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Structure of perfect rings

Vlastimil Dlab

In the present note, we offer a simple characterization of

perfect rings in terms of their components and socle sequences,

which is subsequently used to establish a one-to-one

correspondence between perfect rings and certain finite additive

categories. This correspondence is effected by means of a matrix

representation, which describes the way in which perfect rings

are built from local perfect rings.

The concept of a perfect ring was introduced by S. Eilenberg in [2];

later, in his paper [I], H. Bass characterized perfect rings in several

ways. As our starting point, refer to Theorem P (l) of [7] and call a

ring R (right) perfect if

(a) i?/Rad R is artinian (i.e. completely reducible)

and

(b) Rad R is T-nilpotent in the sense that, given any sequence

{p.} of elements of Rad R , there exists an n such that
Is

pnpn-l ••• p2pi = ° •

In what follows, R denotes a ring with unity; by a module M we

always understand a (left unital) fl-module. The symbol Rad M stands

for the intersection of all maximal submodules of M if there are any;

otherwise Rad M = M . Dually, if M has minimal submodules, Soc M

denotes their union; if M has no minimal submodules, Soc M = 0 . In

a ring R , define the (left transfinite) socle sequence
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I 18 V l a s t i m i I Dlab

0 = 5 ( 0 ) £ 5 ( 1 ) £ . . . cS
{a) £ . . . £if

of two-sided ideals S ' by

5 ( a ) / s ( a - l ) = S o c R/S{ar-1) f o r a l l n o n _ l i m i t

and

S^a' = U S^' for all limit ordinals 1 5 a .

If if = £•• for a certain <S , if is said to Twue a soale sequence. It

is easy to see that if has a socle sequence if and only if Soc M =f 0

for every i?-module M ^ 0 . This, in turn, is equivalent to the fact

that every non-zero monogenic if-module possesses a minimal submodule,

i.e. that, for every proper left ideal L of R , the if-module R/L

contains a minimal submodule.

PROPOSITION 1. A ring R has a socle sequence if and only if

i?/Rad R has a socle sequence and Rad if is T-nilpotent. Thus, in

particular, if R has a socle sequence, then Rad R is nil.

Proof. Using the argument of H. Bass [7] p. U70, the implication

"if" follows easily. In order to prove the opposite assertion, consider a

proper left ideal L of if and notice that Soc R/L | 0 if Rad i? £ L .

Also, R/L has obviously a minimal submodule provided that R/L n Rad i?

has one. Hence, we may assume that L ? Rad if .

Suppose that R/L has no minimal submodule. Then, we can construct

a sequence (p.-) of elements of Rad R in the following way: Take
Is

Pi € Rad R \ L and assume that we have already chosen

h that

an = pnpn-l •" p ^ * L '

r, we can show that also

(Rad R)a £ L , then the non-zero submodule /fa + L/L of R/L which is

isomorphic to ifa /ifa n L would be a homomorphic image of ifa /(Rad i?)a

and thus a homomorphic image of if/Rad if . Therefore R/L would possess

P2, . . . > Pn € Rad if such that

Thus ifa i. L ; moreover, we can show that also (Rad i?)a £ L . For, if
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a minimal submodule. Hence, we may choose p _ € Rad R such that

a = P n + 1
a
n ^ L • However, the existence of such a sequence {p.}

contradicts the T-nilpotence of Rad if . The proof is completed.

Notice that using Proposition 1 we can deduce easily that R is

perfect if and only if (a) holds and R has a socle sequence (cf.

J.P. Jans [3]).

PROPOSITION 2. Let R = L © T with an indecomposable left ideal L

and let R have a socle sequence. Then L contains a unique left ideal

K of R maximal in L . Thus, in particular, R is an indecomposable

ring which has a socle sequence if and only if R is a local (i.e.

possessing a unique maximal left ideal) perfect ring.

Proof. Let {X, x} be a complete set of orthogonal idempotents of

R corresponding to the decomposition i? = L © T , and {X, T } the

respective set of idempotents of i?/Rad R . Obviously, K = Rad L 5 L .

