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Abstract

The higher-dimensional Thompson groups nV , for n � 2, were introduced by Brin [‘Presentations of
higher dimensional Thompson groups’, J. Algebra 284 (2005), 520–558]. We provide new presentations
for each of these infinite simple groups. The first is an infinite presentation, analogous to the Coxeter
presentation for the finite symmetric group, with generating set equal to the set of transpositions in
nV and reflecting the self-similar structure of n-dimensional Cantor space. We then exploit this infinite
presentation to produce further finite presentations that are considerably smaller than those previously
known.
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1. Introduction

A well-known result of Brouwer [6] states that a nonempty totally disconnected
compact metrizable space without isolated points is homeomorphic to the Cantor
space C. Consequently, this space arises throughout mathematics and it is unsurprising
that many groups occur among its homeomorphisms. Interesting and important
examples of such groups include Grigorchuk’s group of intermediate growth [12,
13], which may be naturally described as consisting of certain automorphisms of a
binary rooted tree, and various generalizations, such as the Gupta–Sidki groups [15]
and the multi-GGS groups (see, for example, [10]); the asynchronous rational group
of Grigorchuk et al. [14]; and, particularly relevant to this paper, the groups F, T and
V introduced by Richard J. Thompson [7, 21].

Thompson’s group F is a 2-generator group with abelianization isomorphic to a
free abelian group of rank 2 and such that its derived subgroup F′ is simple. The
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other two groups T and V introduced by Thompson are both infinite simple groups.
All three groups are finitely presented, with F having a small presentation with two
generators and two relations. The presentations for T and V, as described in [7],
both involve additional generators and relations to supplement those used for F. In
particular, Thompson’s original presentation for his group V involved four generators
and fourteen relations. In work by Bleak and the author [2], we returned to possible
presentations for V. We give there various presentations for this group: one involving
infinitely many generators and an infinite family of relations. The generators in [2,
Theorem 1.1] correspond to transpositions of certain disjoint basic open sets of Cantor
space and the relations are analogous to the Coxeter presentation for a finite symmetric
group, but also include what we termed ‘split relations’ reflecting the self-similar
structure of Cantor space. The second presentation, given in [2, Theorem 1.2], is
a finite presentation, essentially obtained by reducing the infinite presentation, with
three generators and eight relations (which compares favourably in size to Thompson’s
original presentation). We then produced a two-generator presentation for V by use
of Tietze transformations and our smallest presentation, obtained via computational
methods, is on two generators and seven relations [2, Theorem 1.3]. One should also
note a link between our infinite presentation for V and the geometric presentations
given by Dehornoy [8].

In 2004, Brin [3] introduced, for each positive integer n � 2, an analogue of
Thompson’s group V that acts upon an n-dimensional version of Cantor space. He
denotes this group by nV and, via the homeomorphism Cn � C, this family provides
us with further groups of homeomorphisms of Cantor space. Bleak and Lanoue [1]
noted that two of these groups mV and nV are isomorphic if and only if m = n. Brin
observes in his first paper that the group 2V is an infinite simple group, while in [5], he
shows that all the groups nV are simple. In the latter argument, he makes considerable
reference to the baker’s maps of Cn and notes that these maps can be expressed as a
product of transpositions. This observation will be particularly relevant to our proof of
Theorem 1.1 in Section 2 below. Furthermore, all these groups are finitely presented:
in [4, Theorem 5], Brin observes that 2V has a finite presentation with 8 generators
and 70 relations. This method was extended by Hennig and Matucci [17] to establish a
finite presentation for the groups nV involving 2n + 4 generators and 10n2 + 10n + 10
relations (see [17, Theorem 25]). Indeed, each group nV is of type F∞, as established
in [11, 19]. In this article, it is demonstrated that these groups possess infinite presenta-
tions involving elements corresponding to transpositions of disjoint basic open sets and
involving relations that have a Coxeter-like shape and reflect the self-similar nature of
Cn (see Theorem 1.1 below). Again, these infinite presentations bear comparison with
Dehornoy’s geometric presentations [8] for F and V. In the final section of the paper,
we demonstrate that the group nV is isomorphic to a group G with a finite presentation
involving 3 generators and 2n2 + 3n + 11 relations. It is noteworthy that the number of
generators is bounded independent of the parameter n and that the number of relations
significantly improves upon the presentations in [4, 17]. In particular, the resulting
finite presentation for 2V involves 3 generators and 25 relations.
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1.1. Notation. We write C for the Cantor set; that is, the collection of all infinite
words from the alphabet {0, 1}. We also use the set {0, 1}∗ of finite words in this
alphabet and write ε to denote the empty word. If α, β ∈ {0, 1}∗, then α � β indicates
that α is a prefix of β. The notation α ⊥ β denotes that α � β and α � β, and we then
say these words are incomparable. The length of a finite word α, denoted by |α|, is the
number of symbols from {0, 1} occurring in α.

If n is a positive integer with n � 2, the higher-dimensional Thompson group
nV is defined (see below) as consisting of certain transformations defined on
n-dimensional Cantor space Γ = Cn. Accordingly, we also need the set Ω of sequences
α = (α1,α2, . . . ,αn) where each αi ∈ {0, 1}∗ and we use the term address to refer
to elements of Ω. These addresses are used to index the basic open subsets of
Γ which in turn appear in the definition of the elements of nV . We extend the
concept of incomparability to addresses by writing α ⊥ β, for a pair of addresses
α = (α1,α2, . . . ,αn) and β = ( β1, β2, . . . , βn), when αd ⊥ βd for some index d with
1 � d � n. Similarly, for such addresses, we write α � β when αd � βd for all d = 1,
2, . . ., n.

The higher-dimensional Thompson group nV consists of certain homeomorphisms
of Γ. We use right action notation throughout and so write wg for the image of w ∈ Γ
under g ∈ nV . Let Γ(α) = {αw | w ∈ Γ } be the collection of all sequences in Γ with the
address α as prefix, and this is the basic open set indexed by α. Note Γ(α) ∩ Γ( β) =
∅ if and only if α ⊥ β and that Γ(α) ⊇ Γ( β) if and only if α � β. An element g of
nV is then described as follows: given two partitions Γ =

⋃k
i=1 Γ(α

(i)) =
⋃k

i=1 Γ( β
(i))

into the same number of disjoint basic open sets, we define the homeomorphism g
of Γ by α(i)w 
→ β(i)w for i = 1, 2, . . ., k and any w ∈ Γ. Thus, each homeomorphism
in nV is given by piecewise affine maps on Γ determined by two partitions of the
space into the same number of basic open sets and some bijection between the parts.
Figure 1 illustrates an example partition of C3; that is, a potential choice for domain
or codomain partially determining an element of 3V . If α and β are incomparable
addresses, we call the element of nV that maps αw 
→ βw, βw 
→ αw for all w ∈ Γ and
fixes all other points in Γ a transposition. This element has the effect of interchanging
the basic open sets Γ(α) and Γ( β). In what follows, we write G∞ for the group with the
presentation given in Theorem 1.1 below. The element denoted by (α β) that appears
in that presentation corresponds, under the natural homomorphism G∞ → nV , to this
transposition that interchanges Γ(α) and Γ( β).

To describe an address in Ω, in theory, requires one to write a sequence of n finite
words in {0, 1}. Such a sequence would appear quite cumbersome in our calculations
particularly when appearing as entries in the transpositions with which we work.
Accordingly, we present a more compact and useful notation. If α is some (usually
explicit) finite word in {0, 1}, we write αd for the address all of whose entries are
the empty word with the exception of the d th coordinate which equals α. Thus, for
example, 010d = (ε, . . . , ε, 010, ε, . . . , ε) where 010 occurs in the d th coordinate in this
n-tuple. We particularly make use of this notation when we wish to append one (or
more) letters from {0, 1} to particular entries in an address α = (α1,α2, . . . ,αn). For
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FIGURE 1. A domain or codomain partition of Γ = C3.

example, we write α.0d to indicate that we concatenate the addresses α and 0d; that is,
we append the symbol 0 to the d th coordinate αd of α:

α.0d = (α1, . . . ,αd−1,αd0,αd+1, . . . ,αn).

(The use of the dot appearing in this notation is to demarcate the end of the first
address α and the beginning of the second and is intended to achieve clarity. Indeed,
according to our notation, α0d (without the dot) would indicate the address with a
single nonempty entry α0 in the d th coordinate. The dot notation is unnecessary when
concatenating two finite words in {0, 1} but helps when dealing with n-tuples.) The use
of this notation can be observed within what we term the ‘split relations’ appearing in
the statement of Theorem 1.1 below (see Equation (1-4)) and in the addresses labelling
the parts in Figure 1. An additional piece of notation that we use is that if x ∈ {0, 1},
then x̄ denotes the other element in this set and then, following our above convention,
x̄d is the sequence (ε, . . . , ε, x̄, ε, . . . , ε), where x̄ occurs in the d th coordinate. Finally,
ε denotes the address (ε, ε, . . . , ε) all of whose entries are the empty word.

To specify the relations that define our group, we define an additional notation that
encodes the partial action of transpositions in nV upon the basic open sets indexed
by the addresses in Ω. To be specific, if α,β,γ ∈ Ω with α ⊥ β, we define a partial
map by

γ • (α β) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

βδ if γ = αδ for some δ ∈ Ω;
αδ if γ = βδ for some δ ∈ Ω;
γ if both γ ⊥ α and γ ⊥ β;
undefined otherwise.

