BOUNDS FOR THE ASYMPTOTIC GROWTH RATE
OF AN AGE-DEPENDENT BRANCHING PROCESS

P. J. BROCKWELL!
(Received 22 April 1968)

Let M (¢) denote the mean population size at time ¢ (conditional on a
single ancestor of age zero at time zero) of a branching process in which
the distribution of the lifetime 7T of an individual is given by
Pr{T <¢} = G(¢), and in which each individual gives rise (at death) to an
expected number 4 of offspring (1 < A4 < o0). Then it is well-known
(Harris [1], p. 143) that, provided G(04-)—G(0—) = 0 and G is not a
lattice distribution, M (¢) is given asymptotically by
1) M) ~ A=t ect, t— o0,

cA® [ te=dG (t)

where ¢ is the unique positive value of p satisfying the equation
2) [eraGe) = a1,

In many biological problems the distribution function G is not known
precisely and it is of interest to find bounds for the asymptotic growth rate
¢ (sometimes known as the Malthusian parameter for the population), given

only that

@) f tdG(t) = m,,

or

(b) [taG(t) =m, and [£dG(E) =m,,

where m,, m, << c0.

In this note we shall find the best possible bounds for ¢ under these
conditions and, in the course of the derivation, determine the functions
(defined for all real non-negative values of p) supp.s @(F, p) and
infp, ; @(F, p), where @(F, p) = [e~?*dF (t) and F represents one or other
of the classes of probability distribution functions:

1 Work performed under the auspices of the United States Atomic Energy Commission.
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Fm) = [F:F(o—) =0, [taF() = m),
F(my, my) = [F: F(0—) = o,ftazF(t; = ml,ftZdF(t) = my.

Bounding techniques for branching processes have been used previ-
ously by Heathcote and Seneta [2], Senate [3] and Brook [4]. Lemmas 2
and 3 below were used by Brook to obtain an upper bound for the ex-
tinction probability.

Before deriving the results, which are given as a series of lemmas,
we note that if F is the distribution function of a proper non-zero non-
negative random variable and

,(F, p) = [ tre-dF (1), n=012"-"

then it is well-known that if @ (F, 0) < oo, log @,(F, p) is strictly
decreasing and convex for p = 0.
It will be assumed throughout that m; > 0 since Lemmas 1—3 are

trivial if m; = 0.
LEMMA 1.
inf @(F,p)= inf @(F,p)=e ™7, 0=p < 0.

Fe#(m,y) FeF(my, my)

Proor. (i) We first show that e™? < @(F, p) for all F e F(m,).
Denote by D, the operator dfdp. Then since log @(F,p) =0 at p =0
and D,log @(F, p) = —m,; at p = 0 it follows from the convexity of
log @(F, p) that log @(F, p) = —m,p forall p = 0.

(ii) By choosing « sufficiently small in the example

0, < my—ofaf(1—a)l},
F(t) = { 1—a, my—ofaf(1—a)]t <t < m;+o[(1—a)/al},
1,t = my+o[(1—a)/a]},

(where ¢ = (my—m3)}) we see that for any given non-negative p and
positive ¢ there exists F € % (my, m,) such that @(F, p)—e ™? < &.

REMARK. The example given in (ii) also shows that the infima are
unchanged when taken over the subclass of % (m,,m,) in which
F(0+4)—F(0—) = 0 and F is a non-lattice distribution.

LEMMA 2.
sup @(F,p) =1, 0=p < 0.

Feg(m,)

Proor. We need only show that for any given non-negative p and
positive ¢ there exists F € # (m,) such that 1—@(F, p) < &. Such an F is
obtained by choosing « sufficiently small in the following example:
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0, t << amy,
F(ty = { 1—a, om; =t < a1y (1—a+ta?),
1, t = aimy (1 —ata?).

LEMMA 3.

