and since |X |
is odd, we have |X | ∈ {7, 9}. Hence, the geometry induced by the ovals on X is either a
2 − (7, 3, 1) design or a 2 − (9, 3, 1) design, which are both unique and isomorphic to
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�2(�2) and �2(�3), respectively. In the former case, every pair of ovals intersects; in the
latter case, there exist three pairwise disjoint ovals C, D, E. Since 〈C〉 and 〈D〉 are also
disjoint (by (VC2)), every point zi of E = {z1, z2, z3} is contained in a unique line Li

that intersects both 〈C〉 and 〈D〉 non-trivially; put C = {x1, x2, x3} and D = {y1, y2, y3}.
Since the projection from 〈C〉 onto 〈D〉 is injective, we clearly have Li ∩ 〈D〉 /∈ D, for
all i ∈ {1, 2, 3}. Similarly, Li ∩ 〈C〉 /∈ C, for all i ∈ {1, 2, 3}. At most one of L1, L2, L3

contains x1 + x2 + x3 (by Lemma 4.1 projecting from 〈D〉), and likewise at most one
y1 + y2 + y3. Hence, there is at least one line, say L1 containing a point x2 + x3 and
a point y2 + y3 (without loss of generality). The oval X([x1, z1]) contains at most one
of {y2, y3}, hence we find an oval F containing, without loss of generality, the points
z1, y2, x3. Then, F is contained in the 3-space 〈x2, x3, y2, y3〉 and so 〈F〉 and 〈x2, y3〉
meet non-trivially, implying by (VC2) that X([x2, y3]) contains three collinear points,
a contradiction.

So we may assume that � 	∼= �2. Let x ∈ D be arbitrary. By the injectivity of the
projection, and since |�| > 2, the projections of the planes generated by the conics
containing x and a point varying on C are distinct lines through x. Consequently,
there is a conic E such that the projection E′ is not contained in the tangent line to D at
x. By injectivity, if t is the projection of the tangent line to E at E ∩ C, then E′ ∪ {t} is
a full projective line, and t ∈ D. Let u ∈ E \ (C ∪ {x}) be arbitrary. Since the projection
is injective, the projection of Cu := X([t, u]) does not coincide with 〈x, t〉, and so the
projection C′

u of Cu is an oval through t.
Now, let v be an arbitrary point of C and let Cv = X([t, v]). Let C′

v be the projection
of Cv. Then, by injectivity, C′

v is not contained in 〈x, t〉. For finite � 	∼= �2, this is a
contradiction, as there are precisely |�| + 1 choices for v and exactly as many lines in
〈D〉 through p. So we may assume that � is infinite. But then we consider two choices
for u, say u1 and u2, and we can choose v such that C′

v is neither contained in the tangent
line to C′

u1
at t, nor in the tangent line to C′

u2
at t. By injectivity of the projection, C′

v

is contained in a line minus two points (the latter are points in C′
u1

∪ C′
u2

, which are
distinct, again by injectivity of the projection), a contradiction.

The proof of the lemma is complete. �

We can now finish the proof of Main Result 1. Since two distinct ovals always
meet, the geometry of points of X and ovals is a projective plane. Now Theorem 2.3
of [8] completes the proof.

We now briefly study the case |�| = 2. In this case, we have seven points in �5(�2)
and the geometry of ovals determines a projective plane of order 2 (a so-called Fano
plane). Consider arbitrarily five points of X . In a Fano plane, every set of five points
is the union of two lines, hence, by (VC2), the corresponding ovals generate a 4-space.
Hence, every set of five points in X generates a 4-space. If every set of six points of
X generates a 5-space, then X consists of a skeleton, and this is isomorphic to V2(�2).
Hence, we may assume that there is a 6-subset of X forming a skeleton in some 4-
subspace U of �5(�2). Since the seventh point must lie outside U , and every point in
the Fano plane plays the same role, this gives rise to a projectively unique situation,
and the resulting point set will be called a disturbed Veronesean cap. Hence, we have
the following result.

PROPOSITION 4.4. Let X be a pre-Veronesean cap in �N(�2), N ≤ 5, then it is either
a Veronesean cap, and hence, X is projectively equivalent with V2(�2), or it is a disturbed
Veronesean cap.
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4.2. Singular pre-Veronesean caps. Motivated by the proof of Main Result 2, we
will now extend Main Result 1 in case the ambient space has dimension at most 5. We
will weaken the hypotheses to again end up with a Veronesean cap in case � 	∼= �2. For
� ∼= �2, some more possibilities will turn up. The idea is to also allow degenerate conics,
i.e., lines. However, we will only need to deal with the situation where the degenerate
conic is a line with multiplicity 2 (and not a point, or a pair of distinct lines). These
lines will be called singular lines, and, although a set containing lines is not a cap in
the technical sense, we will call the new objects singular pre-Veronesean caps. This is
harmless, as we will show that a singular pre-Veronesean cap is a Veronesean cap after
all, at least when the underlying field is not the smallest field. In the latter case, a few
more possibilities occur, see below.

Let X be a point set of �5(�), with � any skew field, and let � be a collection of
2-spaces (called the quadratic planes) of �5(�) containing at least two elements and
such that for any ξ ∈ � the intersection ξ ∩ X =: X(ξ ) is an oval in ξ . Then, (X, �) a
called a singular pre-Veronesean cap if (VC1′) and (VC2) below hold.
(VC1′) If x, y ∈ X , then either all points of 〈x, y〉 belong to X , or there exists a unique

member [x, y] of � containing both x and y.
(VC2) If ξ1, ξ2 ∈ �, with ξ1 	= ξ2, then ξ1 ∩ ξ2 ⊂ X .