(1-1)

Thus, we associate to the symbol (α β) the partial map on the set Ω of addresses that
performs a prefix substitution that interchanges the prefix α with the prefix β.

https://doi.org/10.1017/S1446788722000210 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788722000210


[5] Presentations for Brin’s Thompson groups 43

1.2. Statement of results. In Section 2, we establish the following infinite presen-
tation for nV .

THEOREM 1.1. Let n � 2. Let A be the set of all symbols (α β) where α and β are
addresses in Ω with α ⊥ β. Then Brin’s higher-dimensional Thompson group nV has
infinite presentation with generating setA and all relations

(α β)2 = 1, (1-2)

(α β)(γ δ) = (α•(γ δ) β•(γ δ)), (1-3)

(α β) = (α.0d β.0d) (α.1d β.1d), (1-4)

where α, β, γ and δ range over all addresses inΩ such that α ⊥ β, γ ⊥ δ and such that
both α • (γ δ) and β • (γ δ) are defined, and d ranges over all indices with 1 � d � n.

We refer to relations of the form in Equation (1-3) as ‘conjugacy relations’ and those
of the form in Equation (1-4) as ‘split relations’ in what follows. The latter arise due to
the self-similar nature of Cantor space: to exchange prefixes α and β is equivalent to
exchanging both the pairs of prefixes obtained by ‘splitting’ the d th coordinate. Note
that we use exponential notation for conjugation, writing gh for h−1gh, where g and h
belong to some group, and this is consistent with our use of right actions.

We also need an additional relation that can be deduced immediately from Equation
(1-3). On the face of it, if α and β are incomparable addresses in Ω, the symbols
(α β) and (β α) are not necessarily the same element of the group with the given
presentation. However, we expect them to correspond to the same transposition in nV .
The ‘symmetry relation’

(α β) = ( β α) (1-5)

follows from Equation (1-3) by taking γ = α and δ = β:

(α β) = (α β)(α β) = (α•(α β) β•(α β)) = ( β α).

We make use of this additional relation in Equation (1-5) throughout our arguments.
The method of proof of the above theorem is essentially to verify a family of

relations for nV originally found in [17]. Let G∞ denote the group with presentation
given in Theorem 1.1. The key steps in the proof in Section 3 are to define and
investigate elements in G∞ that correspond to baker’s maps. The two-dimensional
baker’s map is a basic object within the study of dynamical systems (see, for example,
[9]) and is illustrated in Figure 2(i). In the context of n dimensions, we refer to baker’s
maps that arise in the domain from a cut in the first coordinate and in the codomain
from a cut in the d th coordinate. Thus, we define, in G∞, an element Bd(α) that
corresponds to the element of nV with support equal to Γ(α) mapping Cn → Cn via
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FIGURE 2. Baker’s maps when d = 2 (left) and d = 3 (right).

the formula

w 
→

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

α.0d.u if w = α.01.u for some u ∈ Cn,
α.1d.u if w = α.11.u for some u ∈ Cn,
w otherwise (that is, if α � w).

When we refer below to the element Bd(α) evaluating to an ‘index d’ baker’s map, we
mean that it evaluates to the homeomorphism of Cn given by this formula. All baker’s
maps arising within our work will have such a form (for some address α ∈ Ω and some
d � 2).

The elements Bd(α) in G∞ are defined via the formulae expressing baker’s maps
in terms of transpositions found in [5]. In Section 2, we observe that the behaviour
of baker’s maps can be deduced from the relations assumed about transpositions.
Lemmas 2.2–2.4 give the properties upon which we depend. In summary, while Brin
[5] establishes simplicity of nV by expressing baker’s maps as products of transposi-
tions, we use relational properties between transpositions to produce information about
baker’s maps to establish our presentation in Theorem 1.1.

In Section 3, we reduce our infinite presentation to a finite presentation (the relations
are those listed in Relations R1–R7 in that section).

THEOREM 1.2. Let n � 2. Brin’s higher-dimensional Thompson group nV has a finite
presentation with three generators and 2n2 + 3n + 11 relations.

To prove this theorem, we begin with transpositions with entries from the set Δ
of addresses α = (α1,α2, . . . ,αn) with |αd | = 2 for 1 � d � n. Thus, as a base point
in an induction argument, we assume that we have a subgroup isomorphic to (a
quotient of) the symmetric group of degree 4n. In an induction argument, we build
further transpositions by successively conjugating the transpositions constructed at a
previous stage and then finally exploit the split relations in Equation (1-4) to complete
the definitions. In this way, we demonstrate that the group G with the presentations
provided in Theorem 1.2 is a quotient of the group G∞ described in Theorem 1.1.

Finally, by applying Tietze transformations, we deduce the following corollary.

COROLLARY 1.3. Let n � 2. Brin’s higher-dimensional Thompson group nV has a
finite presentation with two generators and 2n2 + 3n + 13 relations.
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REMARKS 1.4. In common with the finite presentation given by Hennig–Matucci [17],
the number of relations we use is quadratic in the dimension n. One could ask whether
there are presentations for nV on two generators but where the number of relations
grows at most linearly in n. In our case, the quadratic function arises from the family
of Relations R5, which is used to ensure the well definedness of transpositions (α β)
where two coordinates of α have length 3 and all remaining coordinates of α and all
those of β have length 2. Although the growth in the number of relations relative to the
dimension of the space acted upon seems reasonable, surprising results such as that
of Guralnick et al. [16] stand in contrast to expectations. The arguments used in [16]
employ a process that has been termed the Burnside procedure and presented in detail
in the appendix of [20]. This process can be used to reduce some large presentation of a
group to a much smaller one. Potentially, it could be applied to the infinite presentation
found in Theorem 1.1 and one might wonder how the result would compare with
Theorem 1.2. It seemed to the author that the most direct application of the Burnside
procedure (if successful) would likely result in more relations. Nevertheless, it remains
an interesting question whether smaller presentations exist for Brin’s groups nV .

2. The infinite presentation for nV

We devote this section to establishing Theorem 1.1. Accordingly, we define G∞ to
be the group presented by the generators A = { (α β) | α,β ∈ Ω, α ⊥ β } subject to
the family of Relations (1-2)–(1-4). In this context, we shall use the term transposition
for any element (α β) appearing in the generating set A. It was observed by Brin
[5] that the group nV is generated by the corresponding transpositions of basic open
sets of Γ. It is readily verified that these homeomorphisms satisfy the relations listed
in Theorem 1.1. Hence, there exists a surjective homomorphism φ : G∞ → nV that
maps (α β) to the corresponding transposition in nV . In what follows, we speak of
evaluating a product g in nV to mean the effect of applying the homomorphism φ to
the element g ∈ G∞.

We can extend the definition appearing in Equation (1-1) to a product g of
transpositions, say g = g1g2 . . . gk, where each gi ∈ A, by defining α • g to equal the
value obtained by successively applying Equation (1-1) with each transposition gi.
Note that this is, strictly speaking, a function of the word in A representing g rather
than depending upon g as an element of G∞. With this extended definition, if α,β ∈ Ω
with α ⊥ β and g ∈ G∞ is expressed as a product of transpositions such that both α • g
and β • g are defined, then it follows by repeated use of the conjugacy relations in
Equation (1-3) that

(α β)g = g−1 (α β) g = (α•g β•g).

Note that α • g, when it is defined, coincides with the value obtained if the product
g is evaluated as an element of the Brin’s higher-dimensional Thompson group nV and
then α • g is calculated via the natural partial action of nV upon the addresses Ω. The
only difference is that there may exist some addresses α for which α • g is not defined
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for our given word representing g but for which the corresponding transformation in
nV does have an action defined upon α. However, if α = (α1,α2, . . . ,αn) and provided
the words αi are sufficiently long, then α • g is defined and hence coincides with the
value obtained via the partial action of nV upon Ω.

We establish that G∞ is isomorphic to the group nV by demonstrating that a
family of relations found within Hennig–Matucci’s work [17] can be deduced from our
defining relations. We define elements of our group G∞ that correspond to the family
of generators that are used in [17]. Some are readily constructed using transpositions
(α β) but others depend upon building analogues of the baker’s maps. Brin’s paper
[5] describes how to construct a baker’s map from transpositions in his Lemma 3. By
following this recipe we are able to define the required elements of G∞. Moreover, it
then follows that the products of transformations we define evaluate to the required
baker’s maps in nV and hence we can determine the value of α • g for such products g
provided the coordinates of α are sufficiently long.

If α,β ∈ Ω with α ⊥ β and d is an index with 2 � d � n, we define

Ad(α,β) = (α.01 β.0d) (α.11 β.1d) (α β). (2-1)

We define further elements of G∞ in terms of this product as follows:

B̂d(01.0d) = Ad(01,γ) (01.01d 01.10d) Ad(γ, 01.1d)

B̂d(01.1d) = Ad(01,γ) (01.01d 01.10d) Ad(γ, 01.0d)

B̂d(11.0d) = Ad(11,γ) (11.01d 11.10d) Ad(γ, 11.1d)

B̂d(11.1d) = Ad(11,γ) (11.01d 11.10d) Ad(γ, 11.0d),

(2-2)

where γ = (γ1, γ2, . . . , γn) is an address in Ω satisfying |γ1|, |γd | � 1 and the additional
condition that γ ⊥ 01 in the first two definitions and that γ ⊥ 11 in the last two
definitions in Equation (2-2). Further, we then define:

Bd(01) = B̂d(01.0d) B̂d(01.1d) (01.01d 01.10d)

Bd(11) = B̂d(11.0d) B̂d(11.1d) (11.01d 11.10d)
. (2-3)

These three types of element are the analogues of the maps arising within the proof
of [5, Lemma 3] and their definition precisely follows that proof. Consequently, the
product Ad(α,β) evaluates in the group nV to the composite of an ‘index d’ baker’s
map with support Γ(α) and the inverse of an ‘index d’ baker’s map with support Γ( β).
The subsequent elements B̂d(α) and Bd(α) both evaluate to the ‘index d’ baker’s map
with support Γ(α). The difference is that the address α = (α1,α2, . . . ,αn) that we have
first defined them upon satisfies |α1| = 1 for both products, but the B̂d version requires
|αd | = 1 while Bd permits αd to be empty. One notes that to define a baker’s map on
the whole space Γ = Cn (that is, with address ε) requires a further such definition. As
this is (up to choice of index d) a single element in G∞, we delay the definition of this
element, which appears as C0,d below (see Equation (2-5)).
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To extend the baker’s maps to arbitrary addresses, we use another convenient
notation. If g is an element of G∞ and δ ∈ Ω, we write δ.g for the element of G∞
obtained by inserting δ as a prefix in both entries of every transposition appearing in
the product g. Since Relations (1-2)–(1-4) are closed under performing such insertions,
it follows that (i) δ.g is a well-defined element of G∞ and (ii) if u = v is a relation that
holds in G∞, then δ.u = δ.v also holds in G∞. We use the latter observation to reduce
the number of calculations required.

