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A modulational instability of nonlinearly interacting electron whistlers and magnetosonic
perturbations is studied in the present paper. For typical parameters, there is no
modulational instability. However, modulational instability appears in special cases. For
example, when the whistler wavenumber is small enough, there is modulational instability.
Its growth rate decreases as the angle between the external magnetic field and the
perturbed wave’s direction increases, while it increases as the whistler wavenumber
increases. It is also found that there is no modulational instability when the whistler
wavenumber is larger than a critical value (k0 > 0.05), in which the perturbed wave
frequency increases as the angle between the external magnetic field and the perturbed
wave’s direction increases when the angle between the external magnetic field and the
perturbed wave’s direction is large enough. Whereas, the perturbed wave frequency first
increases as the whistler wavenumber increases, reaches a peak value and then decreases
as whistler wavenumber increases.

Keywords: plasma instabilities, plasma nonlinear phenomena, plasma waves

1. Introduction

Whistler waves are commonly observed phenomena in both space plasma and laboratory
plasma (Stenzel 1999). They are a special type of electromagnetic wave found in
various plasma environments, including atmospheric lightning, intense particle flows,
magnetospheric turbulence, shock waves and even antennas in laboratory experiments.
The formation of whistler waves involves multiple factors in plasma physics, such as
electron beams, magnetic field instability and magnetic reconnection (Fujimoto & Sydora
2008; Choi et al. 2022). Non-thermal whistler waves are a unique type of electromagnetic
wave propagating in plasmas, primarily along geomagnetic field lines, playing a crucial
role in fast magnetic reconnection processes. Particularly in the presence of sheared
magnetic fields, two-dimensional whistler waves demonstrate remarkable abilities, serving
as a medium to facilitate fast magnetic reconnection (Li et al. 2014; Li, Wang &
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Lu 2023), a fundamental process in rapidly rearranging magnetic field lines. This process
is essential for the energization and acceleration of electrons in the plasma (Hoshino
et al. 2001). Simultaneously, the energy released during magnetic reconnection may excite
two-dimensional whistler waves, and the presence of these waves can, in turn, influence
the dynamical evolution of magnetic reconnection (Bell et al. 2002; Horne et al. 2005).
This interaction involves energy release, dynamical evolution and potential observation of
nonlinear effects, contributing significantly to a deeper understanding of wave phenomena
and magnetic field structure evolution in plasmas.

In plasma physics, whistler waves and magnetosonic perturbations play a crucial role
in understanding the complex dynamics of space and laboratory plasmas. Extensive
scholarly research has been dedicated to unravelling the intricate properties and behaviours
of whistler waves. Notably, a recent laboratory experiment employed a non-stationary
magnetic field (Kostrov et al. 2003; Gushchin et al. 2004), yielding significant insights
into the self-focusing phenomenon exhibited by whistlers propagating parallel to the
magnetic field direction (Karpman & Shagalov 1984; Karpman, Kaufman & Shagalov
1992; Eliasson & Shukla 2005a; Gupta, Choudhry & Bhardwaj 2023). This unique
behaviour resulted in the formation of isolated wave packets (Gaster & Grant 1975).
Experiments also have revealed the capture of whistlers within ducts characterized
by depleted plasma density, highlighting the interplay between wave propagation and
plasma density variations (Nassiri 2008; Singh 2013). Moreover, the confinement of
whistlers within magnetic tubes, characterized by localized regions of enhanced magnetic
fields in a uniform plasma density environment, has been experimentally demonstrated
(Gushchin et al. 2005). Additionally, the generation of electrostatic ion cyclotron waves
has been observed in large-volume spiral reactors, indicative of the parametric instability
associated with high-amplitude whistlers (Sutherland, Giles & Boswell 2005; Tripathi
& Kumara 2008). Findings from the Freja satellite (Huang, Wang & Song 2004) also
reveal the occurrence of envelope whistler solitary waves accompanied by plasma density
cavities.

Modulational instability refers to the phenomenon in nonlinear systems where,
due to the interaction between nonlinear effects and dispersion effects, plane waves
undergo filamentation under high-intensity conditions. This results in small-amplitude
perturbations experiencing exponential growth, ultimately leading to the modulation
or formation of spatial structures in the wave (Inan 1987; Meier et al. 2004; Shukla
et al. 2005). Modulational instability is widely observed in various fields of physics,
including fluid dynamics, nonlinear optics and plasma physics. Therefore, investigating the
development of modulational instability and its propagation in plasmas holds significant
importance (Gurovich & Karpman 1969; Tai, Hasegawa & Tomita 1986; Kivshar 1992).
Considering the mass potential of spatiotemporal correlation in whistler waves (Tskhakaya
1981; Zhu et al. 2023), the modulational instability of nonlinearly interacting electron
whistlers and magnetosonic perturbations is studied in the present paper (Karpman et
al. 1995; Das et al. 2002). It is found that, for typical plasma parameters, there is no
modulational instability. However, modulational instability appears in special cases. It
is shown that when the whistler wavenumber is small enough, there is modulational
instability. It is also found that there is no modulational instability when the whistler
wavenumber is larger than a critical value.