Take a left ideal S of R , K ^ S c_ L , such that S/K is a minimal

submodule of L/K . By definition of K , there is a left ideal W of

R , K £ W c L , maximal in L and such that S n W = K . Our

Proposition will be proved if we show that W = K , i.e. that S = L .

Assume that W =)= K . Then i?/Rad R S L/K © T/Rad T = S/K © W/K © T/Rad T ;

moreover, S/K contains an idempotent 5 . Consider the set consisting

of the idempotents 5 = X a , w = X - 5 and x ; arguments of a routine

nature yield that it is a complete set of orthogonal idempotents of

i?/Rad R . In view of Proposition 1, we can lift these idempotents modulo

Rad R and we get

R = Rd © i?u © 2" ,

contradicting the indecomposability of L . The proof is completed.

THEOREM 1. A ring R is (right) perfect if and only if

r

(a*) R = © L. with indecomposable (left) ideals L. , 1 £ i 5 r 3
i=X % v

and

(b*) R has a socle sequence.
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A ring R satisfying (a*) and (b*) has the property that each

component L- contains a unique left ideal K- of R maximal in L. ,

r
Rad R = © *£ ,

r
if/Rad if S © L./K.

i=l % v

and thuSj the decomposition of R in (a*) is unique up to an isomorphism

and order of the components.

Proof. In view of our definition of a perfect ring, both (a*) and

(b*) follow easily from Proposition 1 and the fact that idempotents modulo

Rad i? can be lifted.

Now, if i? satisfies (a*) and (b*), then in view of Proposition 2

each L. contains a unique maximal left ideal K. ,

r r
Rad if = © Rad L. = © K. and the uniqueness of the decomposition in

t=l % t=l %

r
(a*) follows from the uniqueness of the decomposition © L./K. of

if/Rad if combined with the fact that L./K. a* L./K. for 1 < i , j < r

t t 0 0

implies L^^L. . In particular, if satisfies (a) and is therefore

perfect.

f

PROPOSITION 3. Let R = © L. be an indecomposable decomposition
t=l

of a perfect ring R . Then, for each i , 1 5 i < r , the endomorphism

ring End_(£.J of L. is a local perfect ring.

Proof. Without loss of generality, take i = 1 and denote by K\

the unique left ideal of if maximal in L\ . First, notice that
<(p|<p f Endfip(£1) and Ljip £ K^ \

is the unique (left) maximal ideal of £"i = End_(£i) and hence E\ is

local.

In order to establish that E\ satisfies (b*) , let us take an
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arbitrary left ideal A of E\ and show that the ffj-module E\/A has a

minimal Ej-submodule. To this end, consider the "standard" matrix

representation A of the ring R corresponding to our decomposition: R

is isomorphic to the ring i?A of all r x r matrices (a;. .) with

a:.. € Hom_(£., L.) . Now, denote, for 2 £ •£ £ r , by N.. the submodule

of Hom_(L-, L\) of all a. such that

a: .a., € A for all a;, • € HomD(£i, L.) .
It uX XT" ti t-

And, observe that the set X of all matrices (a. .) € RA such that

a- • = 0 for j > 2 , a n € .4 and a.. € W., for 2 5 i < r , is a

left ideal of RL . Since R is perfect, there is a left ideal Y of

Rh such that ^ £ 1 and X/X is a simple i?A-module. Obviously,

iUliii I fx...) € rl = B c S, •

moreover, B is a left ideal of E\ . And finally, B/A is a simple

Sj-module. For, otherwise there would be a left ideal C of E\ such

that A | C 9 B , and thus the left ideal Z of i?A of all matrices

(e. .) such that c . = 0 for j J 2 , e n € C and c € N. for

2 S i £ r , would satisfy X £ Z 5 Y . The proof is completed.

Now, given a perfect ring R , consider its indecomposable

T
decomposition R = © £. and denote by i?$ the finite additive category

whose objects are i?-modules L\, Li, ..., L and whose morphisms are all

homomorphisms belonging to Hom_(L., L .) , 1 £ i , j £ r . Notice that

Hi 3

the mapping * of the class of all perfect rings into the class of all

finite additive categories is, in view of uniqueness of decomposition,

well-defined. The image R$ of every perfect ring R is, moreover, a

category such that the endomorphism rings of its objects are local perfect

rings. For the sake of brevity, let us call such finite additive

categories perfect.