In terms of this prefix notation, observe that

δ.Ad(α,β) = Ad(δα, δβ)

for any addresses α, β and δ with α ⊥ β. For our baker’s maps, we define
B̂d(α), where α = (α1,α2, . . . ,αn) satisfies |α1|, |αd | � 1, by writing α = δβ where
β ∈ {01.0d, 01.1d, 11.0d, 11.1d} and then setting

B̂d(α) = δ.B̂d( β),

where B̂d( β) is as defined in Equation (2-2). Similarly, if α = (α1,α2, . . . ,αn) satisfies
|α1| � 1, by writing α = δβ where β ∈ {01, 11}, we define

Bd(α) = δ.Bd( β).

Note that inserting this prefix δ into the definition in Equation (2-3) yields

Bd(α) = B̂d(α.0d) B̂d(α.1d) (α.01d α.10d)

for any α = (α1,α2, . . . ,αn) with |α1| � 1. Now, if α is an address such that both B̂d(α)
and Bd(α) are defined, then they evaluate to the same baker’s map in the group nV .
However, the former is not defined for addresses α = (α1,α2, . . . ,αn) with αd empty.

LEMMA 2.1. Let α,β,γ, δ ∈ Ω be addresses with α ⊥ β and γ ⊥ δ. Let d, d′ be indices
in the range 2 � d, d′ � n. Then:

(i) Ad(α,β)(γ δ) = Ad(α•(γ δ),β•(γ δ)), whenever both α • (γ δ) and β • (γ δ)
are defined;

(ii) if every pair from {α,β,γ, δ} are incomparable, then Ad(α,β) and Ad(γ, δ)
commute;

(iii) Ad(α,β) = (α.011 α.101) Ad(α.01,β.01) Ad(α.11,β.11) ( β.011 β.101);
(iv) if d′ � d, then Ad(α,β) = Ad(α.0d′ ,β.0d′) Ad(α.1d′ ,β.1d′).

PROOF. Part (i) follows immediately by Equation (1-3). We deduce part (ii) by noting
that Equation (2-1) expresses Ad(α,β) as a product of transpositions each of which, by
part (i), commutes with Ad(γ, δ).
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(iii) We expand the right-hand side using the definition of the terms Ad and collect
the transpositions using the conjugacy relations in Equation (1-3):

(α.011 α.101) Ad(α.01,β.01) Ad(α.11,β.11) ( β.011 β.101)

= (α.011 α.101) (α.001 β.01.0d) (α.011 β.01.1d) (α.01 β.01)

· (α.101 β.11.0d) (α.111 β.11.1d) (α.11 β.11) ( β.011 β.101)

= (α.001 β.01.0d) (α.011 α.101) (α.101 β.11.0d) (α.011 β.01.1d)

· (α.111 β.11.1d) (α.01 β.01) (α.11 β.11) ( β.011 β.101)

= (α.001 β.01.0d) (α.011 β.11.0d) (α.101 β.01.1d) (α.111 β.11.1d)

· (α.011 α.101) (α.01 β.01) (α.11 β.11) ( β.011 β.101)

= (α.01 β.0d) (α.11 β.1d) (α.011 α.101) (α β) ( β.011 β.101) (by Equation (1-4))

= (α.01 β.0d) (α.11 β.1d) (α β) ( β.011 β.101)2 = Ad(α,β).

(iv) Apply the split relation in Equation (1-4) in the d′ th coordinate to each
transposition appearing in Ad(α,β). For example, (α.01 β.0d) = (α.0d′ .01 β.0d′ .0d)
(α.1d′ .01β.1d′ .0d) and similarly for the other transpositions. Every pair of addresses
from α.0d′ , α.1d′ , β.0d′ and β.1d′ are incomparable so rearranging the resulting formula
for Ad(α,β) yields the claimed result. �

LEMMA 2.2. Let d, d′ be indices in the range 2 � d, d′ � n.

(i) If α = (α1,α2, . . . ,αn) ∈ Ω satisfies |α1|, |αd | � 1 and if ζ, η ∈ Ω are such that
every pair from {α, ζ, η} are incomparable, then B̂d(α) commutes with (ζ η).

(ii) If α = δ.x1.yd for some δ ∈ Ω and some x, y ∈ {0, 1}, then

B̂d(α) = Ad(δ.x1,γ) (δ.x1.01d δ.x1.10d) Ad(γ, δ.x1.ȳd) (2-4)

for any address γ = (γ1, γ2, . . . , γn) such that γ ⊥ δ.x1 and |γ1|, |γd | � 1.
(iii) If y ∈ {0, 1}, then B̂d(01.yd)(01 11) = B̂d(11.yd).
(iv) If y∈{0, 1}, then B̂d(01.yd)(01 101)= B̂d(101.yd) and B̂d(01.yd)(01 111)= B̂d(111.yd).
(v) If x ∈ {0, 1}, then B̂d(x01.1d) and B̂d(x11.0d) commute.
(vi) If x, y ∈ {0, 1}, then B̂d(x1.yd) = (x011.yd x101.yd) B̂d(x01.yd) B̂d(x11.yd).
(vii) If d′ � d, then B̂d(x1.yd) = B̂d(x1.yd.0d′) B̂d(x1.yd.1d′).

If we take δ = ε in part (ii), then it tells us that the definitions in Equation (2-2) are
independent of the choice of address γ used. Consequently, B̂d(α) does depend only
on the address α.

PROOF. (i) Repeatedly apply the split relation in Equation (1-4) to express (ζ η) as
a product of transpositions (ζ′ η′) having entries with sufficiently long coordinates
that the values ζ′ • B̂d(α) and η′ • B̂d(α) are defined. These values therefore coincide
with those obtained when the corresponding baker’s map in nV is applied to ζ′ and
η′. Since ζ and η are both incomparable with α, we conclude ζ′ • B̂d(α) = ζ′ and
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η′ • B̂d(α) = η′. It then follows, by the conjugacy relation in Equation (1-3), that B̂d(α)
commutes with all such (ζ′ η′) and hence also with their product (ζ η).

(ii) One formula of the form given in Equation (2-4) for B̂d(δ.x1.yd) is obtained by
inserting δ as prefix into the entries of the transpositions in the definition of B̂d(x1.yd)
in Equation (2-2). Start with one such valid Equation (2-4) involving a particular
address γ and consider another potential address γ′ = (γ′1, γ′2, . . . , γ′n) satisfying γ′ ⊥
δ.x1 and |γ′d | � 1. If γ′ ⊥ γ, conjugate by (γ γ′) and use part (i) to produce the
required formula for B̂d(δ.x1.yd). If γ and γ′ are not incomparable, then as |γd |, |γ′d | � 1
there is another address ζ, with nonempty d th coordinate, that is incomparable with
all three of γ, γ′ and δ.x1. Now conjugate by the product (γ ζ) (γ′ ζ), again using
part (i), to produce the required Equation (2-4) involving the address γ′.

Part (iii) follows immediately from the definition of the B̂d elements.
(iv) We establish here the first equation in the case when y = 0. The other

formulae are similar. First, use part (ii) to assume that in the expression of Equation
(2-2) for B̂d(01.0d), the address γ = (γ1, γ2, . . . , γn) satisfies 11 � γ1. Consequently,
γ • (01 101) = γ and γ = 11.δ, where δ ⊥ 01. Hence, using Lemma 2.1(i),

B̂d(01.0d)(01 101) = Ad(101,γ) (101.01d 101.10d) Ad(γ, 101.1d)

= 11.(Ad(01, δ) (01.01d 01.10d) Ad(δ, 01.1d)) = 11.B̂d(01.0d) = B̂d(101.0d).

(v) Using part (ii), we can assume that

B̂d(x01.1d) = Ad(x01,γ) (x01.01d x01.10d) Ad(γ, x01.0d)

B̂d(x11.0d) = Ad(x11,γ′) (x11.01d x11.10d) Ad(γ′, x11.1d),

where γ and γ′ are addresses with γ ⊥ γ′ and x1 ⊥ γ,γ′. These commute by Lemma
2.1(i) and (ii).

(vi) We present the case x = y = 0, with the other cases established by similar
calculations. Recall that γ ⊥ 01 in our definition by Equation (2-2) of B̂d(01.0d). In
the following calculation, we begin by applying Lemma 2.1(iii) to the terms appearing
in the definition of B̂d(01.0d):

B̂d(01.0d) = (0011 0101) Ad(001,γ.01) Ad(011,γ.11) (γ.011 γ.101) (01.01d 01.10d)

· (γ.011 γ.101) Ad(γ.01, 001.1d) Ad(γ.11, 011.1d) (0011.1d 0101.1d)

= (0011 0101) Ad(001,γ.01) Ad(011,γ.11) (001.01d 001.10d)

· (011.01d 011.10d) Ad(γ.01, 001.1d) Ad(γ.11, 011.1d) (0011.1d 0101.1d)

= (0011 0101) Ad(001,γ.01) (001.01d 001.10d) Ad(γ.01, 001.1d)

· Ad(011,γ.11) (011.01d 011.10d) Ad(γ.11, 011.1d) (0011.1d 0101.1d)

= (0011 0101) B̂d(001.0d) B̂d(011.0d) (0011.1d 0101.1d) (using part (ii))

= (0011.0d 0101.0d) B̂d(001.0d) B̂d(011.0d).
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(vii) This follows by applying Lemma 2.1(iv) and the split relation in Equation (1-4)
to terms appearing in Equation (2-2), and then rearranging in a similar way to the proof
of Lemma 2.1(iv). �

LEMMA 2.3. Let d, d′ be indices in the range 2 � d, d′ � n.