Clearly, every Veronesean cap is a singular pre-Veronesean cap. The converse is
not true for � ∼= �2, and there are some counter examples.

EXAMPLE 1 (The projected Veronesean cap). If we project one conic of the
Veronesean cap V2(�2) from its nucleus onto a secant, then we obtain a singular
pre-Veronesean cap, as one checks easily. If {e1, . . . , e6} is a basis of �5(�2), then such a
set is projectively equivalent with {e1, e2, e3, e4, e5, e6, e4 + e5}. The corresponding set
of quadratic planes contains six elements, namely those corresponding with the conics
{e1, e2, e4}, {e2, e3, e5}, {e3, e4, e6}, {e1, e5, e6}, {e2.e6, e4 + e5} and {e1, e3, e4 + e5}.

EXAMPLE 2 (The biaffine singular cap). Let {e1, . . . , e6} again be a basis for �5(�2)
and let � be the set of planes generated by the triples of points corresponding to the
lines of a biaffine plane of order 3 (i.e., an affine plane with three points per line and one
parallel class of lines removed, giving rise to parallel classes of points) with point set
X := {e1, e2, e1 + e2, e3, e4, e3 + e4, e5, e6, e5 + e6}, where the triples {e1, e2, e1 + e2},
{e3, e4, e3 + e4} and {e5, e6, e5 + e6} are point parallel classes. Then, (X, �) is a singular
pre-Veronesean cap.

In a series of lemmas, we will show the following classification.

PROPOSITION 4.5. Every singular pre-Veronesean cap in �5(�) is a Veronesean cap,
except if � ∼= �2, in which case it could also be isomorphic to either a disturbed Veronesean
cap, or a projected Veronesean cap, or a biaffine singular cap.

So let (X, �) be a singular pre-Veronesean cap, which we may assume to contain at
least one singular line by Main Result 1. If all points of a certain subspace are contained
in X , then we call that subspace singular. In the sequel, an oval is the intersection of X
with a member of �. We start with proving a lemma similar to Lemma 4.1 now using
(VC1′) and (VC2) instead of (VC1) and (VC2).

LEMMA 4.6. Let π ∈ � and let U be a complementary subspace to π in Up. Then,
the projection from π onto U is injective when restricted to the points of X \ π which are
not on a singular line that intersects π .
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Proof. Suppose two points x, y ∈ Xp \ π have the same image. Then, 〈x, y〉
intersects π and so, if 〈x, y〉 is not singular, then the conic through x, y contains
three collinear points, a contradiction. �

We now rule out singular subspaces of dimension at least 2. We denote by k the
dimension of 〈X〉. First, we note that distinct maximal singular subspaces must be
disjoint.

LEMMA 4.7. Two singular subspaces U and V sharing a point z generate a singular
subspace.

Proof. Since every point in the span 〈U, V〉 is contained in the span of two lines
containing z, one in U and one in V , it suffices to assume that both U and V are
lines. Let p be arbitrary in 〈U, V〉 \ {z} and assume p /∈ X . Choose points x1, x2 ∈ U \
{z} and y1, y2 ∈ V \ {z} such that p = 〈x1, y1〉 ∩ 〈x2, y2〉. Since p /∈ X , Axiom (VC1′)
implies that [x1, y1] and [x2, y2] are well defined. But Axiom (VC2) implies p ∈ X , a
contradiction. Hence, p ∈ X and so 〈U, V〉 is a singular plane. �

LEMMA 4.8. There are no singular planes in X.

Proof. Let U be a singular subspace of dimension � ≥ 2 in X and assume that � is
maximal with this property. Since X contains at least one plane π such that π ∩ Xp is
a conic, we see that � ≤ k − 2 ≤ 3. If � = 3, then k = 5, and we can consider a point
x ∈ X outside U . For any u ∈ U , the line 〈u, x〉 is non-singular, as Lemma 4.7 would
otherwise lead to a singular subspace of dimension 4. Pick two distinct points u, v ∈ U .
So we have an oval C ⊆ X through x and u, and for each point y of C \ {u}, we have an
oval Cy containing v and y. Let y1, y2 be two distinct points of C \ {u}. An arbitrary
4-space W through U not containing the tangent lines at v to the ovals Cy1 and Cy2 ,
respectively, intersects Cyi in a point zi, i = 1, 2. The line 〈z1, z2〉 intersects U and so is
singular, a contradiction to Lemma 4.7.

Next suppose � = 2. If k = 4, then we argue similarly as above and obtain a
contradiction. So we may assume that k = 5. Let π be a plane in �5(�) skew to U . If
π ∈ �, then, by Lemma 4.6, the projection from π onto U is injective, even on X \ π ,
which leads to Xp = U ∪ Xp(π ), a contradiction as is easily seen. Hence, all ovals
intersect U nontrivially. Now, the projection of X \ U from U onto π is also injective,
as the line joining two points with same image must meet U and hence is singular, a
contradiction to Lemma 4.7. If � ∼= �2, then considering all conics joining a point off
U with a point of U , we obtain 7 + 1 points of X off U , contradicting the injectivity.
So suppose � 	∼= �2. Now let C1, C2 be two conics intersecting U in the same point u.
The projection onto π of C1 \ {u} and C2 \ {u} are two affine lines (an affine line is the
point set of a line, except for one point) L1 \ {c1}, L2 \ {c2}, respectively, where L1, L2

are lines of π and ci is a point of Li, i = 1, 2. Suppose c1 	= c2. By injectivity, we may
assume c1 ∈ L2 \ {c2}. Take an arbitrary point c′

1 of L1 \ {c1}. The conic defined by
the inverse images of c1, c′

1 in X intersects U and projects into L1, contradicting the
injectivity (since that conic is certainly different from both C1, C2).