The content of the paper is organized as follows. In § 2, the coupled nonlinear equations
which describe the dynamics of the whistler envelope in the presence of the slowly
varying magnetic field have been presented. Section 3 obtains solutions for background
and perturbation waves. Section 4 discusses various special cases. Section 5 establishes
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the instability conditions for perturbation waves and § 6 provides a summary and
conclusions.

2. Theoretical model

We start by obtaining the relevant equations for nonlinearly coupled whistlers and
magnetosonic perturbations in a fully ionized electron–ion plasma. The fundamental
equations for the plasma slow response concerning magnetosonic disturbances can be
expressed as follows (Eliasson & Shukla 2005b):

∂n1

∂t
+ n0∇ · v1 = 0, (2.1)

∂v1

∂t
= −C2

s ∇n1

n0
− 1

4πmin0
B0 × (∇ × B1) + F

mi
, (2.2)

∂B1

∂t
− ∇ × (v1 × B0) = 0. (2.3)

The total quantities for ion density, ion fluid velocity and magnetic field can be expressed
as follows: n = n0 + n1, B = B0 + B1; where n is the total electron number density, n1 is
the electron density perturbation, B is the total magnetic field vector, B1 is the magnetic
field perturbation, v1 is the velocity, n0 denotes the electron number density in the absence
of any perturbations, B0 = B0ẑ represents the uniform magnetic field in the direction of z,
where ẑ is a unit vector along the z axis, Cs is the speed of ion acoustic waves, mi is the
mass of ions.

The ponderomotive force associated with whistler waves can be expressed as follows:

F = ẑε
(

∂

∂z
+ 2

Vg

∂

∂t

) |E|2
8πn0

− εα

1 − α
∇⊥

|E|2
8πn0

, (2.4)

the differentiation operator in this context is defined as ∇⊥ = x̂∂/∂x + ŷ∂/∂y, where
x̂ and ŷ are unit vectors along the x and y directions, respectively. Additionally, the
following parameters are defined: ε = ω2

pe/ω0(ωce − ω0) and α = ω0/ωce; where ωpe is
the electron plasma frequency, ωce is the electron cyclotron frequency and ω0 is the
whistler waves frequency. The frequency of whistler waves with wavenumber k0 is given
by ω0 = c2k2

0ωce/(ω
2
pe + c2k2

0), where c is the speed of light in a vacuum.
These equations can be further simplified to study the behaviour of nonlinearly coupled

whistlers and magnetosonic perturbations in an electron–ion plasma. By eliminating the
perpendicular components of the magnetic field, B1x and B1y, and velocity, v1x and v1y, the
system of equations (2.1)–(2.3) can be given by

∂2b
∂t2

= C2
s ∇2

⊥N + C2
A

(
∇2

⊥ + ∂2

∂z2

)
b + εα

1 − α
∇2

⊥
|E|2

8πmin0
, (2.5)

∂

∂t
(N − b) = −∂v1z

∂z
, (2.6)

∂v1z

∂t
= −C2

s
∂N
∂z

+ ε

(
∂

∂z
+ 2

Vg

∂

∂t

) |E|2
8πmin0

, (2.7)

where CA = B0/(4πmin0)
1/2 is the Alfvén speed; and we have denoted b = B1z/B0 and

N = n1/n0.
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We now focus on the modulated whistlers with right-hand circular polarization and
assume that E = (1/2)E(x, y, z, t)(x̂ + iŷ) exp [i(k0z − ω0t)] + c.c., where E represents
the slowly varying envelope of the whistler electric field and c.c. denotes the complex
conjugate. The equation governing the whistler field envelope is given by (Shukla &
Stenflo 1995)

i
(

∂E
∂t

+ Vg
∂E
∂z

)
+ V ′

g

2
∂2E
∂z2

+ T
2

∇2
⊥E + {ω0[(1 − α)N − b] − k0v1z}E = 0, (2.8)

where Vg = 2(1 − α)ω0/k0 is the group velocity, V ′
g = 2(1 − α)(1 − 4α)ω0/k2

0 and T =
(1 − 2α)ω0/k2

0 are the group dispersion coefficients. Notice that Vg, V ′
g and T can change

sign depending on the ratio α, which is critical for the formation of localized nonlinear
wave packets at different frequencies. The k0v1z term represents the Doppler shift due to
the plasma streaming along the magnetic field.