(i) If α = (α1,α2, . . . ,αn) ∈ Ω satisfies |α1| � 1 and if ζ, η ∈ Ω are such that every
pair from {α, ζ, η} is incomparable, then Bd(α) commutes with (ζ η). In
particular, for any x ∈ {0, 1}, the element Bd(x1) commutes with any element
of the form x̄1.g.

(ii) Bd(01)(01 11) = Bd(11).
(iii) Bd(01)(01 101) = Bd(101) and Bd(01)(01 111) = Bd(111).
(iv) If x ∈ {0, 1}, then Bd(x1) = (x011 x101) Bd(x01) Bd(x11).
(v) Bd(01) and Bd′(11) commute.
(vi) If d′ � d, then Bd(x1) = Bd(x1.0d′) Bd(x1.1d′).

PROOF. The first section of part (i) is established by the same argument as used in
Lemma 2.2(i) and the remainder follows immediately. Parts (ii) and (iii) follow using
parts (iii) and (iv), respectively, of Lemma 2.2, while part (vi) is an extension of
Lemma 2.2(vii) that is established similarly.

We establish part (iv) in the case that x = 0. First, apply Lemma 2.2(vi) to the two
B̂d terms in the definition of Equation (2-3) and then use parts (i) and (v) of Lemma 2.2
to rearrange terms:

Bd(01) = (0011.0d 0101.0d) B̂d(001.0d) B̂d(011.0d) (0011.1d 0101.1d)

· B̂d(001.1d) B̂d(011.1d) (01.01d 01.10d)

= (0011.0d 0101.0d) (0011.1d 0101.1d) B̂d(001.0d) B̂d(001.1d)

· B̂d(011.0d) B̂d(011.1d) (01.01d 01.10d)

= (0011 0101) B̂d(001.0d) B̂d(001.1d) B̂d(011.0d) B̂d(011.1d)

· (001.01d 001.10d) (011.01d 011.10d)

= (0011 0101) B̂d(001.0d) B̂d(001.1d) (001.01d 001.10d)

· B̂d(011.0d) B̂d(011.1d) (011.01d 011.10d)

= (0011 0101) Bd(001) Bd(011).

Finally, it then follows that Bd(01) = 01.((011 101) Bd(01) Bd(1)) commutes with
Bd′(11) using part (i). Hence, we have established the remaining part (v). �

We now consider one of the presentations for Brin’s higher-dimensional Thompson
group nV given by Hennig–Matucci [17]. They define generators Xm,d (for m � 0 and
1 � d � n), Cm,d (for m � 0 and 2 � d � n), πm (for m � 0) and π̄m (for m � 0) and
describe eighteen families of relations (numbered (1)–(18) on pages 59 and 60 of
[17]). They observe in [17, Theorem 23] that these do indeed give a presentation for
nV . Since we write our maps on the right, we convert the relations to our setting by
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reversing each one and record these now for reference. We have also changed some of
the labels on Hennig–Matucci’s generators appearing in the lists so that our arguments
can be unified when establishing Proposition 2.5 below. In the families of Relations
(HM1)–(HM7), one should assume that 1 � d, d′ � n:

Xm,d Xq,d′ = Xq+1,d′ Xm,d for m < q, (HM1)
Xm,d πq = πq+1 Xm,d for m < q, (HM2)
Xm,d πm = πm+1 πm Xm+1,d for m � 0, (HM3)
Xq,d πm = πm Xq,d for q > m + 1, (HM4)
Xm,d π̄q = π̄q+1 Xm,d for m < q, (HM5)
Xm,1 π̄m = π̄m+1 πm for m � 0, (HM6)

Xm,d′ Xm+1,d′ Xm,d = πm+1 Xm,d Xm+1,d Xm,d′ for m � 0 and d � d′. (HM7)

The second collection of relations is as below. Note that we have adjusted the range of
the parameters in Equation (HM8) to bring it into line with the relations given by Brin
(see [4, Equation (22)]).

πm πq = πq πm for |m − q| � 2, (HM8)
πm πm+1 πm = πm+1 πm πm+1 for m � 0, (HM9)

πm π̄q = π̄q πm for q � m + 2, (HM10)
πm π̄m+1 πm = π̄m+1 πm π̄m+1 for m � 0, (HM11)

π2
m = 1 for m � 0, (HM12)

π̄2
m = 1 for m � 0. (HM13)

Finally, in the families of Equations (HM14)–(HM18), 2 � d � n and 1 � d′ � n,
unless otherwise indicated:

Xm,d π̄m = π̄m+1 πm Cm+1,d for m � 0, (HM14)
Xm,d′ Cq,d = Cq+1,d Xm,d′ for m < q, (HM15)
Xm,1 Cm,d = πm+1 Cm+2,d Xm,d for m � 0, (HM16)

Cq,d πm = πm Cq,d for q > m + 1, (HM17)
Cm+2,d′ Xm,d′ Cm,d = πm+1 Cm+2,d Xm,d Cm,d′ for m � 0, 1 < d′ < d � n. (HM18)

We now define the elements of our group G∞ that correspond to the above generators.
In the following, d is an index with 2 � d � n. First, we set

X0,1 = (01 11) (01 101) (101 111), X0,d = X0,1 Bd(11),
π0 = (011 11), π̄0 = (01 11),

C0,d = (011 101) Bd(01) Bd(11), C1,d = Bd(01).
(2-5)
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These are extended, for positive integers m � 1, to

Xm,d = 0m
1 .X0,d for 1 � d � n,

πm = 0m
1 .π0,

π̄m = 0m
1 .π̄0,

Cm,d = 0m−1
1 .C1,d for m � 2 and 2 � d � n,

(2-6)

where 0m
1 denotes 00 . . . 01 = (00 . . . 0, ε, . . . , ε) with the word 00 . . . 0 having length m.

Note that, by Lemma 2.3(iv), C1,d = 01.C0,d. Consequently, the definition of Cm,d
can be extended to include the case m = 1; that is, Cm,d = 0m

1 .C0,d for all m � 1 and all
indices d in the range 2 � d � n. This will enable us to treat these baker’s maps in a
uniform manner.

LEMMA 2.4. Let d and d′ be indices in the range 2 � d, d′ � n.

(i) Bd(01)C0,d′ = 0d′ .C0,d and Bd(11)C0,d′ = 1d′ .C0,d.
(ii) If d � d′, then C0,d = (0d′ .C0,d) (1d′ .C0,d).

By inserting the prefix 11 into the entries of transpositions in part (i) of this lemma,
it follows with use of Lemma 2.3(iv) that:

Bd(101)Bd′ (11) = Bd(11.0d′) and Bd(111)Bd′ (11) = Bd(11.1d′). (2-7)

PROOF. (i) First note that, by suitable choice of γ appearing in the definition of
Equation (2-2), we can express C0,d′ as a product of transpositions whose entries have
nonempty coordinates only for index 1 and index d′. Consequently, provided the index
1 and index d′ coordinates of an address ζ are sufficiently long, ζ • C0,d′ is defined.
Furthermore, C0,d′ evaluates in nV to the (primary) baker’s map with full support on
Γ, so this value ζ • C0,d′ coincides with that obtained when we act with the baker’s
map. Now if x ∈ {0, 1}, then (x1.ζ) • C0,d′ is also defined (as the required coordinates
are sufficiently long) and equals xd′ .ζ in view of how the baker’s map acts.

If (α β) is any transposition, apply Equation (1-4) repeatedly to express it as a
product of transpositions (ζ η) with the index 1 and index d coordinates of ζ and η
sufficiently long that the partial action of C0,d′ upon them is defined. By inserting x1
as a prefix into all the transpositions involved, we express (x1.α x1.β) as a product
of transpositions (x1.ζ x1.η). Since x1.ζ • C0,d′ = xd′ .ζ by our above observation and
similarly for x1.η, we deduce

(x1.ζ x1.η)C0,d′ = (xd′ .ζ xd′ .η).

We now recombine the resulting transpositions using Equation (1-4) to conclude

(x1.α x1.β)C0,d′ = (xd′ .α xd′ .β).
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Now if g is any element of G∞, then it is a product of transpositions and it follows
from the above calculation that

(x1.g)C0,d′ = xd′ .g

for any x ∈ {0, 1}. The claimed equations now follow by taking g = C0,d and noting, by
Lemma 2.3(iv), that Bd(x1) = x1.C0,d.

Part (ii) is an extension of Lemma 2.3(vi) established by a similar argument. �

PROPOSITION 2.5. The elements Xm,d, Cm,d, πm and π̄m of G∞ defined in Equations
(2-5) and (2-6) satisfy Relations (HM1)–(HM18).

Establishing this proposition completes the proof of Theorem 1.1 since it establishes
that the surjective homomorphism φ : G∞ → nV has trivial kernel.

PROOF. First, as observed earlier, if u = v is a relation in G∞, then so is 01.u = 01.v.
Consequently, it suffices to establish each of Relations (HM1)–(HM18) only when
m = 0. Relations (HM8)–(HM13) are the most straightforward to verify and follow
directly from the assumed relations involving transpositions (that is Equations (1-2)
and (1-3)). Relation (HM6) is established in a similar manner. When q > 1, observe
that both Xq,d and Cq,d is a product of transpositions all of whose entries have 001 as
a prefix. These transpositions are therefore disjoint from π0 and Relations (HM4) and
(HM17) follow. We now describe the details involved in the other relations.