Hence all conics in X through the same point u of U project onto affine lines of π

sharing the same point pu. For different u, the points pu are also different as otherwise,
by injectivity of the projection, we find two conics through a common point of X \ U
intersecting in all points but the ones in U , a contradiction. This now implies that two
different conics containing a (possibly different) point of U meet in a unique point of
X . We now choose a line L ⊆ U and project X \ L from L onto some skew 3-space
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�. Let ui, i = 1, 2, 3, be three distinct points on L. The conics through these points
project onto three families of lines such that lines from different families intersect in
a unique point. Considering two families, we see that these lie either on a hyperbolic
quadric, and the third family cannot exist (|�| > 2), or in a plane. In the latter case,
we easily see that all points of Xp \ U are contained in a 4-space together with L, a
contradiction considering a conic through some point of U \ L (and once again using
|�| > 2). �

So we now know that X does not contain planes. Before we start a detailed analysis
when there are singular lines, we note two easy properties.

LEMMA 4.9. No point x of any singular line is contained in the span of two other
singular lines. Also, no oval C misses at least two singular lines L1, L2.

Proof. Note that by Lemma 4.7 singular lines do not intersect each other. But the
transversal through x – i.e., the line through x intersecting the two singular lines – must
be a singular line by (LS1), a contradiction. For the second assertion, let x ∈ 〈C〉 ∩
〈L1, L2〉 (our assumption implies x /∈ L1 ∪ L2) and consider the unique transversal
to L1, L2 containing x. Then, Axiom (LS2) implies that x ∈ X and the transversal is
singular, a contradiction. �

We first treat the case where X spans a 4-space. From now one, we will frequently
have to make a distinction between |�| = 2 en the rest (a few times also |�| = 3 requires
special arguments). Note that |X | is odd if |�| = 2 (if there are � ovals through a point
x ∈ X , then there are either 2� + 1 points—if there is no singular line through x—or
2� + 3—otherwise). Also, if |�| = 2, the geometry induced by the singular lines and
the ovals on X is a 2-design, which is the Fano plane if |X | = 7, and the affine plane of
order 3 if |X | = 9.

LEMMA 4.10. We have k = dim〈X〉 = 5.

Proof. Since there are at least two ovals, Axiom (VC2) implies k ≥ 4. Hence for
a contradiction, we assume k = 4. We claim that there are at most two singular
lines. Indeed, suppose L1, L2, L3 are three different singular lines. Notice that they
are disjoint by Lemma 4.7. The 3-space 〈L1, L2〉 intersects L3 in at least a point,
contradicting Lemma 4.9. The claim is proved.

Now suppose that there are precisely two singular lines L1, L2. Let xi ∈ Li, i = 1, 2
and consider the projection of X \ [x1, x2] from [x1, x2] onto some skew line L. Clearly,
〈L1, L2, [x1, x2]〉 is 4-dimensional, so we can choose L to contain a point yi of Li,
i = 1, 2.
� If |�| = 2, then the injectivity of the projection on X \ ([x1, x2] ∪ L1 ∪ L2) implies

6 ≤ |X | ≤ 8. Hence |X | = 7, contradicting the fact that in a Fano plane every two
lines meet (and L1 and L2 are disjoint).

� If |�| > 2, we consider three conics through y1 intersecting L2 \ {x2} non-trivially.
These project onto three affine lines in L containing y1, y2. Hence, there is at least
one point L \ {y1, y2} covered twice. This contradicts the injectivity of the projection
on X \ ([x1, x2] ∪ L1 ∪ L2).

Now suppose that there is a unique singular line L. If some conic C is disjoint
from L, then projecting X \ C from 〈C〉 onto L implies that X = C ∪ L, an easy
contradiction. Hence, every conic intersects L and the geometry of conics and L is a

https://doi.org/10.1017/S0017089515000208 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089515000208


304 J. SCHILLEWAERT AND H. VAN MALDEGHEM

projective plane (as in a 4-space every pair of planes intersects). We project X \ C from
〈C〉 onto some disjoint line M, which we may assume to contain a point x ∈ L \ C.
� If |�| > 2, then we may consider three conics through y, which all project onto some

affine line in M containing x; this again implies that two distinct points have the
same image giving rise to an extra singular line, a contradiction.

� If |�| = 2, then |Xp| = 7 and we can coordinatize as follows: the points on L are
e1, e2, e1 + e2. Let x1, x2, x3 three arbitrary other points of X . The planes [x1, x2]
and [x2, x3] generate the 4-space, hence we may assume that they are e3, e4, e5, with
{e1, e2, e3, e4, e5} a basis. There are two projectively inequivalent choices for the
last point, namely e1 + e3 + e4 + e5 and e3 + e4 + e5. In the former case, the plane
[e1, e1 + e3 + e4 + e5], which we may assume to contain without loss of generality
e3, contains e4 + e5, a contradiction. In the latter case, we may assume that the
conic planes through e1 are 〈e1, e3, e4〉 and 〈e1, e5, e3 + e4 + e5〉, which both contain
e3 + e4, a contradiction. �

So from now on, we may assume that k = 5. We first treat the case where there are
at least three singular lines.

