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1. Introduction, The main results in this paper relate the concepts of 
flatness and projectiveness for finitely generated ideals in a commutative ring 
with unity. In this discussion the idea of a multiplicative ideal is used. 

Definition. An ideal J is multiplicative if and only if whenever / is an ideal 
with I C J there exists an ideal C such that / = JC. 

Throughout this paper R will denote a commutative ring with unity. If / 
and J are ideals of R, then I: J = {x\ xJ (Z I}. By "prime ideal" we will 
mean "proper prime ideal" and Specie will denote this set of ideals. R is 
called a local ring if it has a unique maximal ideal (the ring need not be 
Noetherian). If P is in Spec Ry then RP is the quotient ring formed using the 
complement of P. If M is an jR-module, then MP will be the corresponding 
i£p-module. J*" = (0 ) : / is the annihilator of / . We use rad R to denote the 
prime radical and Rad R to denote the maximal radical of R. 

In the following two propositions, the principal results of this paper are given. 

PROPOSITION A. Let J be an ideal of finite type such that J± C rad R. The 
following are equivalent: 

(i) J is a projective rank one ideal; 
(ii) J is multiplicative; 

(iii) J is flat. 

PROPOSITION B. Let J be an ideal of finite type such that J± is finitely generated. 
The following are equivalent: 

ii) J is projective; 
(ii) J is flat; 

(iii) J is a direct summand of a projective rank one ideal. 

Several theorems which lead to the proofs of these two propositions are 
given in § 2. The proofs of both propositions are given in § 3. 

2. The proof of the following theorem uses the same basic technique found 
in (2; 3), where it was shown that a projective ideal containing an element 
which is not a zero divisor is invertible. I t is easily seen that a multiplicative 
ideal containing an element which is not a zero divisor must be invertible. 

THEOREM 1. If J is a projective ideal of a ring R, then J must be multiplicative. 
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Proof. Let I C J- By (2, p. 132, Proposition 3.1) there exists a family \ba} 
of elements of J" and a family {fa\ of i^-homomorphisms from J to R such that 
for each b in J, b = ^(fa(b))ba, where fa(b) is zero for all except a finite 
number of the indices. Let C be the ideal generated by elements of the form 
fa(x), where x is in / . We claim that / = JC. If x is in I C J> then 
x = J^fa(x)bai and hence x is in JC. Conversely, if x is in / , b is in J , and a is 
some index, then bfa(x) = fa(bx) = fa(b)x which is in / . As a result, JC C I 
and we obtain equality. This completes the proof. 

LEMMA 2. If J is a finitely generated multiplicative ideal in a local ring, then J 
is principal. 

Proof. Suppose that J = (&i, . . . , bn) with n à 2. Let C be such that 
(b2, . . . , bn) = JC. There exists ci, . . . , cn in C such that 

bn = bid + . . . + bncn, 

and hence bn{\ — cn) = b\C\ + . . . + bn-\Cn-\. If cn is not a unit in R, then 
1 — cn is a unit and J = (6i, . . . , ftn-i). If ^ is a unit, then C = R and 
J = (62, . . . , &»). In either case we see that an induction argument would 
yield J is a principal ideal. 

THEOREM 3. If J is a multiplicative ideal of finite type, then JP is principal 
for each P in Spec R. 

Proof. Since every ideal in RP is the extension of some ideal in R and 
(JC)P = JpCpy it is easily seen that JP is a multiplicative ideal of RP. Lemma 2 
then yields the desired result. 

LEMMA 4. Let J = (ai, . . . , an) {for n ^ 2) be a flat ideal with C = 
(a2, . . . , an):J. Then (a2, . . . , an) = JC. 

Proof. We define a map from Rn to J by mapping (xi, . . . , xn) onto ^atXi. 
This yields the exact sequence 0-^ K —^ Rn-^ J-^ 0. Moreover, C= {y\ 
there exists y2, . . . , yn such that (y, y2, . . . , 3O is in X}. Since J is flat, we 
have (J X .. .XJ) r\K = JK\ see (1, p. 33). Now (a2l - a i , 0 0) is 
in both J X ... X J and i£, hence in JK. Therefore there exists C\, . . . . cnl in 
J and {(xn, . . . , Xfn)}^! in K such that 

(a2f — alt 0, . . . , 0) = X) ^i(^u, • • • , *<«). 
i = i 

Thus we obtain a2 — ^CiXt. However, (xa, . . . , xin) in i^ implies xa is in C 
for each i, hence a2 is in JC. A similar argument yields a} is in JC for each 
j ^ 2. Thus we have (a2, . . . , an) C / C . The other containment is obvious 
by the definition of C. 

LEMMA 5. If J is a flat ideal of finite type in a local ring, then J is principal. 

Proof. Suppose that / = (61, . . . , bn) with n ^ 2. By Lemma 4 there is an 
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ideal C such that {b2, . . . ,&») = JC. The remainder of the proof is exactly 
the proof of Lemma 2. 

LEMMA 6. If J = (a) is a non-zero flat ideal in a local ring R, then a is not a 
zero divisor in R. 

Proof. Let K = J\ Then / = R/K flat implies IK = / Pi K for each ideal 
I in R. If B C K and I = B:K we have BCir\K = IKCB. Therefore 
B = JiT. We also notice that K2 = K and i£ C M since J is not zero (where 
M is the maximal ideal of R). If k is in i£, then there exists an ideal B such 
that (k) = KB. As a result, iT(&> = K2B = KB = (k). By Nakayama's 
lemma (1, p. 113, Proposition 11) we have k = 0. Therefore K = (0) and a is 
not a zero divisor. 