Note that 001 • X0,1 = 01. Hence, for any g ∈ G∞,

X−1
0,1(001.g)X0,1 = 01.g.

This establishes Relations (HM1), (HM2) and (HM5) in the case when m = 0 and
d = 1, and it also establishes Relation (HM15) in the case when m = 0 and d′ = 1. We
extend the first three to d � 2 by use of Lemma 2.3(i) to tell us that Bd(11) commutes
with each of Xq,d′ , πq and π̄q for q > 0. Similarly, we extend Relation (HM15) to the
case when d′ � 2 by using the same fact to show Bd′(11) commutes with Cq,d for q � 2
and, by Lemma 2.3(v), also with C1,d.

Relation (HM3) when m = 0 and d = 1 is established by collecting transpositions
using Equation (1-3) and one application of Equation (1-4):

π1 π0 X1,1 = (0011 011) (011 11) (001 011) (001 0101) (0101 0111)

= (0011 011) (001 11) (001 101) (101 111) (011 11)

= (001 11) (011 111) (001 101) (101 111) (011 11)

= (001 11) (01 11) (101 111) (011 11)

= (01 11) (01 101) (101 111) (011 11) = X0,1 π0.

The case when d � 2 now follows using Lemma 2.3(i)–(iii).
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We establish Relation (HM7) first in the case when d′ = 1 and m = 0. If d � 2, then:

X0,1 X1,1 X0,d = X0,1 X1,1 X0,1 Bd(11)

= X0,1 X1,1 X0,1 (1011 1101) Bd(101) Bd(111)

= (0011 011) X0,1 X1,1 X0,1 Bd(101) Bd(111) by repeated use of Equation (1-3)

= π1 X0,1 X1,1 Bd(011) Bd(11) X0,1 by Lemma 2.3(i)–(iii) and Equation (1-3)

= π1 X0,1 Bd(11) X1,1 Bd(011) X0,1 by Lemma 2.3(i) to move Bd(11)

= π1 X0,d X1,d X0,1.

We can interchange the roles of d and d′ in Relation (HM7) by multiplying on the left
by πm+1. Hence, it remains to establish the relation in the cases when both d, d′ � 2.
This is achieved as follows:

X0,d′ X1,d′ X0,d

= X0,d′ X1,d′ X0,1 Bd(11)

= π1 X0,1 X1,1 X0,d′ Bd(11) by the case d = 1
= π1 X0,1 X1,1 X0,1 Bd′(11) Bd(11.0d′) Bd(11.1d′) by Lemma 2.3(vi)
= π1 X0,1 X1,1 X0,1 Bd(101) Bd(111) Bd′(11) by Equation (2-7)

= π1 X0,1 Bd(11) X1,1 Bd(011) X0,d′ by Lemma 2.3 and Equation(1-3)

= π1 X0,d X1,d X0,d′ .

Relation (HM14) is established by using formulae about conjugation by (01 11):

X0,d π̄0 = (01 11) (01 101) (101 111) Bd(11) (01 11)

= (001 11) (001 011) Bd(01) = (001 011) (011 11) Bd(01) = π̄1 π0 C1,d.

For Relation (HM16), we collect the transpositions comprising X0,1 to the right:

X0,1 C0,d = X0,1 (011 101) Bd(01) Bd(11)

= (0011 011) Bd(001) X0,1 Bd(11) = π1 C2,d X0,d.

Finally, consider Relation (HM18) in the case when m = 0. We calculate

C2,d′ X0,d′ C0,d

= Bd′(001) X0,1 Bd′(11) C0,d

= X0,1 Bd′(01) Bd′(11) C0,d by Equation (1-3) and Lemma 2.3(i), (iii)
= X0,1 C0,d C0,d′ by Lemma 2.4(i), (ii)
= X0,1 (011 101) Bd(01) Bd(11) C0,d′

= (0011 011) Bd(001) X0,1 Bd(11) C0,d′ by Equation (1-3) and Lemma 2.3(i), (iii)
= π1 C2,d X0,d C0,d′ ,

as required. This completes the proof of the proposition and the work of this
section. �
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3. Finite presentations for nV

In this section, we prove Theorem 1.2. In the course of our argument, we refer to
two particular subsets of the collection Ω of addresses. Write Δ = (X2)n for the set of
addresses α = (α1,α2, . . . ,αn) satisfying |αi| = 2 for i = 1, 2, . . ., n. Also define Ω∗ to
be the set of addresses α = (α1,α2, . . . ,αn) satisfying |αi| � 2 for i = 1, 2, . . ., n.

We define a presentation for a group G on three generators a, b and c, and
2n2 + 3n + 11 relations. The starting point is a presentation for the symmetric group of
degree 4n on two generators. According to [16, Theorem A], this can be achieved using
merely eight relations (independent of the value of n). A recent article by Huxford [18]
presents corrections to the arguments and the relations given in [16]. Note, however,
that the number of relations is unaffected and the statement of [16, Theorem A]
remains valid.

Our first family (Relation R1 below) of relations is sufficient to ensure that the
generators a and b satisfy all relations that hold in the symmetric group of degree
4n. Moreover, all the relations that we assume are satisfied if one maps a, b and c
to the corresponding elements of nV (where for c, we interpret Relation R7 in nV).
In particular, the resulting homomorphism G→ nV induces a homomorphism from
H = 〈a, b〉 onto the above symmetric group. Consequently, H � Sym(Δ) and we may
interpret the elements in H as defining permutations of Δ. We therefore use the symbol
(α β), where α,β ∈ Δ with α ⊥ β, to denote certain elements of the subgroup H
and more generally refer to permutations of Δ by which we mean the corresponding
elements of this subgroup. This also means that we can speak of the support of an
element g ∈ H and use the notation γ • g to denote the effect of applying g to some
address γ ∈ Δ. (In some sense, this extends the notation given in Section 1.)

The third generator c will be used to construct further transpositions (α β) for other
addresses α,β ∈ Ω∗ with α ⊥ β. The details of this construction will be described later
in this section, together with appropriate verifications that the resulting elements of G
are well defined and satisfy the relations in Equations (1-2)–(1-4) listed in Theorem
1.1. For the remaining discussion, prior to explaining the construction, we assume the
existence of the various transpositions (α β), each of which will be expressed as some
product in G involving the generators a, b and c.

To specify the relations that we assume, we fix certain elements of H. Let δ(0),
δ(1), . . ., δ(4n−1) be an enumeration of the addresses in Δ and define the following
elements of H:

p = (δ(n+1) δ(n+2) . . . δ(4n−1))

qd = (δ(0) δ(1) . . . δ(d−1) δ(d+1) . . . δ(n) δ(n+2) . . . δ(4n−1)).
(3-1)

The relations that we assume are the following:

R1. eight relations involving a and b that define the symmetric group of degree 4n

(from [16, Theorem A]);
R2. [c, p] = [ c, (δ(n+2) δ(n+3)) ] = 1;
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R3. [ qd, (δ(d).xd δ
(n+1)) ] = 1 for d = 1, 2, . . ., n and x ∈ {0, 1};

R4. [ c, (δ(n+2).xd δ
(n+3)) ] = 1 for d = 1, 2, . . ., n and x ∈ {0, 1};

R5. (δ(0).xd δ
(1))

(δ(0) δ(2).yd′ )
= (δ(0).yd′ δ

(1))
(δ(0) δ(2). xd)

for all choices of distinct indices d, d′ ∈ {1, 2, . . . , n} and all pairs x, y ∈ {0, 1};
R6. (δ(0) δ(1)) = (δ(0).0d δ

(1).0d) (δ(0).1d δ
(1).1d) for d = 1, 2, . . ., n; and

R7. c = (δ(0) δ(1).01) (δ(0) δ(1).11) (δ(0) δ(2).02) (δ(0) δ(2).12)
· · · (δ(0) δ(n).0n) (δ(0) δ(n).1n).

We establish Theorem 1.2 by showing that the group G, generated by a, b and c
subject to the 2n2 + 3n + 11 relations listed in Relations R1–R7, is isomorphic to the
group nV .

The first part of the proof of Theorem 1.2 involves the definition of all transpositions
(α β), for α,β ∈ Ω∗ with α ⊥ β, as elements of the group G, verifying that these
transpositions are well defined, and that they satisfy all those relations in Equations
(1-2)–(1-4) listed in Theorem 1.1 involving only addresses in Ω∗. (In this part of
the proof, we do not consider any address α = (α1,α2, . . . ,αn) with one or more
coordinates satisfying |αi| � 1.) We also verify explicitly the relation listed in Equation
(1-5) since we depend upon this to reduce the number of cases when verifying
Equation (1-3) (see Lemma 3.1 below). The overall process is an induction argument
based on the number of coordinates of an address α having some specified length.
To make this precise, we set m(α) = max{|α1|, |α2|, . . . , |αn|} and define k(α) to be the
number of coordinates αi satisfying |αi| = m(α). The weight of α is then the ordered
pair wt(α) = (m(α), k(α)). This pair then measures the longest coordinate of α and
counts the number of longest coordinates in the address. Thus, for example, Δ consists
of all addresses of weight (2, n).

We order weights lexicographically, so wt(α) < wt( β) means either m(α) < m( β),
or m(α) = m( β) and k(α) < k( β); that is, either the coordinates of α are all shorter
than the longest of β or that the greatest length is the same but α has fewer of these
longest coordinates than β.

In each step of the induction, we assume that we already have defined transpositions
whose entries have weight less than (m, k) and verified all Equations (1-2)–(1-4),
and also Equation (1-5), involving such transpositions. Our first stage is then to
define transpositions (α β), where wt(α) = (m, k) and β ∈ Δ, or vice versa. We then
verify that our definitions make sense and that all the required relations involving
the newly defined transpositions are satisfied. At the second stage, we perform
the same definitions and verifications for the remaining transpositions (α β) with
wt(α), wt( β) � (m, k). The new transpositions will always be conjugates of transpo-
sitions from Sym(Δ) and consequently Equation (1-2) will always hold and we do not
verify it explicitly.