On the other hand, let C be a finite additive category; denote by
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C\, C2, ..., C its objects. Define the ring CT in the following way:

CT is the ring of all r x r matrices [x. .) such that

Xij € ^Ci' Cj^ for a 1 1 r ~ i > J' ~ r '

with respect to matrix addition and multiplication.

PROPOSITION 4. If C is a perfect category, then CT is a perfect

ring.

Proof. For each i , 1 £ i 5 r , denote by W. the unique maximal

(left) ideal of the ring [C •, C ] and by L. c CT the subset of all

matrices (a;-•} such that

x.. = 0 for d % i ,

which is obviously a left ideal of CT . One can verify readily that the

subset K. c L. of those matrices fa;..) which satisfy
^ — % 1-3'

[Cit Ck] x x u £ Wi for all k , 1 5 fe < r ,

is a unique left ideal of CT maximal in £. . Hence L. are

indecomposable and CT has property (a*) .

In order to verify (b*), i t is sufficient to show that, for every

i , 1 S i 2 r , and every left ideal X of CT contained properly in

L. , there exists a left ideal 2 , X c y c £. such that ^/J is a
1. %

simple CV-module. The la t ter is trivial for r = 1 . Thus, assume that

r > 1 and, without loss of generality, present a proof for i = 1 . The

left ideal H I ] consists evidently of a l l matrices (a?. .) € £j such

that xj 1 belongs to a certain left ideal Xu of [Cl5 Ci ] and for

each k , 2 £ fe 5 r , a;,. belongs to a certain submodule X,. of

[Ck, CJ . Since [C ,̂, Cy] is perfect, the [Cp, C^J-module

[Cr,
 C

r]/Xrl
 h a s a simple submodule J /̂ T . Denote by x'2^ the left

ideal of CT generated by the set of all matrices [x, .} € Lj with

(r)
xkl € Xkl f o r 1 ~ ̂  5 r"1 a n d xrl e y 1 # Obviousllr> ^ I ̂  - Li •
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Furthermore, writing

Lk\ Xkl [Ck' rJ rl • l ~ K ~ r '

(r) t \
we can see easily that X consists of all matrices \x, •) (. Lj such

that xkl € Z^' .

(r) (r)
Now, if Z) ' = X,.. for all k £ r-1 , then Y = XK ' satisfies the

KX KX

property that Y/X is a simple CV-module, and the proof is completed.

Otherwise, denote by x the greatest index £ r-1 such that

Xsl | Zsl '

and by Y , the [C , C ]-submodule of Z containing X . such that
SJ- S 3 Si oJ-

J-,-,/X , is simple; such a submodule exists because the ring [C , C ]
SI SJL S S

(s)
is perfect. Furthermore, let X be the left ideal of CT generated

by the set of all matrices [XT,-J € L\ with x,. € X,. for 1 S k £ r ,

fc 4 s and x s l € Jsl . Obviously,

Again, write

Zkl = ^fel + [Cfe' Cs] x y s l f o r

and repeat the above argument. After a finite number of steps, we reach a

left ideal X^q' of C¥ such that

Y (q) Y(s) (r)

and such that q = 1 or the corresponding

Zkl = "*7cl f o r a 1 1' k ~ q~1 '

In either case, Y = X q has the required property. The proof is

completed.
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Now, ve can formulate

THEOREM 2. There is a one-to-one correspondence between the

non-isomorphic perfect rings and non-isomorphic perfect categories. This

correspondence is effected by a matrix representation which describes the

way in which perfect rings are built from local perfect rings.

Proof. Given a perfect ring R , the matrix ring R$V is the

"standard" matrix representation of H and is thus isomorphic to R .

r
Also, given a perfect category C and expressing CT = © L. as the

i=l v

direct sum of the column vectors L. , we check easily that CT# is

isomorphic to the category C . The theorem follows.
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