LEMMA 4.11. There are at most three singular lines, and in case there are three of
them, |�| = 2 and (X, �) is a biaffine singular cap.

Proof. Suppose for a contradiction that there are at least four singular lines
L1, L2, L3, L4. Then the 3-spaces 〈L1, L2〉 and 〈L3, L4〉 have a line K in common, with
K ∩ X = ∅. Each point a ∈ K belongs to a transversal to L1, L2, and to a transversal
to L3, L4. Axiom (LS2) now implies that these two transversals span a quadratic plane.
We conclude that every point a ∈ K is contained in a unique such quadratic plane, and
so each point x ∈ L1 ∪ L2 ∪ L3 ∪ L4 is contained in a unique oval Cx which intersects
each Li, i ∈ {1, 2, 3, 4}, non-trivially. This already implies |�| > 2. Consider two such
ovals Cx and Cy, with x, y ∈ L1 and project X \ Cx from Cx onto 〈Cy〉. Let ai be the
projection of Li, i = 2, 3, 4.
� Suppose first that |�| > 3. Let u, v ∈ Cx \ {x} be arbitrary and consider the

projections Lu and Lv of the ovals X([u, y]) and X([v, y]), respectively. If Lu =
Lv, then at least three points on Lu are the image of at least two points of
X([u, y]) ∪ Xp([v, y]), and at most one of these is contained in Cy. So there are
at least two singular lines intersecting Cx and projected off Cy. It follows that Cy

misses at least two singular lines, a contradiction. Hence Lu 	= Lv, and since there are
at least four choices for u ∈ Cx \ {x}, there is a choice such that Lu misses {a2, a3, a4},
and hence X([u, y]) misses at least two of {L2, L3, L4} (it intersects at most one of
these in the plane 〈Cx〉).

� Now let |�| = 3. Then, an oval through x and a point of Cy \ {y} gives rise to a
point z ∈ X not contained in L1 ∪ L2 ∪ L3 ∪ L4. Every oval through z must have
precisely three points in common with L1 ∪ L2 ∪ L3 ∪ L4, which has 16 points, a
contradiction as 16 is not divisible by 3.

Now assume that there are exactly three singular lines L1, L2, L3. Suppose for a
contradiction that some point x ∈ X is not contained in L1 ∪ L2 ∪ L3. Then, 〈L1, L2〉
shares a point y with 〈x, L3〉. As above, this implies that x and the unique transversal
to L1, L2 through y span a quadratic plane. We conclude that every point outside
L1, L2, L3 is contained in an oval intersecting each of L1, L2, L3 (and so |�| > 2).
Let C be such an oval and project X \ C from 〈C〉 onto some disjoint plane π . The
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projection of Li is some point ai, i = 1, 2, 3. Let z ∈ X be a point not contained in
L1 ∪ L2 ∪ L3 ∪ C, which we may assume to be contained in π .
� Suppose |�| > 3. The conics through z and a point of C project into distinct lines

of π through z, because, if not, then by Lemma 4.6, there are at least three points on
such projection with inverse image consisting of at least three points, contradicting
the fact that a1, a2, a3 are the only such points, and they are not contained in one
line. Hence, at least one such line misses a1, a2 and a3, and so can only meet one
of L1, L2, L3 (namely, in a point of C), a contradiction to the second assertion of
Lemma 4.9.

� Suppose |�| = 3. Since x is contained in exactly one conic meeting each of L1, L2, L3,
and every other conic through x meets exactly two of L1, L2, L3, an easy count
implies that there are 1+9/2 conics through x, a contradiction.

Consequently, |�| = 2 and we have exactly nine points and nine ovals, as is easily
checked. These ovals form a biaffine plane; if we add the singular lines, we have an
affine plane of order 3. The uniqueness of this structure in easily proved. �

LEMMA 4.12. The set X cannot contain exactly two singular lines.

Proof. Suppose for a contradiction that there are exactly two singular lines L1, L2.
� If |�| > 3, then choose a conic C containing a point xi ∈ Li and project X \ C

from C onto some disjoint plane π . Let ai be the projection of Li, i = 1, 2. Since
k = 5, there is some point x3 ∈ X , which we may assume to be in π , such that
〈a1, a2, x3〉 = π . As in the previous proof, no two conics through x3 and a point
of C \ {x1, x2} project into the same line. Hence, we can find such an oval whose
projection misses a1 and a2 and hence which does not contain a point of L1 ∪ L2, a
contradiction to Lemma 4.9.

� Now suppose |�| = 3. If some point x ∈ Xp \ (L1 ∪ L2) is only contained in ovals
which meet L1 ∪ L2 in two points, then all points are contained in 〈L1, L2, x〉,
contradicting k = 5.
Hence, each point is contained in at least one oval intersecting L1 ∪ L2 in exactly
one point. Suppose the point x ∈ X \ (L1 ∪ L2) is contained in t ovals intersecting
L1 ∪ L2 in exactly two points; then it is contained 8 − 2t ovals intersecting L1 ∪ L2

in exactly one point. Hence, |X | = 1 + 3(8 − t) and it follows that t is constant. If
y ∈ L1 ∪ L2, then exactly four ovals through y intersect L1 ∪ L2 in two points, leaving
9 − 3t points. Hence, there are 3 − t ovals through y intersecting L1 ∪ L2 in just y. So
in total there are 24 − 8t ovals intersecting L1 ∪ L2 in just one point. On the other
hand, there are 17 − 3t points in X \ (L1 ∪ L2), each in 8 − 2t ovals intersecting
L1 ∪ L2 in just one point. Hence, there are (17−3t)(8−2t)

3 ovals intersecting L1 ∪ L2 in
exactly one point. Equating the two expressions obtained for this number, we obtain
136 − 58t + 6t2 = 72 − 24t, implying 32 − 17t + 3t2 = 0, a contradiction.