A significant part of our argument is verifying the conjugacy relations in Equation
(1-3). The following lemma describes which instances of this relation are needed at
each step of the induction.
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LEMMA 3.1. Assume that all transpositions defined at some stage of the induction
satisfy (α β) = ( β α) and (α β)2 = 1. To verify all required conjugacy relations in
Equation (1-3), it is sufficient to establish them in the following cases.

(A) Every pair from {α,β,γ, δ} is incomparable. The required relation then has the
form

[ (α β) , (γ δ) ] = 1.

(B) γ � α and every pair from {β,γ, δ} is incomparable. Then, α = γη for some
η ∈ Ω and the required relation is

(γη β)(γ δ) = (δη β).

(C) γ ≺ α, δ � β and γ ⊥ δ. Then, α = γη and β = δθ for some η, θ ∈ Ω and the
required relation is

(γη δθ)(γ δ) = (γθ δη).

(D) γ ≺ α,β and γ ⊥ δ. Then, α = γη and β = γθ for (necessarily nonempty) η, θ ∈
Ω and the required relation is

(γη γθ)(γ δ) = (δη δθ).

PROOF. In order that α • (γ δ) be defined, we require (i) γ ⊥ α or γ � α, and
(ii) δ ⊥ α or δ � α. A similar pair of conditions apply when β • (γ δ) is defined.
We analyse the four resulting conditions. Furthermore, we note, for example, that if
γ � α or δ � α, then by exploiting the symmetry (γ δ) = (δ γ) we may assume that
in fact γ � α. This reduces the four conditions to the configurations described in the
statement of the lemma. �

3.1. Base step. As the base step of the induction, we rely upon the assumed Relation
R1 to ensure that the transpositions in H = 〈a, b〉 exist and satisfy all the relations in
the symmetric group of degree 4n; that is, we may use all transpositions (α β), where
α,β ∈ Ω∗ satisfy α ⊥ β and wt(α) = wt( β) = (2, n), and all relations in Equations
(1-2), (1-3) and (1-5) between them. (There are no relations of the form of Equation
(1-4) involving only transpositions from H.)

3.2. Induction, stage 1. Let us assume that for some fixed weight (m, k) � (3, 1),
we have already defined all transpositions (α β), where α,β ∈ Ω∗ satisfy α ⊥ β and
wt(α), wt( β) < (m, k) and verified all relations in Equations (1-2)–(1-5) involving such
transpositions. We now define those transpositions with one entry of weight (m, k)
and one entry from Δ. The definitions and argument actually depend upon whether
(m, k) = (3, 1) or (m, k) > (3, 1). Consequently, we split into these cases.

Suppose then that (m, k) = (3, 1). First, set

(δ(d).xd δ
(n+1)) := (δ(0) δ(n+1))

c2d+x−1

, (3-2)
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where d = 1, 2, . . ., n and x ∈ {0, 1}. (Since d and x are nonnegative integers, the sum
2d + x − 1 is defined.) We now define transpositions (α β), where α,β ∈ Ω∗ satisfy
α ⊥ β, wt(α) = (3, 1) and β ∈ Δ. Then, α = (α1,α2, . . . ,αn), where |αd | = 3 for some
index d and |αi| = 2 for all other indices i. Write α = α̂.xd, where α̂ ∈ Δ, and choose a
permutation σ ∈ H that moves δ(d) to α̂ and δ(n+1) to β. We then define

(α β) := (δ(d).xd δ
(n+1))

σ
(3-3)

in terms of the transposition defined in Equation (3-2). To achieve the symmetry
required by Equation (1-5), we also define ( β α) := (α β) for such α and β. To verify
that these definitions are independent of the choice of permutation σ ∈ H, we use the
following lemma.

LEMMA 3.2

(i) If σ ∈ H is a permutation of Δ with support disjoint from δ(0), δ(1), . . ., δ(n), then
[c,σ] = 1.

(ii) Let d = 1, 2, . . ., n and x ∈ {0, 1}. Then, (δ(d).xd δ
(n+1)) commutes with every

permutation in H that has support disjoint from δ(d) and δ(n+1).

PROOF. (i) Note that our permutation p, defined in Equation (3-1), and the
transposition (δ(n+2) δ(n+3)) generate all the permutations of Δ \ {δ(0), δ(1), . . . , δ(n)}.
Hence, all permutations of the latter set commute with c by our assumed Relation R2.

(ii) The disjoint transpositions (δ(0) δ(n+1)) and (δ(n+2) δ(n+3)) commute.

Consequently, (δ(d).xd δ
(n+1)) = (δ(0) δ(n+1))

c2d+x−1

commutes with (δ(n+2) δ(n+3)) by
Relation R2. The definition in Equation (3-1) of the cycle qd ensures that it and the
transposition (δ(n+2) δ(n+3)) generate all permutations in H with support disjoint from
δ(d) and δ(n+1). Hence, (δ(d).xd δ

(n+1)) commutes with all such permutations with use
of Relation R3. �

We now show that the definition of (α β) in Equation (3-3) does not depend on the
choice of σ. For if σ1 and σ2 are two permutations of Δ that both move δ(d) to α̂ and
δ(n+1) to β, then σ1σ

−1
2 fixes both δ(d) and δ(n+1), so commutes with (δ(d).xd δ

(n+1)) by
part (ii) of the lemma. Therefore, (δ(d).xd δ

(n+1))
σ1
= (δ(d).xd δ

(n+1))
σ2 , establishing

that (α β) is well defined.
There are no split relations in Equation (1-4) to verify at this stage, since we have

not yet introduced any transpositions (α β), where both α and β have coordinates of
length 3. Hence, we only need to check conjugacy relations in Equation (1-3) involving
the transpositions that we have introduced.

LEMMA 3.3

(i) Let β,γ ∈ Δ, x ∈ {0, 1} and d be an index with 1 � d � n. If σ ∈ Sym(Δ), then

( β.xd γ)σ = (( β•σ).xd γ•σ),

where, as above, β • σ and γ • σ denote the images of β and γ under the action
of σ ∈ H.
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(ii) If β ∈ Δ \ {δ(0), δ(1), . . . , δ(n)}, 1 � d � n and x ∈ {0, 1}, then

(δ(0) β)
c2d+x−1

= (δ(d).xd β).

PROOF. (i) This follows immediately from the definition of transpositions of the form
( β.xd γ) and their well definedness.

(ii) We must establish the result when β � δ(n+1). Take σ = (δ(n+1) β). This
commutes with c by Lemma 3.2(i). Hence,

(δ(0) β)
c2d+x−1

= (δ(0) δ(n+1))
σ c2d+x−1

= (δ(0) δ(n+1))
c2d+x−1 σ

= (δ(d).xd δ
(n+1))

σ
,

which produces the required result using part (i). �

Part (i) of Lemma 3.3 establishes any instance of the conjugacy relation in Equation
(1-3) when (γ δ) ∈ H. We consider now the remaining instances of Equation (1-3)
involving transpositions defined at this stage of the induction (via Equation (3-3)
above) and we split into the cases listed in Lemma 3.1.

(A): Consider four incomparable addresses α, β, γ, δ, where we may assume wt(α) =
wt(γ) = (3, 1) and β, δ ∈ Δ. Write α = α̂.xd and γ = γ̂.yd′ for x, y ∈ {0, 1}, indices d
and d′, and some α̂, γ̂ ∈ Δ. Suppose α̂ � γ̂, so that α̂, β, γ̂ and δ are distinct addresses
in Δ. From Lemma 3.3(i), we know (δ(n+2).xd δ

(n+3)) commutes with (δ(0) δ(n+1)) and
it commutes with c by Relation R4. Hence, conjugating by c2d′+y−1, we conclude that

[(δ(n+2).xd δ
(n+3)), (δ(d′).yd′ δ

(n+1))] = 1.

Finally, conjugate by a permutation σ in H that maps δ(n+2) to α̂, δ(n+3) to β, δ(d′) to γ̂
and δ(n+1) to δ to establish [(α β), (γ δ)] = 1, as required.

However, if α̂ = γ̂, then in order that α ⊥ γ, we know that d = d′ and, after suitable
relabelling, we can assume x = 0 and y = 1. We make use of Lemma 3.3(ii) to observe:

(δ(d).0d δ
(n+1)) = (δ(0) δ(n+1))

c2d−1

(δ(d).1d δ
(n+2)) = (δ(0) δ(n+2))

c2d

= (δ(1).01 δ
(n+2))

c2d−1

.

By Lemma 3.3(i), (δ(0) δ(n+1)) commutes with (δ(1).01 δ
(n+2)). Hence, upon conjugat-

ing by c2d−1, we deduce

[(δ(d).0d δ
(n+1)), (δ(d).1d δ

(n+2))] = 1.

We establish the required relation [(α β), (γ δ)] = 1 by finally conjugating by a
permutation σ in H that moves δ(d) to α̂, δ(n+1) to β and δ(n+2) to δ.

(B): In view of Lemma 3.3(i) and the symmetry between γ and δ in the conjugacy
relation, we may assume, in this case, that wt(γ) = (3, 1) and α = γ. The remaining
addresses β and δ must be from Δ. Write γ = γ̂.xd for some x ∈ {0, 1} and some
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index d. Conjugate the equation (δ(0) δ(n+1))
(δ(0) δ(n+2))

= (δ(n+1) δ(n+2)) by c2d+x−1 to
produce

(δ(d).xd δ
(n+1))

(δ(d). xd δ
(n+2))
= (δ(n+1) δ(n+2))

by use of Lemmas 3.2(i) and 3.3(ii). Finally, conjugate by a permutationσ of Δmoving
δ(d) to γ̂, δ(n+1) to β and δ(n+2) to δ, using Lemma 3.3(i), to establish the required
relation.