In the special case where the wave packet is modulated along the z axis and moving at
a speed close to the group velocity Vg, we can make certain assumptions to simplify the
equations. Assuming b = 0 and N depends only on ξ = z − Vgt, we can integrate (2.6) to
obtain v1z = NVg, and subsequently, k0v1z = 2ω0(1 − α)N.

Assuming that N, b, v1z and |E| are functions of the variables (ξ, x⊥, τ ), where τ = t
and that ∂/∂τ << ∂/∂ξ , (2.6)–(2.8) can be rewritten as follows:

V2
g
∂2b
∂ξ 2

= C2
s ∇2

⊥N + C2
A

(
∇2

⊥ + ∂2

∂ξ 2

)
b + εα

1 − α
∇2

⊥
|E|2

8πmin0
, (2.9)

−Vg
∂

∂ξ
(N − b) = −∂v1z

∂ξ
, (2.10)

−Vg
∂v1z

∂ξ
= −C2

s
∂N
∂ξ

− ε
∂

∂ξ

|E|2
8πmin0

. (2.11)

By integrating (2.10) and (2.11), we have Vg(N − b) = v1z and Vgv1z = C2
s N +

ε|E|2/8πmin0, then, (2.9) becomes

∂2b
∂ξ 2

− ν2∇2
⊥b = Qε∇2

⊥
|E|2

8πmin0
, (2.12)

where ν2 = [C2
s V2

g/(V
2
g − C2

s ) + C2
A]/(V2

g − C2
A) and Q = [C2

s /(V
2
g − C2

s ) + α/(1 − α)]/
(V2

g − C2
A). Furthermore, (2.8) becomes

i
∂E
∂τ

+ V ′
g

2
∂2E
∂ξ 2

+ T
2

∇2
⊥E − ω0

V2
g − C2

s

{
[αV2

g + (1 − 2α)C2
s ]b + (1 − α)ε

|E|2
8πmin0

}
E = 0.

(2.13)
Equations (2.12) and (2.13) are the coupled nonlinear equations which describes the
dynamics of the whistler envelope in the presence of the slowly varying magnetic field.

3. Instability of the whistler envelope waves
3.1. Linear background wave

To understand the linear background wave, we make the assumptions E = a0 exp(iθ0(τ )),
G = d0 exp(iβ0(τ )), b = |G|2, where a0 and d0 are constants. Consequently, we
obtain |E|2 = a2

0, b = d2
0, ∇2

⊥b = 0. Additionally, we have ∇2
⊥E = 0, ∂2b/∂ξ 2 = 0,
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∂2E/∂ξ 2 = 0, ∂E/∂τ = iE∂θ0/∂τ , ∂2E/∂τ 2 = −E(∂θ0/∂τ)2 + iE∂2θ0/∂τ 2. After substituting
these equations into (2.12) and (2.13), we have

θ0(τ ) = − ω0τ

V2
g − C2

s

{
[αV2

g + (1 − 2α)C2
s ]d2

0 + (1 − α)ε
a2

0

8πmin0

}
. (3.1)

Then, we have

E = a0exp

(
−i

ω0

V2
g − C2

s

{
[αV2

g + (1 − 2α)C2
s ]d2

0 + (1 − α)ε
c2

0

8πmin0

}
τ

)
, (3.2)

b = d2
0. (3.3)

Equations (3.2) and (3.3) represent the linear background wave. Its frequency is

ωbc = ω0

V2
g − C2

s

{
[αV2

g + (1 − 2α)C2
s ]d2

0 + (1 − α)ε
a2

0

8πmin0

}
. (3.4)

3.2. Nonlinear wave
For more general case of the nonlinear wave, we assume

E(x, y, ξ, τ ) = a(x, y, ξ, τ ) exp [iθ(x, y, ξ, τ )], (3.5)

G(x, y, ξ, τ ) = d(x, y, ξ, τ ) exp [iβ(x, y, ξ, τ )], (3.6)

b(x, y, ξ, τ ) = |G(x, y, ξ, τ )|2. (3.7)

Then we have |E|2 = |a(x, y, ξ, τ )|2, b = |d(x, y, ξ, τ )|2, and the following equations:

∂2|d|2
∂ξ 2

− ν2

(
∂2|d|2
∂x2

+ ∂2|d|2
∂y2

)
= Qε

∂2|a|2
∂x2

+ ∂2|a|2
∂y2

8πmin0
, (3.8)

i
(

∂a
∂τ

+ ia
∂θ

∂τ

)
+ V ′

g

2

[
∂2a
∂ξ 2

+ 2i
∂a
∂ξ

∂θ

∂ξ
− a

(
∂θ

∂ξ

)2

+ ia
∂2θ

∂ξ 2

]
+ T

2

{
∂2a
∂x2

+ ∂2a
∂y2

+2i
(

∂a
∂x

∂θ

∂x
+ ∂a

∂y
∂θ

∂y

)
− a

[(
∂θ

∂x

)2

+
(

∂θ

∂y

)2
]

