PROJECTIVE IDEALS OF FINITE TYPE
WILLIAM W. SMITH

1. Introduction. The main results in this paper relate the concepts of
flatness and projectiveness for finitely generated ideals in a commutative ring
with unity. In this discussion the idea of a multiplicative ideal is used.

Definition. An ideal J is multiplicative if and only if whenever [ is an ideal
with I C J there exists an ideal C such that I = JC.

Throughout this paper R will denote a commutative ring with unity. If I
and J are ideals of R, then I: J = {x| xJ C I}. By “prime ideal” we will
mean ‘‘proper prime ideal” and Spec R will denote this set of ideals. R is
called a local ring if it has a unique maximal ideal (the ring need not be
Noetherian). If P is in Spec R, then Rp is the quotient ring formed using the
complement of P. If M is an R-module, then Mp will be the corresponding
Rp-module. J* = (0):J is the annihilator of J. We use rad R to denote the
prime radical and Rad R to denote the maximal radical of R.

In the following two propositions, the principal results of this paper are given.

ProrosiTiON A. Let J be an ideal of finite type such that J* C rad R. The
following are equivalent:
(1) J s a projective rank one ideal;
(ii) J is multiplicative;
(iii) J s flas.
PRrROPOSITION B.  Let J be an ideal of finite type such that J* is finitely generated.
The following are equivalent:
(i) J 1s projective;
(ii) J 1s flat;

(iii) J s a direct summand of a projective rank one ideal.

Several theorems which lead to the proofs of these two propositions are
given in § 2. The proofs of both propositions are given in § 3.

2. The proof of the following theorem uses the same basic technique found
in (2; 3), where it was shown that a projective ideal containing an element
which is not a zero divisor is invertible. It is easily seen that a multiplicative
ideal containing an element which is not a zero divisor must be invertible.

TuroreM 1. If J is a projective ideal of a ring R, then J must be multiplicative.
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Proof. Let I C J. By (2, p. 132, Proposition 3.1) there exists a family {0,}
of elements of J and a family {f,} of R-homomorphisms from J to R such that
for each b in J, b = 3 (f«(b))ba, where fo(b) is zero for all except a finite
number of the indices. Let C be the ideal generated by elements of the form
fu(x), where x is in I. We claim that I = JC. If x is in I C J, then
x = Y fa(x)bs, and hence x is in JC. Conversely, if x isin I, b isin J, and a is
some index, then bf,(x) = fo(bx) = fo(b)x which is in I. As a result, JC C I
and we obtain equality. This completes the proof.

LEMMA 2. If J is a finitely generated muliiplicative ideal in a local ring, then J
is principal.

Proof. Suppose that J = (by,...,b,) with » = 2. Let C be such that
{by, ..., b,) = JC. There exists cy, . . . , ¢, in C such that

bn = blcl+ +bncnv

and hence 6,(1 — ¢,) = bici + ...+ bp—16s—1. If ¢, is not a unit in R, then
1 —¢, is a unit and J = (b1, ..., b,—1). If ¢, is a unit, then C = R and
J = (bs, ..., b,). In either case we see that an induction argument would
yield J is a principal ideal.

THEOREM 3. If J is a multiplicative ideal of finite type, then Jp is principal
for each P in Spec R.

Proof. Since every ideal in Rp is the extension of some ideal in R and
(JC)p = JpCp, it is easily seen that Jp is a multiplicative ideal of Rp. Lemma 2
then yields the desired result.

LEMMA 4. Let J = {a1,...,a,) (for n = 2) be a flat ideal with C =
{ag, ..., ,ay):J. Then {(as,...,a,) = JC.

Proof. We define a map from R* to J by mapping (xy, ..., x,) onto > a x;.
This yields the exact sequence 0 - K — R* — J — 0. Moreover, C = {y|
there exists ¥s, ..., ¥, such that (y, ys, ..., ¥,) is in K}. Since J is flat, we
have (J X ... X J) K = JK; see (1, p. 33). Now (as, —a1,0,....0) is
in both J X ... X J and K, hence in JK. Therefore there exists ¢y, ... .c, in
Jand {(x:u,...,%m)}"%=1 in K such that

m

(a2, —a1,0,...,0) = Z Ci(Xity v vy Xin)e

1=

Thus we obtain ¢y = > cx;. However, (x;1,...,%4) in K implies x,; is in C
for each ¢, hence a, is in JC. A similar argument yields a; is in JC for each
j 2 2. Thus we have {as, ..., a,) C JC. The other containment is obvious

by the definition of C.
LemMa 5. If J is a flat ideal of finite type in « local ring, then J is principal.
Proof. Suppose that J = (by, ..., b,) with n = 2. By Lemma 4 there is an

https://doi.org/10.4153/CJM-1969-116-7 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1969-116-7

PROJECTIVE IDEALS 1059

ideal C such that (b, ..., b,) = JC. The remainder of the proof is exactly
the proof of Lemma 2.

LemMma 6. If J = (a) is a non-zero flat ideal in a local ring R, then a is not a
gero divisor in R.

Proof. Let K = J*. Then J = R/K flat implies IK = I M K for each ideal
IinR If BCK and I = B:K we have BC IN\ K = IK C B. Therefore
B = IK. We also notice that K2 = K and K C M since J is not zero (where
M is the maximal ideal of R). If £ is in K, then there exists an ideal B such
that (k) = KB. As a result, K(k) = K?B = KB = (k). By Nakayama’s
lemma (1, p. 113, Proposition 11) we have £ = 0. Therefore K = (0) and a is
not a zero divisor.