(C)/(D): Conjugacy relations of the form (C) occur only at this stage when γ, δ ∈ Δ,
which all then hold by Lemma 3.3. There are no type (D) relations to verify. This
completes the verifications required for stage 1 of the induction when (m, k) = (3, 1).

Now assume (m, k) > (3, 1). Consider a pair of incomparable addresses α,β ∈ Ω∗
with wt(α) = (m, k) and β ∈ Δ. To define the transposition (α β), first choose d to be
the index of one of the coordinates of α that has length m and write α = α̂.xd, where
x ∈ {0, 1}. Then, α̂ is an address with wt(α̂) < (m, k) and, since every coordinate of β
has length 2, it follows α̂ ⊥ β also. Choose ζ ∈ Δ incomparable with both α̂ and β.
Then, wt(ζ.xd) = (3, 1) < (m, k) and, by induction, both transpositions (ζ.xd β) and
(ζ α̂) have been constructed. We then define

(α β) = (α̂.xd β) := (ζ.xd β)(ζ α̂). (3-4)

To achieve Equation (1-5), we also set ( β α) := (α β). We must verify that the above
definition is independent of the choice of the address ζ and of the index d.

With the above assumptions, we make the following observations.

LEMMA 3.4

(i) Suppose that ζ and η are distinct addresses in Δ that are incomparable with both
α̂ and β. Then,

(ζ.xd β)(ζ α̂) = (η.xd β)(η α̂).

(ii) Suppose that d and d′ are both indices of coordinates of α of length m. Write
α = γ.xd.yd′ for some x, y ∈ {0, 1}. If ζ is an address in Δ incomparable with
both β and γ, then

(ζ.xd β)(ζ γ.yd′ ) = (ζ.yd′ β)(ζ γ. xd).

PROOF. (i) As distinct addresses in Δ, certainly ζ and η are incomparable. All
addresses appearing in the following calculation have weight < (m, k) and so, by
induction,

(ζ.xd β)(ζ α̂) (η α̂) = (ζ.xd β)(η ζ) (ζ α̂) = (η.xd β)(ζ α̂) = (η.xd β)

and the required equation then follows.
(ii) Note that our assumption that α ⊥ β and β ∈ Δ implies that β ⊥ γ. Now

consider first the case when (m, k) = (3, 2), so that γ ∈ Δ. We simply conjugate
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Relation R5 by a permutation σ ∈ Sym(Δ) that moves δ(0) to ζ, δ(1) to β and δ(2) to
γ (using relations established in the weight (3, 1) stage) to yield the required formula.

Now consider the case when (m, k) > (3, 2). Choose δ ∈ Δ that is incomparable with
each of β, γ and ζ. Note that wt(δ.xd.yd′) = (3, 2) and so the transpositions with this
address as an entry in the following calculation were constructed at an earlier stage.
Then,

(ζ.xd β)(ζ γ.yd′ ) (γ δ) = (ζ.xd β)(ζ δ.yd′ ) = (δ.xd.yd′ β)

and similarly (ζ.yd′ β)(ζ γ. xd) (γ δ) = (δ.xd.yd′ β). It therefore follows that the
left-hand sides of these equations are equal, from which we deduce our required
formula. �

It follows from part (i) of this lemma that our definition in Equation (3-4) of (α β) is
independent of the choice of ζ. Then, part (ii) shows the definition is also independent
of the choice of index d. In conclusion, the transpositions (α β), where wt(α) = (m, k)
and β ∈ Δ or vice versa, are well defined. The remaining work in this part of the
induction is to establish the four types of conjugacy relations in Equation (1-3) and
then the split relation in Equation (1-4) when they involve such transpositions.

(A): Consider two transpositions (α β) and (γ δ), at least one of which was defined as
in Equation (3-4) and the other possibly arriving at an early stage in the induction, such
that every pair of addresses from {α,β,γ, δ} is incomparable. Exploiting the symmetry
relation in Equation (1-5), we can suppose without loss of generality that one of the
following sets of conditions holds:

(A.i) wt(α) = (m, k), β ∈ Δ and wt(γ), wt(δ) < (m, k); or
(A.ii) wt(α) = wt(γ) = (m, k) and β, δ ∈ Δ.

In Case (A.i), write α = α̂.xd as above. Choose ζ ∈ Δ that is incomparable with each
of α̂, β, γ and δ and use this, together with Lemma 3.4, in the definition in Equation
(3-4) of (α β). By induction, (γ δ) commutes with both (ζ.xd β) and (ζ α̂) and
hence with (α β) = (ζ.xd β)(ζ α̂), as required. Case (A.ii) is similar, but we now write
γ = γ̂.yd′ for some suitable index d′ and choose η ∈ Δ incomparable with each address
in {α̂,β, γ̂, δ, ζ}. We then observe that, by induction, each transposition used in the
definition (γ δ) = (η.yd′ δ)

(η γ̂) commutes with each one used to construct (α β).
This establishes all type (A) conjugacy relations at this stage.

(B): Consider a conjugacy relation of Equation (1-3), where α = γη as in
Lemma 3.1(B). At least one address in the relation has weight (m, k) and the other entry
in a transposition involving such an address must be in Δ. Exploiting the symmetry
present, there are four possibilities:

(B.i) wt( β) = (m, k), γ, δ ∈ Δ and η = ε;
(B.ii) wt(γη) = (m, k), β ∈ Δ and wt(γ), wt(δ), wt(δη) < (m, k);
(B.iii) wt(γη) = wt(δη) = (m, k), β ∈ Δ and wt(γ), wt(δ) < (m, k); or
(B.iv) wt(γ) = wt(γη) = (m, k), β, δ ∈ Δ and wt(δη) < (m, k).
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(It is impossible that wt(γ) = wt(γη) = wt(δη) = (m, k): if this situation were to
happen, then there would be some index d, where the d th coordinate of δη has
length m. Then the d th coordinate of γη has length m, but that of γ is shorter,
contradicting wt(γ) = wt(γη).)

In case (B.i), write β = β̂.xd and choose ζ ∈ Δ incomparable with each of β̂, γ and
δ to define (γ β) = (γ ζ.xd)(ζ β̂) and similarly for (δ β). Then, by induction,

(γη β)(γ δ) = (γ β)(γ δ) = (γ ζ.xd)(ζ β̂) (γ δ) = (δ ζ.xd)(ζ β̂) = (δ β).

In case (B.ii), note that there is an index d such that the d th coordinate of γη has
length m and that of γ is shorter. Therefore, we can write η = η̂.xd and choose ζ ∈ Δ
incomparable with each of β, γ and δ to define (γη β) = (ζ.xd β)(ζ γη̂). Then,

(γη β)(γ δ) = (ζ.xd β)(ζ γη̂) (γ δ) = (ζ.xd β)(ζ δη̂) = (δη̂.xd β) = (δη β).

For case (B.iii), there are two possibilities. If there is some d such that the d th
coordinate of γη and δη both have length m, but those of γ and δ are shorter, then
we use the same argument as for case (B.ii), but now the last step in the calculation
is actually the definition of (δη β). Otherwise, there are d and d′ such that the d th
coordinate of γη has length m and that of γ is shorter and the d′ th coordinate of δη
has length m and that of δ is shorter. Moreover, by hypothesis, the d th coordinate of γ
must be longer than that of δ, so has length at least 3. Choose distinct addresses ζ, θ ∈ Δ
incomparable with each of β, γ and δ. We use ζ when employing Equation (3-4) to
define (γη β) and (δη β), exploiting the coordinates of indices d and d′, respectively,
having written η = η̂.xd.yd′ . Thus, (γη β) = (ζ.xd β)(ζ γη̂.yd′ ) and similarly for (δη β)
(as in the second set of calculations below). Furthermore, wt(θη) < (m, k) since the d th
coordinate of θη is shorter than that of γη. We therefore compute:

(γη β)(γ δ) (γ θ) = (ζ.xd β)(ζ γη̂.yd′ ) (γ δ) (γ θ)

= (ζ.xd β)(ζ θη̂.yd′ ) (θ δ)

= (θη̂.xd.yd′ β)(θ δ) = (θη β)(θ δ)

(δη β)(θ δ) = (ζ.yd′ β)(ζ δη̂. xd) (θ δ)

= (ζ.yd′ β)(ζ θη̂. xd)

= (θη β).

Hence, (γη β)(γ δ) (γ θ) = (δη β) and, with use of our already verified type (A)
conjugacy relation, we conclude (γη β)(γ δ) = (δη β)(γ θ) = (δη β).

Finally, in case (B.iv), let d be the index of a coordinate of γ of length m. Write γ =
γ̂.xd. Note that the d th coordinate of η is empty. Choose distinct addresses ζ, θ ∈ Δ
that are incomparable with each of β, γ̂ and δ. The first is used in the construction of
(γ δ) and (γη β). One observes that wt(θη.xd) < (m, k). We calculate

(γ δ)(γ̂ θ) = (ζ.xd δ)
(ζ γ̂) (γ̂ θ) = (ζ.xd δ)

(γ̂ θ) (ζ θ) = (ζ.xd δ)
(ζ θ) = (θ.xd δ)
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(since (ζ.xd δ) and (γ̂ θ) commute) so that

(γη β)(γ δ) (γ̂ θ) = (ζ.xd β)(ζ γ̂η) (γ δ) (γ̂ θ) = (ζ.xd β)(ζ θη) (θ. xd δ)

= (θη.xd β)(θ. xd δ) = (δη β).

Hence, by a type (A) conjugacy relation, (γη β)(γ δ) = (δη β)(γ̂ θ) = (δη β). This
establishes all the type (B) conjugacy relations.