+ ia
(

∂2θ

∂x2
+ ∂2θ

∂y2

)}

− aω0

V2
g − C2

s

{
[αV2

g + (1 − 2α)C2
s ]|d|2 + (1 − α)ε

|a|2
8πmin0

}
= 0. (3.9)

We obtain two equations from both real and imaginary terms of (3.9) as follows:

− a
∂θ

∂τ
+ V ′

g

2
∂2a
∂ξ 2

− aV ′2
g

2

(
∂θ

∂ξ

)2

+ T
2

∂2a
∂x2

+ T
2

∂2a
∂y2

− aT
2

(
∂θ

∂x

)2

− aT
2

(
∂θ

∂y

)2

− aω0

V2
g − C2

s

{
[αV2

g + (1 − 2α)C2
s ]|d|2 + (1 − α)ε

|a|2
8πmin0

}
= 0,

(3.10)
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∂a
∂τ

+ V ′
g
∂a
∂ξ

∂θ

∂ξ
+ aV ′

g

2
∂2θ

∂ξ 2
+ T

∂a
∂x

∂θ

∂x
+ T

∂a
∂y

∂θ

∂y
+ aT

2
∂2θ

∂x2
+ aT

2
∂2θ

∂y2
= 0. (3.11)

We rewrote (3.8) as follows:

∂2|d|2
∂ξ 2

− ν2

(
∂2|d|2
∂x2

+ ∂2|d|2
∂y2

)
= Qε

∂2|a|2
∂x2

+ ∂2|a|2
∂y2

8πmin0
. (3.12)

Further, we assume that

a(x, y, ξ, τ ) = a0(τ ) + εa1(x, y, ξ, τ ), (3.13)

d(x, y, ξ, τ ) = d0(τ ) + εd1(x, y, ξ, τ ), (3.14)

θ(x, y, ξ, τ ) = θ0(τ ) + εθ1(x, y, ξ, τ ), (3.15)

where all the variables are complex, as later indicated by their complex conjugates.
Then (3.10)–(3.12) become

(a0 + εa1)

(
∂θ0

∂τ
+ ε

∂θ1

∂τ

)
+ ε2V ′

g

2
(a0 + εa1)

(
∂θ1

∂ξ

)2

+ ε2T
2

(a0 + εa1)

(
∂θ1

∂x

)2

+ ε2T
2

(a0 + εa1)

(
∂θ1

∂y

)2

− εV ′
g

2
∂2a1

∂ξ 2
− εT

2
∂2a1

∂x2
− εT

2
∂2a1

∂y2

+ ω0

V2
g − C2

s

(a0 + εa1)[αV2
g + (1 − 2α)C2

s ][|d0|2 + ε(d0d∗
1 + d1d∗

0) + ε2|d1|2]

+ ω0

V2
g − C2

s

(a0 + εa1)(1 − α)ε
1

8πmin0
[|a0|2 + ε(a0a∗

1 + a1a∗
0)ε

2|a1|2] = 0, (3.16)

a0

∂τ
+ ε

∂a1

∂τ
+ ε2V ′

g
∂a1

∂ξ

∂θ1

∂ξ
+ ε

a0V ′
g

2
∂2θ1

∂ξ 2
+ ε2

a1V ′
g

2
∂2θ1

∂ξ 2
+ ε2T

∂a1

∂x
∂θ1

∂x

+ ε2T
∂a1

∂y
∂θ1

∂y
+ ε

a0T
2

∂2θ1

∂x2
+ ε2 a1T

2
∂2θ1

∂x2
+ ε

a0T
2

∂2θ1

∂y2
+ ε2 a1T

2
∂2θ1

∂y2
= 0, (3.17)

εd0
∂2d∗

1

∂ξ 2
+ εd∗

0
∂2d1

∂ξ 2
+ ε2 ∂2|d1|2

∂ξ 2
− εν2d0

∂2d∗
1

∂x2
− εν2d∗

0
∂2d1

∂x2
− ε2ν2 ∂2|d1|2

∂x2

− εν2d0
∂2d∗

1

∂y2
− εν2d∗

0
∂2d1

∂y2
− ε2ν2 ∂2|d1|2

∂y2
− ε

Qa0ε

8πmin0

∂2a∗
1

∂x2
− ε

Qa∗
0ε

8πmin0

∂2a1

∂x2

− ε2 Qε

8πmin0

∂2|a1|2
∂x2

− ε
Qa0ε

8πmin0

∂2a∗
1

∂y2
− ε

Qa∗
0ε

8πmin0

∂2a1

∂y2
− ε2 Qε

8πmin0

∂2|a1|2
∂y2

= 0.