LEMMA 7. Let J be a flat ideal of finite type and let P be a prime ideal of R. 
Then either JP — (0) in RP or JP is principal generated by an element which is 
not a zero divisor in RP. 

Proof. JP is a flat ideal of finite type in RP; see (1, p. 115, Proposition 13). 
The result then follows from Lemmas 5 and 6. 

LEMMA 8. Let M = (ai, . . . , an) be an R-module such that for each P in 
Spec R either MP = (0) or (MP)X = (0). Then (MX)P = RP whenever MP = 0 
and (MX)P = (0) whenever (MP)X = (0). 

Proof. The second statement is valid since (ikfJ")p C (MP)X. For the first 
statement notice that for each i there exists a yt in R and not in P such that 
aty = 0. Let y — yx. . . yn. Then aty = 0 for each i, hence My = 0 and 
y Ç Mx. Since y is not in P , we have (MX)P = RP. 

COROLLARY 9. Let J be aflat ideal of finite type such that Jx C rad R. Then J 
is a projective rank one ideal. 

Proof. By Lemma 7, either JP = (0) or JP is isomorphic to RP for each P in 
Specie. If JP is isomorphic to RP, then (JP)± = (0) in RP. Furthermore, 
Jx C rad R implies (JX)P 9e RP for any P in Spec R. By using Lemma 8 we 
conclude that JP is isomorphic to RP for each P in Spec R. Hence / is a 
projective rank one ideal (1, p. 141, Definition 2). 

COROLLARY 10. Let J be a flat ideal of finite type such that Jx C Rad R. 
Then J is a projective rank one ideal. 

Proof. By (1, p. 141, Theorem 2) it is sufficient in the proof of Corollary 9 to 
use only the maximal ideals. 

COROLLARY 11. Let J be aflat ideal of finite type such that Jx is also finitely 
generated. Then Jx 0 (Jx)x = R. 

Proof. By Lemmas 7 and 8, (J±)P is either RP or (0) for each P in Spec R. 
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As a result, Jx is a flat ideal. We have assumed that Jx is of finite type and 
by Lemma 8, this time applied to J"1", we obtain: 

/ X±N JL $Rp when (J J-)p = 0, 
U ; p lO when (/"L)p = i?P. 

Let iV = J± 0 ( J x ) \ We have iVP = 2?P for each P in Spec £ , hence N = 22. 
Let M = (Jx) H (J-L)x. By the above argument, MP = (0) for each P in 
Spec R since ilfp C Jpx H (/"L)P"L; thus we must have Af = (0), and the sum 
is direct. That is, R = (Jx) 0 {Jx)x. 

THEOREM 12. Le/ / be aflat ideal of finite type such that Jr±is finitely generated. 
Then J is projective. 

Proof. By Corollary 11 there exists an idempotent e such that Jx = (1 — e)R 
and J C (J±)'L = eR. We assert that eJ is a rank one projective ^ -module . 
To see this, notice that the primes in Spec(ei?) are those of the form eP, where 
P is a prime in R with Jx C eP. Using the permutability of residue class ring 
and quotient ring formation we obtain (eJ) eP = JP = RP = (eR)eP. This 
verifies the assertion. To complete the proof of the theorem one observes that 
we have a ring homomorphism from R onto eR with eJ a projective &R-module 
and eR a projective jR-module. By (2, p. 30, Proposition 6.2) we have J is 
projective as an i?-module. 

COROLLARY 13. Suppose that J is a flat ideal of finite type such that JP is 
isomorphic to RPfor all except a finite number of P in Spec R. Then J is projective. 

Proof. Let Pi , . . . , Pn be the primes of R for which JP. = (0) in RP. Then 
(JJ')pi = Rpt for all i (by Lemma 8). Therefore for each i there exists a yt in 
J* not in Pt. Let B = (yu . . . , yn). For P ^ Pt we have BP C ( / X ) P = (0) 
in RP. Moreover, BPi — RP. = (Jx)Pi for each i. As a result, B = J x and by 
Theorem 12, J is projective. 

3. We are now in a position to prove the main results, Propositions A and B. 

Proof of Proposition A. Theorem 1 yields the proof that (i) implies (ii). To 
see that (ii) implies (iii) notice that Theorem 3 yields JP is principal for each P 
in Spec R. J finitely generated and Jx C rad R tells us that JP must be 
generated by an element which is not a zero divisor. As a result, JP is iso­
morphic to RP. Since JP is then flat for each P in Spec Ry J itself must be flat. 
Corollary 9 is the statement that (iii) implies (i), which completes the proof 
of Proposition A. 

Proof of Proposition B. It is always true that (i) implies (ii). Now suppose 
that J is flat. By Theorem 12, J is projective and J C\ Jx = (0). Let 
N = J + Jx. The sum is direct and N must be projective of finite type. By 
our previous results, NP is principal and free for each P in Spec R. Further­
more, NP = JP + (JX)P 9e 0 which yields: NP is a free rank one module. 
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Therefore N — J © Jx is a projective rank one module, proving that (ii) 
implies (iii). Since it is always true that (iii) implies (i) we have completed 
the proof of the proposition. 

Remark. I received in a communication from Robert L. Pendleton and 
Sam Cox an example showing that the conditions iiJx C rad R" and iiJJm 

finitely generated" in Propositions A and B cannot be deleted. They give an 
example of a principal flat ideal in a commutative ring which is not projective. 
The problems considered above are special cases of a more general problem. 
That is, what conditions can be put on a submodule M of a free module to 
ensure that M will be projective. 
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