� Now suppose |�| = 2. A similar count as in the case |�| = 3 implies (with similar
definition for t) that (7−2t)(6−2t)

2 = 18 − 6t, so t = 1
2 , a contradiction. �

The next lemma concludes the proof of Proposition 4.5.

LEMMA 4.13. If the set X contains a unique singular line L, then |�| = 2 and (X, �)
is a projected Veronesean cap.

Proof.
� Suppose first |�| > 2. We claim that every two ovals that intersect L, intersect

mutually. Indeed, let C, D be two ovals intersecting L in x, y, respectively. Suppose
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C and D are disjoint. The projection from 〈C〉 onto 〈D〉 of X \ (C ∪ L) is injective.
Hence, there are at least two ovals E1, E2 through y meeting C and projected onto
affine lines A1, A2, respectively, whose projective extensions M1, M2, respectively,
are not tangent to D at x. Injectivity implies that Mi \ Ai ∈ D, i = 1, 2. If there were
a second oval D′ through y disjoint from C, then its projection would be an oval
through y tangent to both M1, M2, a contradiction. Hence, the points of X \ (C ∪ L)
are projected onto the union U of a set of affine lines through y and the oval D.
Now consider an oval through a point of L \ {x, y} and some point of C \ {x}. Its
projection is an affine line T through y, contained in U . Since no affine line can
be contained in D, T is contained in the projective extension M of some projection
A of an oval through y and some point of C. If |�| > 3, then |(A ∩ T) \ {y}| ≥ 2,
contradicting injectivity. If |�| = 3, then there are 16 points in total, hence five ovals
through a point z of X \ L. Consequently, there is an oval E through z disjoint from
L. The projection of X \ E from 〈E〉 onto a plane π skew to 〈E〉 containing L is
injective. The four ovals through x intersecting E project into four distinct lines of
π . But these lines should also differ from L, contradicting the fact that we have only
four lines through x in π .
Hence, all conics that intersect L meet mutually. Projection from L onto some
disjoint 3-space yields a system of |�| + 1 families of |�| lines generating 3-space
such that each pair of lines from different families intersect non-trivially. This is
only possible for |�| = 2.

� Hence, let � ∼= �2. If |X | = 7, then the four points of X off L are projectively
unique; indeed, if L = {e1, e2, e1 + e2}, then the other points are e3, e4, e5, e6, where
{e1, e2, e3, e4, e5, e6} is a basis. The conics and L form a Fano plane. If |X | > 7,
then there is an oval disjoint from L, and hence projection from such an oval onto
a plane containing L is injective, implying |X | ≤ 10. Since |X | is odd, we have
|X | = 9 and the ovals and L form an affine plane of order 3. Hence, there are
two disjoint ovals that are also disjoint from L. If {e1, . . . , e6} is a basis as above,
we may assume that the two ovals are C1 = {e1, e2, e3} and C2 = {e4, e5, e6}. Since
projection from 〈C1〉 onto 〈C2〉 is injective on X \ C1 and vice versa, and there is
only one line disjoint from Ci in 〈Ci〉, i = 1, 2, we deduce that L is contained in
〈e1 + e2, e2 + e3, e3 + e1, e4 + e5, e5 + e6, e6 + e4〉. Hence without loss of generality,
we may take L = {e1 + e2 + e4 + e5, e2 + e3 + e5 + e6, e3 + e1 + e6 + e4}. The plane
[e1, e4] does not contain e1 + e2 + e4 + e5 as it would also contain e2 + e5, which does
not belong to Xp, but is also contained in [e2, e5]. Likewise [e1, e4] does not contain
e3 + e1 + e6 + e4. Hence, it must contain e2 + e3 + e5 + e6. Likewise, [e2, e5] contains
e3 + e1 + e6 + e4. But then [e1, e4] and [e2, e5] share the point e1 + e2 + · · · + e6,
which does not belong to X , contradicting (VC2). �

5. Proof of main result 2.

5.1. General properties. In this section, (X, �) is a Lagrangian set in �N(�), with
� a field and N possibly infinite. We denote by G(X) the corresponding geometry of
points and singular lines, and by �(X) we denote the point graph of G(X) (which is
the graph with point set X and adjacency is collinearity). The diameter of �(X) is by
definition the diameter of (X, �). The distance between two points x, y ∈ X in �(X) is
denoted by δ(x, y). Two points of X on a singular line will be called X-collinear. The
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elements of � are called the quadratic spaces. Subspaces of �N(�) consisting entirely
of points of X are called singular.

The following is exactly the Quadrangle Lemma of [9], proved there for similar
objects, although having diameter 2. We give a proof for completeness’ sake.