(3.18)

The solutions for the lowest order ε0 of (3.16)–(3.18) are as follows:

θ0(τ ) = −
[

ω0αV2
g |d0|2

V2
g − Cs

+ ω0(1 − 2α)C2
s |d0|2

V2
g − C2

s

+ εω0(1 − α)|a0|2
8πmin)(V2

g − C2
s 0)

]
τ, (3.19)

a0(τ ) = E00, (3.20)

where E00 is any arbitrary constant and we assumed that a0 = 1 in the numerical
simulations.
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We have the following equations at the next lowest order of ε1:

a0
∂θ1

∂τ
+ a1

∂θ0

∂τ
− V ′

g

2
∂2a1

∂ξ 2
− T

2
∂2a1

∂x2
− T

2
∂2a1

∂y2
+ a0ω0αV2

g d0d∗
1

V2
g − C2

s

+ a0ω0αV2
g d1d∗

0

V2
g − C2

s

+ a1ω0αV2
g |d0|2

V2
g − C2

s

+ a0ω0C2
s d0d∗

1

V2
g − C2

s

+ a0ω0C2
s d1d∗

0

V2
g − C2

s

+ a1ω0C2
s |d0|2

V2
g − C2

s

− 2a0αω0C2
s d0d∗

1

V2
g − C2

s

− 2a0αω0C2
s d1d∗

0

V2
g − C2

s

− 2a1αω0C2
s |d0|2

V2
g − C2

s

+ εω0a2
0a∗

1

V2
g − C2

s

1
8πmin0

+ ε|a0|2ω0a1

V2
g − C2

s

1
8πmin0

+ εa1ω0|a0|2
V2

g − C2
s

1
8πmin0

− αω0εa2
0a∗

1

V2
g − C2

s

1
8πmin0

− |a0|2αω0εa1

V2
g − C2

s

1
8πmin0

− εa1αω0|a0|2
V2

g − C2
s

1
8πmin0

= 0, (3.21)

∂a1

∂τ
+ a0V ′

g

2
∂2θ1

∂ξ 2
+ a0T

2
∂2θ1

∂x2
+ a0T

2
∂2θ1

∂y2
= 0, (3.22)

d0
∂2d∗

1

∂ξ 2
+ d∗

0
∂2d1

∂ξ 2
− ν2d0

∂2d∗
1

∂x2
− ν2d∗

0
∂2d1

∂x2
− ν2d0

∂2d∗
1

∂y2
− ν2d∗

0
∂2d1

∂y2

− Qa0ε

8πmin0

∂2a∗
1

∂x2
− Qa∗

0ε

8πmin0

∂2a1

∂x2
− Qa0ε

8πmin0

∂2a∗
1

∂y2
− Qa∗

0ε

8πmin0

∂2a1

∂y2
= 0. (3.23)

We now assume that the perturbations have a sinusoidal waveform with wavenumber
k = (kx, ky, kξ ) and frequency ω as follows:

a1 = Aexp(i(kxx + kyy + kξ ξ − ωτ) + A∗exp(−i(kxx + kyy + kξ ξ − ωτ)), (3.24)

d1 = Dexp(i(kxx + kyy + kξ ξ − ωτ)) + D∗exp(−i(kxx + kyy + kξ ξ − ωτ)), (3.25)

θ1 = Θexp(i(kxx + kyy + kξ ξ − ωτ)) + Θ∗exp(−i(kxx + kyy + kξ ξ − ωτ)). (3.26)

Substituting these equations into (3.21)–(3.23) we have

∂θ0

∂τ
(Aeiχ + A∗e−iχ) +

(
k2

xT
2

+ k2
yT

2
+ k2

ξ V ′
g

2

)
(Aeiχ + A∗e−iχ)

+ ω0αV2
g d2

0

V2
g − C2

s

(Ceiχ + C∗e−iχ) + ω0C2
s d2

0(1 − 2α)

V2
g − C2

s

(Ceiχ + C∗e−iχ)

+ 3εω0a2
0(1 − α)

8πmin0(V2
g − C2

s )
(Ceiχ + C∗e−iχ) + 2a0ω0C2

s d0(1 − 2α)

V2
g − C2

s

(Deiχ + D∗e−iχ)

+ 2αω0a0V2
g d0

V2
g − C2

s

(Deiχ + D∗e−iχ) + iωa0(Θ
∗e−iχ − Θeiχ) = 0, (3.27)
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iω(A∗e−iχ − Aeiχ) −
(

a0k2
ξ V ′

g

2
+ a0k2

xT
2

+ a0k2
yT

2

)
(Θeiχ + Θ∗e−iχ) = 0, (3.28)