(C): In the notation of Lemma 3.1(C), if it were the case that wt(γη) = wt(γθ) =
(m, k), then at this stage δ, δη, δθ ∈ Δ, which would force η = θ = ε. The conjugacy
relation would reduce to one form gg = g that holds in any group. Consequently, upon
exploiting the symmetry in the relation, we must verify Equation (1-3) in the following
two cases:

(C.i) wt(γη) = (m, k), δ ∈ Δ, θ = ε and wt(γ) < (m, k); or
(C.ii) wt(γη) = wt(δη) = (m, k), γ, δ ∈ Δ and θ = ε.

Both are dealt with in the same manner, namely by an argument similar to case (B.ii)
above.

(D)/Split: Note that, in the notation of Lemma 3.1(D), the addresses η and θ must be
nonempty. However, since all the transpositions introduced via Equation (3-4) have
one entry from Δ, we conclude that no new conjugacy relations of type (D) must be
verified at this stage. Similarly, there are no split relations in Equation (1-4) to verify
at this stage. In conclusion, we have verified all the required relations involving the
transpositions that have been introduced.

3.3. Induction, stage 2. At the second stage of the induction, we assume that, for the
fixed weight (m, k) � (3, 1), we have already defined all transpositions (α β), where
α,β ∈ Ω∗ satisfy α ⊥ β and either wt(α), wt( β) < (m, k), or wt(α) = (m, k) and β ∈ Δ
(or vice versa). The former case holds by the inductive assumption and the latter by the
completion of stage 1. We also assume that we have verified all relations in Equations
(1-2)–(1-5) involving these transpositions. We now define the remaining transpositions
with entries of weight at most (m, k).

Assume then that α and β are incomparable addresses in Ω∗ of which one has
weight (m, k) and the other has weight at most (m, k) and is not from Δ. Choose ζ ∈ Δ
incomparable with both α and β and define

(α β) := (α ζ)( β ζ). (3-5)

At least one of the transpositions on the right-hand side is defined via stage 1, while
the other (in the case that the relevant entry has weight < (m, k)) may have been
constructed earlier in the inductive process. We first verify that this definition is
independent of the choice of ζ.

LEMMA 3.5. Let α, β, ζ and η be incomparable addresses in Ω∗ with wt(α), wt( β) �
(m, k) and ζ, η ∈ Δ. Then:
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(i) (α ζ)( β ζ) = (α η)( β η);
(ii) (α ζ)( β ζ) = ( β ζ)(α ζ).

PROOF. (i) In the following calculation, and indeed for many used during this stage,
all the transpositions we manipulate involve one entry from Δ. Hence, the relations we
rely upon hold by induction or were established in Stage 1. Observe

(α ζ)( β ζ) ( β η) = (α ζ)( β η) (η ζ) = (α ζ)(η ζ) = (α η),

from which the claimed equation follows.
(ii) Choose η ∈ Δ that is incomparable with each of α, β and ζ. We then calculate

(α ζ)( β ζ) ( β η) = (α ζ)(η ζ) = (α η) and ( β ζ)(α ζ) ( β η) = (η ζ)(α ζ) = (η α),

so that (α ζ)( β ζ) ( β η) = ( β ζ)(α ζ) ( β η), from which the claimed equation
follows. �

Part (i) of this lemma tells us that the definition in Equation (3-5) of (α β) is
independent of the choice of ζ ∈ Δ. Part (ii) tells us that (α β) = ( β α); that is,
Equation (1-5) holds for the transpositions defined via Equation (3-5).

Before verifying the remaining relations, we observe that

(α β) = (α ζ)( β ζ)

holds for every triple α, β and ζ of pairwise incomparable addresses in Ω∗ with
wt(α), wt( β) � (m, k) and ζ ∈ Δ. When one or both of α and β have weight (m, k),
this is the definition in Equation (3-5) combined with Lemma 3.5(i). When they both
have weight < (m, k), it follows by induction.

The four cases (A)–(D) of conjugacy relations in Equation (1-3) described in
Lemma 3.1 are all established by the same method. We illustrate this for case (B),
namely we establish

(γη β)(γ δ) = (δη β)

for incomparable addresses β,γ, δ ∈ Ω∗ and some (possibly empty) η ∈ Ω such that
the addresses appearing in the formula all have weight � (m, k). Choose distinct ζ, θ ∈
Δ incomparable with each of β, γ and δ, so that (γη β) = (γη ζ)( β ζ) and (γ δ) =
(γ θ)(δ θ). In the following calculation, all the transpositions manipulated have second
entry either ζ or θ (selected from Δ):

(γη β)(γ δ) = (γη ζ)( β ζ) (δ θ) (γ θ) (δ θ) = (γη ζ)( β ζ) (γ θ) (δ θ)

= (θη ζ)( β ζ) (δ θ) = (δη ζ)( β ζ)

and the latter is equal to (δη β). Cases (A), (C) and (D) of the conjugacy relations are
established similarly.

Finally, we establish all split relations in Equation (1-4) for this stage. If (m, k) =
(3, 1), then an arbitrary split relation has the form

(α β) = (α.0d β.0d) ( β.1d β.1d)
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for incomparable α,β ∈ Δ. This is deduced from Relation R6 by conjugating by a
permutation σ ∈ Sym(Δ) that moves δ(0) to α and δ(1) to β. For the case when (m, k) >
(3, 1), choose ζ, η ∈ Δ such that every pair from {α,β, ζ, η} is incomparable. We have
just established that (ζ η) = (ζ.0d η.0d) (ζ.1d η.1d) and we deduce the general case
of Equation (1-4) by conjugating by (ζ α) (η β) and using the conjugacy relations in
Equation (1-3) that we have already established.

3.4. Transpositions with short coordinates. We have now constructed all trans-
positions (α β) with α,β ∈ Ω∗ and α ⊥ β, and demonstrated that all the required
relations in Equations (1-2)–(1-4) (and also in Equation (1-5)) involving such trans-
positions hold in G. We complete the definitions by constructing the remaining
transpositions (α β) with α,β ∈ Ω. Fix a sequence (k1, k2, . . . , kn) with each ki ∈
{0, 1, 2}. As an induction hypothesis, assume that we have constructed all transpositions
(α β), where α = (α1,α2, . . . ,αn) and β = ( β1, β2, . . . , βn) are incomparable addresses
satisfying |αi|, | βi| � ki for 1 � i � d. (The ‘base case’ is (k1, k2, . . . , kn) = (2, 2, . . . , 2),
for which our assumption follows from the steps just completed.) Select an index d
with kd > 0 and for any pair of incomparable addresses α and β such that |αi|, | βi| � ki

for i � d and such that one, or possibly both, of αd or βd has length kd − 1, define

(α β) := (α.0d β.0d) (α.1d β.1d). (3-6)

Both transpositions on the right-hand side exist by our assumption. Furthermore, the
transpositions on the right-hand satisfy the relations in Equations (1-2) and (1-5)
and commute. It follows that (α β) = ( β α) and (α β)2 = 1. Conjugacy relations
are established similarly to earlier steps, namely by considering cases (A)–(D) of
Lemma 3.1. The method is the same for each case. For example, consider a case (B)
conjugacy relation; that is, one of the form

(γη β)(γ δ) = (δη β),

where some entry here has its d th coordinate of length kd − 1. We may assume the
entry with this shorter coordinate is either γ (and possibly also γη) or β. If the d th
coordinate of γ has length kd − 1 and that of η is empty, then we use Equation (3-6)
for both (γη β) and (γ δ). Note then η.xd = xd.η for x ∈ {0, 1}, which permits us to
calculate the following conjugate:

(γη β)(γ δ) = ((γη.0d β.0d) (γη.1d β.1d))(γ.0d δ.0d) (γ.1d δ.1d)

= (δη.0d β.0d) (δη.1d β.1d) = (δη β),

relying upon relations that hold by the inductive assumption. The last step is either one
of these assumed relations or is the definition of (δη β) if it is the case that the d th
coordinate of β or δ has length kd − 1. Alternatively, if the d th coordinate of γ has
length kd − 1 and that of η is nonempty, write η = xd.η̂ for some x ∈ {0, 1} and some
(possibly empty) η̂ ∈ Ω. In this case, we use Equation (3-6) for the definition of (γ δ)
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and calculate

(γη β)(γ δ) = (γ.xd.η̂ β)(γ.0d δ.0d) (γ.1d δ.1d)

= (δ.xd.η̂ β) = (δη β).

Conjugacy relations in case (B), where the d th coordinate of β has length kd − 1, and
those in cases (A), (C) and (D) are established similarly. Finally, the split relations in
Equation (1-4) involving the transpositions defined in Equation (3-6) are either simply
that definition or are inherited from split relations for the terms on the right-hand side
of that formula.

It now follows, using this step repeatedly, that we have constructed transpositions
(α β), for α,β ∈ Ω with α ⊥ β, in the group G and verified all relations in Equations
(1-2)–(1-4) involving these transpositions. Consequently, by Theorem 1.1, there is a
homomorphism φ : nV → G mapping each transposition in nV to the corresponding
element that we have defined in G. Moreover, Relation R7 tells us that the generator
c is in the image of φ and hence G is isomorphic to a quotient of nV . However, all
Relations R1–R7 listed are satisfied by the corresponding elements of nV and so there
is a homomorphism from G into nV with nontrivial image. The fact that nV is simple
therefore yields G � nV , completing the proof of Theorem 1.2.

PROOF OF COROLLARY 1.3. The subgroup H = 〈a, b〉 � Sym(Δ) of G can be gener-
ated by a cycle x of length 4n and a transposition t that can be assumed disjoint from
c (as described via Relation R7). Note that c has odd order. Therefore, c and t are
powers of y = ct and {x, y} is a generating set for G. Applying Tietze transformations
to produce a presentation on generators x and y introduces two additional relations.
This establishes the corollary. �
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