LEMMA 5.1 (The quadrangle lemma). Let L1, L2, L3, L4 be four (not necessarily
pairwise distinct) singular lines such that Li and Li+1 share a (not necessarily unique)
point pi, i = 1, 2, 3, 4 mod 4, and suppose that p1 and p3 are not X-collinear. Then,
L1, L2, L3, L4 are contained in a unique common symp.

Proof. Since 〈p1, p3〉 is not singular, we can pick a point p ∈ 〈p1, p3〉 which does
not belong to X . Since p1 and p3 are X-collinear with p2, we have δ(p1, p3) = 2. Hence,
by (LS1), there is a unique quadratic space ξ containing p1 and p3. We choose two
arbitrary distinct lines M1, M2 through p inside the plane 〈L1, L2〉 not containing p2.
Denote Mi ∩ Lj = {pij}, {i, j} ⊆ {1, 2}, then δ(pi1, pi2) = 2, i = 1, 2. By (LS1), there is a
quadratic space ξi containing pi1 and pi2, i = 1, 2. If ξ1 	= ξ2, then (LS2) implies that p,
which is contained in ξ1 ∩ ξ2, belongs to X , a contradiction. Henc,e ξ1 = ξ2 = ξ and
contains L1, L2. We conclude ξ contains L1, L2, and similarly also L3, L4. �

Now let p ∈ X be arbitrary. Let Up be a hyperplane of Tx not containing p and
define Xp to be the set of points obtained by intersecting Up with all singular lines of
X through p. Let �p be the set of subspaces of U obtained by intersecting U with all
tangent spaces at p to the symps of (X, �) through p. The pair (Xp, �p) is called the
residue of (X, �) in p. We denote the dimension of Up by k. Note k ≤ 5.

We have the following result.

LEMMA 5.2. For every p ∈ X, the residue (Xp, �p) is a singular pre-Veronesean cap.

Proof. Clearly, for any ξ ∈ �p, we have Xp ∩ ξ is a conic. Also, clearly (VC2) is
inherited from (X, �). Now suppose x, y ∈ Xp. Assume first that some point of 〈x, y, p〉
does not belong to X . Then, there are two points on 〈x, p〉 ∪ 〈y, p〉 which are not X-
collinear and the Quadrangle Lemma implies that a unique quadratic space ξ contains
〈x, p〉 ∪ 〈y, p〉 = X ∩ 〈x, y, p〉. In this case, Tp(ξ ) ∩ Xp is a conic. Assume now that all
points of 〈x, y, p〉 belong to X . Then, all points of 〈x, y〉 belong to Xp. This shows
(VC1′).

Since � contains at least two elements, it follows from the connectivity and (LS1)
that there is at least one symp ξ through p. Now let x ∈ X \ ξ . Let (p, p1, p2, p3, . . . , x)
be a minimal path connecting p and x in �(X). If p2 /∈ ξ , then X([p, p2]) is a second
symp through p. So suppose p2 ∈ ξ . Then, p2 	= x and p3 exists. But now we find a
point y outside ξ in X([p1, p3]) collinear with p1, and so X([p, y]) is a symp distinct
from ξ and containing p. Hence, |�p| ≥ 2 and the lemma is proved. �

The previous lemma motivates the following terminology. For p ∈ X , if (Xp, �p) is
a Veronesean cap, we call p a straight point. All points are straight as soon as � 	∼= �2.
If � ∼= �2, then we also have almost straight points (when (Xp, �p) is a projected
Veronesean), 1-singular points (when (Xp, �p) contains exactly one singular line) and
3-singular points (when (Xp, �p) contains exactly three singular lines).

5.2. Lagrangian sets of diameter 2. We now suppose that �(X) has diameter 2
and prove the following lemma.
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LEMMA 5.3. If (X, �) has diameter 2, and x ∈ X is not a 3-singular point, then every
point at distance 2 from x in �(X) is a 3-singular point.

Proof. Let y ∈ X be at distance 2 from x and let L be any singular line of X through
y not contained in [x, y]. Choose a point z ∈ L \ {y}. Since x is not 3-singular, every
pair of ovals in (Xx, �x) intersects and hence the symps X([x, y]) and X([x, z]) intersect
in a line M containing x. Consequently, looking in X([x, z]), there is a point x′ of M
collinear with z. Clearly, x′ 	= y, hence the Quadrangle Lemma implies that y and x′

are X-collinear, and hence 〈z, y, x′〉 is a singular plane.
Hence, every point of (Xy, �y) not on the oval corresponding to [x, y] is contained

in a singular line. This implies, by Proposition 4.5, that y is a 3-singular point. �
We are now ready to prove the nonexistence of Lagrangian sets of diameter 2.

PROPOSITION 5.4. Lagrangian sets of diameter 2 do not exist.

Proof. Since, if � 	∼= �2 , every point of X is straight, the assertion follows in that
case directly from Lemma 5.3.

Now suppose � ∼= �2. Suppose first that some point p is not 3-singular. Then, we
can select two singular lines L1, L2 through p which are not contained in a singular
plane. It follows that, if xi ∈ Li, i = 1, 2, are points distinct from p, none of the
points x1, x2 is 3-singular. But by our choice, we have δ(x1, x2) = 2. This contradicts
Lemma 5.3.