(
Qa0εk2

x

8πmin0
+ Qa0εk2

y

8πmin0

)
(A eiχ + A∗e−iχ) + (ν2d0k2

x + ν2d0k2
y − d0k2

ξ )(Deiχ + D∗e−iχ) = 0,

(3.29)

where χ = kxx + kyy + kξ ξ − ωτ .
We have the following equations from the coefficient of the term of eiχ :(

k2
xT
2

+ k2
yT

2
+ k2

ξ V ′
g

2
+ 2εω0a2

0(1 − α)

8πmin0(V2
g − C2

s )

)
A

+
[

2a0ω0αV2
g d0

V2
g − C2

s

+ 2a0ω0C2
s d0(1 − 2α)

V2
g − C2

s

]
D − iωa0Θ = 0, (3.30)

iωA +
(

a0k2
xT

2
+ a0k2

yT

2
+ a0k2

ξ V ′
g

2

)
Θ = 0, (3.31)

Qa0ε(k2
x + k2

y)

8πmin0
A + (ν2d0k2

x + ν2d0k2
y − d0k2

ξ )D = 0. (3.32)

In order to obtain the non-trivial solution from (3.30)–(3.32), we have the following
equation:

ω2 =
[

1
4
(k2

xT + k2
yT + k2

ξ V ′
g) + εω0a2

0(1 − α)

8πmin0(V2
g − C2

s )

−ω0a2
0Qε(αV2

g + C2
s − 2αC2

s )

8πmin0(V2
g − C2

s )

k2
x + k2

y

kξ − ν2k2
x − ν2k2

y

]
(k2

xT + k2
yT + kξ V ′

g), (3.33)

where ω0 = c2k2
0ωce/(ω

2
pe + c2k2

0), ε = ω2
pe/ω0(ωce − ω0), k0 = λ−1

e α1/2(1 − α)−1/2, Vg =
2(1 − α)ω0/k0, V ′

g = 2(1 − α)(1 − 4α)ω0/k2
0, T = (1 − 2α)ω0/k2

0, λe = c/ωpe, α =
ω0/ωce, ωpe = (4πnee2/me)

1/2, ωce = eB0/me, Cs = (γ kTi/mi)
1/2, CA = B0/(4πmine)

1/2,
ν2 = [C2

s V2
g/(V

2
g − C2

s ) + C2
A]/(V2

g − C2
A), Q = [C2

s /(V
2
g − C2

s ) + α/(1 − α)]/(V2
g − C2

A).
Equation (3.33) is the dispersion relation of the perturbed wave.

4. Discussion for some special cases

To study the dispersion relation of the perturbed wave of (3.33), we consider three
typical cases.

First, (kx, ky, kξ ) = (0, 0, kξ ), in which the wave propagates in the direction of ξ = z −
Vgt, i.e. in the z direction. In other words, the perturbed wave propagates in the direction
of the external magnetic field. For this case, (3.33) becomes

ω2 =
[

1
4

k2
ξ V ′

g + εω0a2
0(1 − α)

8πmin0(V2
g − C2

s )

]
k2

ξ V ′
g. (4.1)

In the following, we study the frequency of the perturbed wave from (4.1) by using
the plasma parameters (Kostrov et al. 2003) B0 = 6.5 × 10−3 T, n0 = 1.2 × 1018 m−3,
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FIGURE 1. Dependence of ω2 on both perturbed wavenumber k and α with B0 = 6.5 × 10−3 T,
n0 = 1.2 × 1018 m−3, ωpe = 6.7 × 1010 s−1, ωce = 1.76 × 109 s−1, Te = 1.16 × 105 K, Ti =
5.8 × 103 K, Cs = 5.25 × 103 m s−1, CA = 2.9 × 104 m s−1, mi/me = 73 400, me = 9.11 ×
1031 kg, a0 = 1.

FIGURE 2. Dependence of α on k where ω2 = 7.4 s−2 and ω2 = 1.5 s−2 in two curves,
respectively, the other parameters are B0 = 6.5 × 10−3 T, n0 = 1.2 × 1018 m−1, ωpe = 6.7 ×
1010 s−1, ωce = 1.76 × 109 s−1, Te = 1.16 × 105 K, Ti = 5.8 × 103 K, Cs = 5.25 × 103 m s−1,
CA = 2.9 × 104 m s−1, mi/me = 73 400, me = 9.11 × 10−31 k, a0 = 1.

ωpe = 6.7 × 1010 s−1, ωce = 1.76 × 109 s−1, Te = 1.16 × 105 K, Ti = 5.8 × 103 K, Cs =
5.25 × 103 m s−1, CA = 2.9 × 104 m s−1, mi/me = 73 400, me = 9.11 × 10−31 kg, a0 = 1.