2 2
sup @(F,p):l—%—f—ﬁlexp(—-@f), 0=p < oo

Feg(m;,my) 2 My 1

Proor. (i) We first establish the inequality,

mi: omd Myp
3 F,p)=®(F,p)—14+ 2 — 2 (— 2)s0.
® xR =FEp -1 T Hep () <
Since at p = 0 there is equality in (3) it will be sufficient to show that
D, x(F, p) = 0 for all non-negative p, or equivalently that

p(F, p) =log @,(F, p)—log my+myp[m, = 0.

Since p(F, p) = 0 at p = 0 and D, p(F, p) = 0 at p = 0 it follows from
the convexity of p(F, p) that p(F, p) = 0 for all p = 0. This establishes
the inequality (3).

(ii) If m, = m? the assertion of the lemma is trivial since in this case
SUPFe g(m,,m,) P(F, p) = exp (—m;p). If my >m; then by choosing «
sufficiently small (« > 0) in the example,

0, t < my—o[(mi—mya)(c®+mya) 1]},
2
Fiy=]1— - + a, my— o[ (mi—mya) (02 4-mya) 1R
=1
<t < my+o[(c®+mya) (mi—mya)~1]3,
1, t = my+o (o +mya) (M2 —mya) 1134,

(where o = (m,—m3)}) we see that for any given non-negative p and
positive e there exists F € & (m,, m,) such that

2 2
1- 7 + Zn—lexp (— m—zfi) —D(F, p) <.
my My my

ReMARK. The examples given in the proofs of Lemmas 2 and 3 show
that the suprema are unchanged when the further restrictions are imposed
that F(0+)—F(0—) = 0 and that F be a non-lattice distribution.

LemMa 4. If A >1,G(0—) = G(0+) = 0, G is a non-lattice distribution,
and c(G) is the unique positive root of equation (2), then
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log A
inf ¢(G) = %7, sup ¢{G) = oo,
Ge F(m,) my Ge F(my) 9
e’ log —; A
. log A my, ~ mid—my(4d—1)
inf ¢(G) = , sup ¢(G) = . 2
GeF (my, my) "y GeF (my,my) if mlA > mZ(A_l)r
0 it mid < m,(4-1).

ProorF. If G e #(m,) satisfies the conditions of the lemma then we
know from Lemma 1 that @(G, p) = exp (—m,p), and in particular
&(G, c(G)) = A~ = exp [—m,c(G)]. Hence ¢(G) = m;* log A. Furthermore
given any & >0 it follows from Lemma 1, since exp (—m,p) < A7 if
p = my" log A+¢, that there exists G € & (m,, m,) satisfying the conditions
of Lemma 4 such that @(G, m7'log A+¢) < A2 Since @ (G, p) is a decreasing
function of p this inequality implies that ¢(G) < m~ log A-+e¢. This estab-
lishes the infima as given in the statement of the lemma. The suprema are
established in an analogous way from Lemmas 2 and 3.

It is interesting to observe that specification of only the mean of F
gives no finite upper bound for ¢. Specification of the second moment
as well as the mean gives an upper bound for ¢ only if the coefficient of
variation is sufficiently small (i.e., only if my(m,—mi)t < (A—1)7%).
A large coefficient of variation allows the probability of a lifetime near
zero to become too great for ¢ to be bounded above.

In terms of a specified mean, m,, and coefficient of variation », Lemma
4 gives

1
(4) log A <mc < m log
For reasonably small values of v (as frequently occur in biological problems)
these bounds are rather close. For example in the particular case 4 = 2,
we obtain the following bounds for various values of v:

v = 0.2, 0.693 < m,c = 0.706;
v = 0.4, 0.693 < m,c < 0.748;
v = 0.6, 0.693 < m c < 0.838;
v = 0.8, 0.693 < m,c = 1.046;
v = 1.0, 0.693 < m c = .

1—(A—1)2

We note finally that for given 4 and m, the least upper bound for ¢
increases monotonically to oo as v increases from zero to (A4 —1)~% Con-
sequently if we specify that the mean lifetime be 7, and that the coefficient
of variation satisfy the inequality v < v, << (4—1)"%, then the best bounds
which can be given for ¢ are obtained from (4) on setting v = v,.
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