Hence, we may assume that all points of X are 3-singular. Select an arbitrary point
p; there are nine symps through p giving rise to exactly 72 points of X at distance 2 from
p. There are nine singular lines through p giving rise to exactly 18 points X-collinear
with p. Together with p, this amounts to 91 = |X | points. A double count of the pairs
(x, ξ ) ∈ X × � with x ∈ ξ yields 91 × 9 = |�| × 15, a contradiction. �

REMARK 5.5. In fact, in the proof of Proposition 5.4 we did not use Axiom (LS3)
explicitly anymore; the facts that in every residue every pair of conics intersects non-
trivially and that there are no singular planes, or that |�| = 2 and that either every
residue has seven points with at most one singular line, or nine points with exactly
three singular lines, suffice.

5.3. Lagrangian sets of diameter at least 3. From now on, we may assume that
the diameter of �(X) is either unbounded or at least 3. We first aim at showing that
the diameter is always equal to 3. Along the way, this will also prove that there are no
singular planes.

LEMMA 5.6. If π is a singular plane, then every point p ∈ X not contained in π is
X-collinear with exactly one point of π .

Proof. Suppose for a contradiction that no point of π is X-collinear with p. Then,
by connectivity, we may assume that there is a point x ∈ π with δ(p, x) = 2. Note that,
by Proposition 4.5, every symp through x intersects π in a line. Applied to X([p, x]),
this yields a line L ∈ π ∩ [p, x]. Inside the symp X([p, x]), there is a point y ∈ L that
is X-collinear with p, contradicting our hypothesis. Hence, there is always at least one
point of π collinear with p ∈ X \ π .

If at least two points x1, x2 ∈ π are collinear with p, then π ′ = 〈x1, x2, p〉 is singular
and Lemma 4.7 applied to the residue at x1 leads to a singular plane in that residue, a
contradiction to Lemma 4.8. �
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LEMMA 5.7. There are no singular planes in X.

Proof. This follows from Proposition 4.5 if � 	∼= �2; so suppose � ∼= �2. For a
contradiction, suppose there is a singular plane, and hence X contains some 1-singular
point or 3-singular point. If all points are either 1-singular or 3-singular, then every
point is contained in a singular plane and consequently, using Lemma 5.6, the diameter
of �(X) equals 2, a contradiction.

Hence, we may assume that some point p is (almost) straight. Noting that (almost)
straight points are never X-collinear with 3-singular points, connectivity leads to the
existence of a 1-singular point q. Since q is contained in a singular plane, it is at distance
≤ 2 from any other point of X , and hence every other point is contained in a symp
together with q. Since there are six symps through q, there are exactly 48 points at
distance 2 from q; since there are seven singular lines through q, there are 14 points X-
collinear with q. Hence |X | = 63. But a similar count yields already 1 + 14 + 56 = 71
points at distance 0, 1, 2 from p, a contradiction. �

LEMMA 5.8. The graph �(X) has diameter 3.

Proof. Suppose for a contradiction that x1, x2, x3, x4, x5 are five points of X with
δ(xi, xj) = |i − j|, i, j ∈ {1, 2, 3, 4, 5}. The symps X([x1, x3]) and X([x3, x5]) intersect in
a line L. It follows that there are points z1, z5 on L which are X-collinear to x1, x5,
respectively. This leads to a path (x1, z1, z5, x5) or (x1, z1, x5) of length 3 or 2 joining
x1 to x5 (depending on whether z1 	= z5 or z1 = z5), a contradiction. �

We can now determine the isomorphism class of the geometry of points and
singular lines of X .

LEMMA 5.9. If L denotes the set of singular lines of X, then (X,L) is the dual polar
space associated to the building of absolute and relative type C3 over the field �; in other
words, X can be viewed as the set of totally isotropic planes with respect to a symplectic
polarity in �5(�), and the singular lines correspond to the planes intersecting in a common
totally isotropic line with respect to that polarity.

Proof. Define a geometry G over the type set {1, 2, 3} where the points of X are
the elements of type 3, the singular lines in X are the elements of type 2, and the
symps in X are the elements of type 1. Incidence is symmetrized containment. From
the previous, it follows that this is a geometry of type C3. Moreover, properties (LL)
and (O) of [12], p. 543, required for the geometry to correspond to a building, are in
our setting equivalent to the requirement that if two lines are both contained in two
distinct quads S1 and S2, then they coincide, which trivially holds. Hence, the geometry
corresponds to a building, and since the residue of the elements of type 1 are precisely
the symps, hence orthogonal quadrangles Q(4, �), we see that G is the geometry of the
totally isotropic subspaces of a symplectic polarity in �5(�). Consequently, (X,L) is
the corresponding dual polar space DW(5, �). �

If |�| > 2, then by [4] and [5], LG(3, 6)(�) is the absolute universal embedding of
(X,L), and Proposition 3.3 completes the proof of Main Result 2.

Finally, suppose |�| = 2.
Let Y be the point set of the universal embedding of DW(5, �2). By [13], Y spans

a 14-dimensional space �14(�2) and the stabilizer of Y in PGL15(2) induces the full
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group of automorphisms of DW(5, �2); in particular, it is transitive on the points of Y .
For y ∈ Y , denote by ηy the subspace of �14(�2) generated by all points of Y collinear
with y in DW(5, �2). We now show that �14(F2) is generated by 〈ηy, ηz〉, for y, z ∈ Y at
distance 3 from each other.

Let x be an arbitrary point of Y . If x is at distance at most 2 from one of y and
z, then we claim it is contained in 〈ηy, ηz〉. Indeed, suppose x is at distance 2 from y.
Let S be the symp through x and y; then there is a unique point t ∈ S collinear with z.
Since t cannot be collinear with y, S is generated by t and the points of S in ηy. Hence,
S ⊆ 〈ηy, ηz〉 and the claim follows.