Figure 1 shows the dependence of ω2 on parameters of both k and α. It is observed that
the frequency approaches zero as both k and α tend to zero. The frequency increases as k
increases. Furthermore, it is zero when k < 1.78. However, the frequency decreases as α
increases.

In order to further understand the variation of the frequency with respect to both k and
α, figure 2 shows the dependence of α on k when ω remains a constant.
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FIGURE 3. Dependence of ω2 on both perturbed wavenumber k and α with B0 = 6.5 × 10−3 T,
n0 = 1.2 × 1018 m−3, ωpe = 6.7 × 1010 s−1, ωce = 1.76 × 109 s−1, Te = 1.16 × 105 K, Ti =
5.8 × 103 K, Cs = 5.25 × 103 m s−1, CA = 2.9 × 104 m s−1, mi/me = 73 400, me = 9.11 ×
10−31 kg, a0 = 1.

The fitted equations of two curves in figure 2 are as follows:

α1 = (−0.92) exp(−k1/1.22) + 0.21,

α2 = (−0.97) exp(−k2/1.31) + 0.20.

}
(4.2)

Second, (kx, ky, kξ ) = (kx, 0, 0), about which the propagation direction of the perturbed
wave is perpendicular to that of the external magnetic field. Then (3.33) becomes

ω2 =
[

1
4

k2
xT + εω0a2

0(1 − α)

8πmin0(V2
g − C2

s )

+ω0a2
0Qε(αV2

g + C2
s − 2αC2

s )

8πmin0(V2
g − C2

s )

]
k2

xT. (4.3)

We also use the same system parameters (Kostrov et al. 2003): B0 = 6.5 × 10−3 T,
n0 = 1.2 × 1018 m−3, ωpe = 6.7 × 1010 s−1, ωce = 1.76 × 109 s−1, Te = 1.16 × 105 K, Ti =
5.8 × 103 K, Cs = 5.25 × 103 m s−1, CA = 2.9 × 104 m s−1, mi/me = 73 400, me = 9.11 ×
10−31 kg, a0 = 1.

Figure 3 shows the dependence of ω2 on parameters of both k and α. It is observed that
the frequency approaches zero as both k and α tend to zero. The frequency increases as k
increases. Furthermore, it is zero when k < 1.78. However, the frequency decreases as α

increases.
In order to further understand the variation of the frequency with respect to both k and

α, figure 4 shows the dependence of α on k when ω remains a constant.
The fitted equations of two curves in figure 4 are as follows:

α1 = (−2.04) exp(−k1/1.28) + 0.40,

α2 = (−2.04) exp(−k2/1.34) + 0.39.

}
(4.4)

Third, (kx, ky, kξ ) = (k, 0, σk), where σ = tan θxz, and θxz is the angle between the
direction of the external magnetic field and the vector of the wavenumber. It stands for the
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FIGURE 4. Dependence of α on k where ω2 = 3.7 s−2 and ω2 = 5.6 s−2 in two curves,
respectively, the other parameters are B0 = 6.5 × 10−3 T, n0 = 1.2 × 1018 m−3, ωpe = 6.7 ×
1010 s−1, ωce = 1.76 × 109 s−1, Te = 1.16 × 105 K, Ti = 5.8 × 103 K, Cs = 5.25 × 103 m s−1,
CA = 2.9 × 104 m s−1, mi/me = 73 400, me = 9.11 × 10−31 kg, a0 = 1.

case in which the perturbed waves propagates in an arbitrary direction, i.e. 0 ≤ θ ≤ π/2.
For this case, (3.33) becomes

ω2 =
[

1
4
(σ 2k2V ′

g + k2T) + εω0a2
0(1 − α)

8πmin0(V2
g − C2

s )

−ω0a2
0Qε(αV2

g + C2
s − 2αC2

s )

8πmin0(V2
g − C2

s )(σ
2 − ν2)

]
(σ 2k2V ′

g + k2T). (4.5)

We also use the same system parameters (Kostrov et al. 2003): B0 = 6.5 × 10−3 T,
n0 = 1.2 × 1018 m−3, ωpe = 6.7 × 1010 s−1, ωce = 1.76 × 109 s−1, Te = 1.16 × 105 K, Ti =
5.8 × 103 K, Cs = 5.25 × 103 m s−1, CA = 2.9 × 104 m s−1, mi/me = 73 400, me = 9.11 ×
10−31 kg, a0 = 1, σ = 1.

Figure 5 shows the dependence of ω2 on parameters of both k and α. It is observed that
the frequency approaches zero as both k and α tend to zero. The frequency increases as k
increases. Furthermore, it is zero when k < 1.78. However, the frequency decreases as α
increases.

In order to further understand the variation of the frequency with respect to both k and
α, figure 6 shows the dependence of α on k when ω remains a constant.