LeEMMA 7. Let J be a flat ideal of finite type and let P be a prime ideal of R.
Then either Jp = (0) in Rp or Jp is principal generated by an element which is
not a gero divisor in Rp.

Proof. Jp is a flat ideal of finite type in Rp; see (1, p. 115, Proposition 13).
The result then follows from Lemmas 5 and 6.

LemMA 8. Let M = {ay, ..., a,) be an R-module such that for each P in
Spec R either Mp = (0) or (Mp)* = (0). Then (M*)p = Rp whenever Mp = 0
and (M*)p = (0) whenever (Mp)* = (0).

Proof. The second statement is valid since (M*)p C (Mp)*. For the first
statement notice that for each 7 there exists a ¥; in R and not in P such that
ay =0. Let y =y1...9,. Then a;y =0 for each 7, hence M, = 0 and
y € M*. Since y is not in P, we have (M*)p = Rp.

CoROLLARY 9. Let J be a flat ideal of finite type such that J* C rad R. Then J
is a projective rank one ideal.

Proof. By Lemma 7, either Jp = (0) or Jp is isomorphic to Rp for each P in
Spec R. If Jp is isomorphic to Rp, then (Jp)* = (0) in Rp. Furthermore,
J* C rad R implies (J*)p # Rp for any P in Spec R. By using Lemma 8 we
conclude that Jp is isomorphic to Rp for each P in Spec R. Hence J is a
projective rank one ideal (1, p. 141, Definition 2).

CoroLLARY 10. Let J be a flat ideal of finite type such that J* C Rad R.
Then J is a projective rank one ideal.

Proof. By (1, p. 141, Theorem 2) it is sufficient in the proof of Corollary 9 to
use only the maximal ideals.

CoRrROLLARY 11. Let J be a flat ideal of finite type such that J* is also finitely
generated. Then J* ® (J*)* = R.

Proof. By Lemmas 7 and 8, (J*)p is either Rp or (0) for each P in Spec R.
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As a result, J* is a flat ideal. We have assumed that J* is of finite tvpe and
by Lemma 8, this time applied to J*, we obtain:

()t = {RP when (J4)p =0,
z 0 when (JY)p = Rp.
Let N = J+ @ (J*)*. We have Np = Rp for each P in Spec R, hence V = R.
Let M = (J*) N\ (J*)*. By the above argument, M = (0) for each P in
Spec R since Mp C Jp* M (J*)p*; thus we must have M = (0), and the sum
is direct. Thatis, R = (J*) @ (J*)*.

THEOREM 12. Let J be a flat ideal of finite type such that J* is finitely generated.
Then J is projective.

Proof. By Corollary 11 there exists an idempotent e such thatJ* = (1 — ¢)R
and J C (J*)* = eR. We assert that eJ is a rank one projective eR-module.
To see this, notice that the primes in Spec(eR) are those of the form eP, where
P is a prime in R with J* C eP. Using the permutability of residue class ring
and quotient ring formation we obtain (eJ).p = Jp = Rp = (eR).p. This
verifies the assertion. To complete the proof of the theorem one observes that
we have a ring homomorphism from R onto eR with eJ a projective eR-module
and eR a projective R-module. By (2, p. 30, Proposition 6.2) we have J is
projective as an R-module.

COROLLARY 13. Suppose that J is a flat ideal of finite type such that Jp is
isomorphic to Rp for all except a finite number of P in Spec R. Then J is projective.

Proof. Let Py, ..., P, be the primes of R for which Jp, = (0) in Rp. Then
(J*)p; = Rp, for all 7 (by Lemma 8). Therefore for each 7 there exists a y; in
J*notin P, Let B = (y1,...,9,). For P ¢ P, we have Bp C (J*)p = (0)
in Rp. Moreover, Bp, = Rp, = (J*)p, for each i. As a result, B = J* and by
Theorem 12, J is projective.

3. We are now in a position to prove the main results, Propositions A and B.

Proof of Proposition A. Theorem 1 yields the proof that (i) implies (ii). To
see that (ii) implies (iii) notice that Theorem 3 yields J» is principal for each P
in Spec R. J finitely generated and J* C rad R tells us that Jp must be
generated by an element which is not a zero divisor. As a result, Jp is iso-
morphic to Rp. Since Jp is then flat for each P in Spec R, J itself must be flat.
Corollary 9 is the statement that (iii) implies (i), which completes the proof
of Proposition A.

Proof of Proposition B. It is always true that (i) implies (ii). Now suppose
that J is flat. By Theorem 12, J is projective and J N J* = (0). Let
N = J 4 J*. The sum is direct and N must be projective of finite type. By
our previous results, Vp is principal and free for each P in Spec R. Further-
more, Np = Jp + (J*)p #% 0 which yields: Ny is a free rank one module.
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Therefore N = J @ J* is a projective rank one module, proving that (ii)
implies (iii). Since it is always true that (iii) implies (i) we have completed
the proof of the proposition.

Remark. 1 received in a communication from Robert L. Pendleton and
Sam Cox an example showing that the conditions “J* C rad R” and “J*
finitely generated’’ in Propositions A and B cannot be deleted. They give an
example of a principal flat ideal in a commutative ring which is not projective.
The problems considered above are special cases of a more general problem.
That is, what conditions can be put on a submodule M of a free module to
ensure that 3/ will be projective.
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