So we may assume that x has distance 3 from both y and z. In the polar space
W(5, �2), the points x, y, z correspond to mutually disjoint planes πx, πy, πz. We claim
that there is a plane π intersecting πx in a line and πy ∪ πz in a single point. Indeed,
clearly no plane intersecting πx in a line can meet πy ∪ πz in more than two points.
Suppose now, for a contradiction, that each plane πL which intersects πx in a line L
and πy in a point yL (there are precisely seven such planes) intersects πz in a point zL. If
yL = yM , for L, M lines of πx, then yL is collinear with all points of πx, a contradiction.
Since the planes πx, πy, πz are disjoint, one deduces that the mapping πy → πz : yL �→
zL induces a collineation, and so also the mapping πy → πx : yL �→ L ∩ 〈yL, zL〉 is a
collineation. Now the projection mapping πx → πy : L �→ yL is a duality; hence the
mapping πx → πx : L �→ L ∩ 〈yL, zL〉 is a duality, every point of which is incident
with its image. It is easy to see that this is a contradiction. This proves our claim. So
there are planes αy and αz intersecting πx in a common line L, intersecting πy and πz,
respectively, in some point, and disjoint from πz and πy, respectively.

Now, this implies that the line L′ in Y corresponding to the line L of W(5, �2)
contains the point x, and the points at distance 2 from y and z on L′ are distinct.
Hence, x ∈ 〈ηy, ηz〉 by our first claim, and we have shown 〈ηy, ηz〉 is the whole space.
By transitivity of the automorphism group on Y , we either have dim ηz = dim ηy = 6,
or dim ηz = dim ηy = 7. In the former case, dim〈ηy, ηz〉 ≤ 13, a contradiction. Hence
dim ηy = 7, for all y ∈ Y . Since LG(3, 6)(�2) is isomorphic to the projection of Y from
a point c /∈ Y , Axiom (LS3) yields that c is contained in ηy, for all y ∈ Y . Choosing
coordinates in ηy appropriately, we may assume y = (1, 0, 0, 0, 0, 0, 0, 0, 0), and the
other points of Y ∩ ηy are (0, . . . , 0, 1, 0, . . . , 0) and (1, 0, . . . , 0, 1, 0, . . . , 0) (the 1
is twice in the ith position), i = 2, . . . , 8. The point c consequently has coordinates
either (1, 1, . . . , 1) or (0, 1, . . . , 1). Without loss of generality, we may assume the
former.

Now suppose for a contradiction that X does not arise from Y by projection from
c. Then, it must arise from Y by projection from a subspace C that intersects ηy in
a unique point yC , for every y ∈ Y . Since (the projection of) y is either a straight or
an almost straight point, the point yC either has coordinates (0, 1, . . . , 1) (in case of a
straight point), or we may assume without loss of generality that yC has coordinates
(0, 0, 1, . . . , 1). In both cases, the projection of c coincides with the projection of a
point of Y ∩ ηy, namely, y and (1, 1, 0, . . . , 0), respectively. Since this holds for all
y ∈ Y , it implies that the projection from C is not injective on Y , a contradiction.

Hence, X arises from Y by projection from c, and we obtain LG(3, 6)(�2). The
proof of Main Result 2 is complete.

ACKNOWLEDGEMENTS. The first author’s research was supported by Marie Curie
IEF grant GELATI (EC grant nr 328178).

https://doi.org/10.1017/S0017089515000208 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089515000208


A CHARACTERIZATION OF THE LAGRANGIAN GRASSMANNIAN 311

REFERENCES

1. A. Blokhuis and A. E. Brouwer, The universal embedding dimension of the binary
symplectic dual polar space, in The 2000 Com2MaC Conference on Association Schemes, Codes
and Designs (Pohang). Discrete Math. 264 (2003), 3–11.

2. I. Cardinali and B. De Bruyn, The structure of full polarized embeddings of symplectic
and Hermitian dual polar spaces, Adv. Geom. 8 (2008), 111–137.

3. B. De Bruyn and H. Van Maldeghem, Dual polar spaces of rank 3 defined over quadratic
alternative division algebras, J. Reine Angew. Math., to appear.

4. B. Cooperstein, On the generation of dual polar spaces of symplectic type over finite
fields, Eur. J. Comb. 18 (1997), 849–856.

5. B. De Bruyn and A. Pasini, Generating symplectic and Hermitian dual polar spaces
over arbitrary fields nonisomorphic to �2, Electron. J. Comb. 14 (2009), #R54, 17pp.

6. O. Krauss, Geometrische Charakterisierung von Veronesemannigfaltigkeiten, PhD
Thesis (Braunschweig,2014).

7. P. Li, On the universal embedding of the Sp2n(2) dual polar space, J. Combin. Theory
Ser. A 94(1) (2001), 100–117.

8. J. Schillewaert and H. Van Maldeghem, Quadric Veronesean caps, Bull. Belgian Math.
Soc. Simon Stevin 20 (2013), 19–25.

9. J. Schillewaert and H. Van Maldeghem, On the varieties of the second row of the split
Freudenthal-Tits magic square. Available at http://arxiv.org/abs/1308.0745.

10. E. E. Shult, Points and Lines, Characterizing the Classical Geometries (Universitext,
Springer-Verlag, Berlin, Heidelberg, 2011).
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