The fitted equations of two curves in figure 6 are as follows:

α1 = (−1.23) exp(−k1/1.38) + 0.24,

α2 = (−1.23) exp(−k2/1.44) + 0.24.

}
(4.6)

5. Instability conditions of the perturbed wave

The above study shows that ω2 > 0, which indicates that there is no instability. However,
for different parameters, instability may exist. Figure 7 shows the dependence of ω2 on the
parameters of both σ and k0, where α < 1 since ω0 < ωce and α = ω0/ωce. It is shown
in figure 7 that ω2 < 0 for both the first case and the second case in certain regions,
where k = 0.001. It seems from figure 7 that ω2 may be negative in some regions when
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FIGURE 5. Dependence of ω2 on both perturbed wavenumber k and α with B0 = 6.5 × 10−3 T,
n0 = 1.2 × 1018 m−3, ωpe = 6.7 × 1010 s−1, ωce = 1.76 × 109 s−1, Te = 1.16 × 105 K, Ti =
5.8 × 103 K, Cs = 5.25 × 103 m s−1, CA = 2.9 × 104 m s−1, mi/me = 73 400, me = 9.11 ×
10−31 kg, a0 = 1, σ = 1.

FIGURE 6. Dependence of α on k where ω2 = 3.3 s−2 and ω2 = 5.0 s−2 in two curves,
respectively, the other parameters are B0 = 6.5 × 10−3 T, n0 = 1.2 × 1018 m−3, ωpe = 6.7 ×
1010 s−1, ωce = 1.76 × 109 s−1, Te = 1.16 × 105 K, Ti = 5.8 × 103 K, Cs = 5.25 × 103 m s−1,
CA = 2.9 × 104 m s−1, mi/me = 73 400, me = 9.11 × 10−31 kg, a0 = 1, σ = 1.

k0 < 0.05. Furthermore, ω2 decreases as the σ increases. However, ω2 increases as the
whistler wavenumber k0 increases. It suggests that there is instability when the whistler
wave propagates perpendicular to or parallel to the direction of the external magnetic field.
However, it is found that ω2 > 0 is always satisfied for the third case, which means that it is
stable if the angle between the external magnetic field and the perturbed wave’s direction
is π/4 (σ = 1).

Figure 8 shows ω2 is positive when k0 > 0.05. Here ω2 increases as the σ increases
when σ > 25. Whereas, ω2 first increases as k0 increases, reaches a peak value, and then
decreases as k0 increases.
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FIGURE 7. Dependence of ω2 on the wave propagation direction σ and the whistle wave
number k0 where k = 0.001, B0 = 6.5 × 10−3 T, n0 = 1.2 × 1018 m−3, ωpe = 6.7 × 1010 s−1,
ωce = 1.76 × 109 s−1, Te = 1.16 × 105 K, Ti = 5.8 × 103 K, Cs = 5.25 × 103 m s−1, CA =
2.9 × 104 m s−1, mi/me = 73 400, me = 9.11 × 10−31 kg, a0 = 1, kb = 1.38 × 10−23 J K−1,
ε0 = 8.85 × 10−12 F m−1, μ0 = 1.26 × 10−6 H m−1.

FIGURE 8. Dependence of ω2 on k0 where k = 0.001, σ = 180, k = 0.001, B0 =
6.5 × 10−3 T, n0 = 1.2 × 1018 m−3, ωpe = 6.7 × 1010 s−1, ωce = 1.76 × 109 s−1, Te = 1.16 ×
105 K, Ti = 5.8 × 103 K, Cs = 5.25 × 103 m s−1, CA = 2.9 × 104 m s−1, mi/me = 73 400, me =
9.11 × 10−31 kg, a0 = 1, kb = 1.38 × 10−23 J K−1, ε0 = 8.85 × 10−12 F m−1, μ0 = 1.26 ×
10−6 H m−1.

6. Conclusion

The present investigation focuses on the modulational instability of the nonlinearly
interacting electron whistlers and magnetosonic perturbations. It is found that the wave
is modulational stable for typical plasma parameters. However, modulational instability
appears in special cases. The results show that modulational instability appears in some
regions when the whistler wavenumber satisfies k0 < 0.05. Moreover, the growth rate
decreases as the angle between the external magnetic field and the perturbed wave’s
direction increases. However, the growth rate increases as the whistler wavenumber k0
increases.

It is also found that there is no modulational instability when the whistler wavenumber
satisfies k0 > 0.05. In this case, the perturbed wave frequency increases as the angle
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between the external magnetic field and the perturbed wave’s direction increases when
the angle between the external magnetic field and the perturbed wave’s direction is large
enough. Whereas, the perturbed wave frequency first increases as the whistler wavenumber
increases, reaches a peak value and then decreases as whistler wavenumber increases.
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