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Let M(t) denote the mean population size at time t (conditional on a
single ancestor of age zero at time zero) of a branching process in which
the distribution of the lifetime T of an individual is given by
Pr {T ^ t} = G(t), and in which each individual gives rise (at death) to an
expected number A of offspring (1 < A < oo). Then it is well-known
(Harris [1], p. 143) that, provided G(0+)—G(0—) = 0 and G is not a
lattice distribution, M (t) is given asymptotically by

j^ . j
(1) M(t) ~ eet, t -+ oo,

cA* j te-°*dG{t)

where c is the unique positive value of p satisfying the equation

(2) J e-ptdG(t) = A - 1 .

In many biological problems the distribution function G is not known
precisely and it is of interest to find bounds for the asymptotic growth rate
c (sometimes known as the Malthusian parameter for the population), given
only that

(a) jtdG(t) = m i>

or

(b) jtdG{t) = m1 and J

where m1, m2 < oo.
In this note we shall find the best possible bounds for c under these

conditions and, in the course of the derivation, determine the functions
(defined for all real non-negative values of p) sup j .^ &(F, p) and
infF6jr 0{F, p), where &(F, p) = ^e~vtdF{t) and & represents one or other
of the classes of probability distribution functions:

1 Work performed under the auspices of the United States Atomic Energy Commission.
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#•(«,) = [F : F(0—) = 0, J tdF(t) = m j ,

x, m2) = \F : F(0—) = 0, j tdF(t) = m^

Bounding techniques for branching processes have been used previ-
ously by Heathcote and Seneta [2], Senate [3] and Brook [4]. Lemmas 2
and 3 below were used by Brook to obtain an upper bound for the ex-
tinction probability.

Before deriving the results, which are given as a series of lemmas,
we note that if F is the distribution function of a proper non-zero non-
negative random variable and

, P)=\ tne-»dF(t), n = 0, 1, 2,

then it is well-known that if 0n(F, 0) < oo, log 0n(F, p) is strictly
decreasing and convex for p 2? 0.

It will be assumed throughout that m1 > 0 since Lemmas 1 — 3 are
trivial if tn1 = 0.

LEMMA 1.

inf 0{F,p) = inf 0(F,p) = e~m^', 0 ^ p < oo.
F

PROOF, (i) We first show that e~m^ ^ 0(F, p) for all F
Denote by Dp the operator d/dp. Then since log0(F, p) = 0 at p = 0
and Dp log 0(F, p) = — mx at p = 0 it follows from the convexity of
log 0(F, p) that log 0(F, p) ^ —mxp for all p ^ 0.

(ii) By choosing a sufficiently small in the example

(where cr = (m2—ml)i) we see that for any given non-negative /> and
positive s there exists F e ^r(m1, m2) such that ^ ( F , p)—e~miP < e.

REMARK. The example given in (ii) also shows that the infima are
unchanged when taken over the subclass of &r(m1,m2) in which
F(0+)—F(0—) = 0 and F is a non-lattice distribution.

LEMMA 2.

sup

PROOF. We need only show that for any given non-negative p and
positive e there exists F e ^"(wx) such that 1—0(F, p) < s. Such an F is
obtained by choosing a sufficiently small in the following example:
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( 0, t < xm1,

L — x,
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—a+a2),

—a+a2).

LEMMA 3.

supp 0(F,p) = l J + ^ e x p — ,

PROOF, (i) We first establish the inequality,

0 52 p < oo.

(3) ' ?- ' - -?exp ( - ^ 0.

Since at p = 0 there is equality in (3) it will be sufficient to show that
Dvx{F> P) ^ 0 for all non-negative p, or equivalently that

p(F, p) = log ^ ( F , ^>)—log Y ^ 0 .

Since />(-?,/>) = 0 at p = 0 and DpP(F,p) = 0 at j!> = 0 it follows from
the convexity of p(F,p) that p(F,p) Ŝ  0 for all p Sg 0. This establishes
the inequality (3).

(ii) If mi = m\ the assertion of the lemma is trivial since in this case
saVFe,{nitmi)&{F,p) = exp(—in1p). If m2>m\ then by choosing a
sufficiently small (a > 0) in the example,

F(t) =

t

m,

t 3: m1
J
ra[(a2-\-m2x){m\—m2x)~1^,

(where a = (m2—m*)i) we see that for any given non-negative p and
positive e there exists F e ^{m1} m2) such that

-0(F,p) <s.ml ml
m2 m2 m1

REMARK. The examples given in the proofs of Lemmas 2 and 3 show
that the suprema are unchanged when the further restrictions are imposed
that F(0+)~F(0—) = 0 and that F be a non-lattice distribution.

LEMMA 4. If A > 1, G(0—) = G(0+) = 0, G is a non-lattice distribution,
and c(G) is the unique positive root of equation (2), then
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inf c(G) = , sup c(G) — oo,
e^tm,) Ml Gejr(mi)

inf sup c(G) =

oo

m\A—m2(A — 1)

if m\A >m2(A — 1),

if m\A ^m2(A — 1).

PROOF. If G e ^ ( % ) satisfies the conditions of the lemma then we
know from Lemma 1 that &(G,p) S> exp (—mxp), and in particular
<P(G, c(G)) = A-1 22 exp [—mxc(G)]. Hence c(G) S; m^1 log A Furthermore
given any e > 0 it follows from Lemma 1, since exp {—inxp) < A~x if
p = w "̂1 log A+e, that there exists G e &{mx, m2) satisfying the conditions
of Lemma 4 such that $(G, m^1 log A+e) <A~r. Since 0(G,p) is a decreasing
function of /> this inequality implies that c(G) < w - 1 log ^4+e. This estab-
lishes the infima as given in the statement of the lemma. The suprema are
established in an analogous way from Lemmas 2 and 3.

It is interesting to observe that specification of only the mean of F
gives no finite upper bound for c. Specification of the second moment
as well as the mean gives an upper bound for c only if the coefficient of
variation is sufficiently small (i.e., only if m^1(m2—ml)i < (A — l)~i).
A large coefficient of variation allows the probability of a lifetime near
zero to become too great for c to be bounded above.

In terms of a specified mean, mx, and coefficient of variation v, Lemma
4 gives

(4) io g.4 ^miC ^ ^

For reasonably small values of v (as frequently occur in biological problems)
these bounds are rather close. For example in the particular case A = 2,
we obtain the following bounds for various values of v:

v = 0.2, 0.693 ^ mxc ^ 0.706;

v = 0.4, 0.693 < mxc ^ 0.748;

v = 0.6, 0.693 ^ mxc <: 0.838;

v = 0.8, 0.693 ^ mxc ^ 1.046;

v = 1.0, 0.693 g; mxc ^ oo.

We note finally that for given A and mx the least upper bound for c
increases monotonically to oo as v increases from zero to (A — l)~i- Con-
sequently if we specify that the mean lifetime be mx and that the coefficient
of variation satisfy the inequality v :g v0 < (̂ 4 —1)~*, then the best bounds
which can be given for c are obtained from (4) on setting v = v0.
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