
FORMALLY NORMAL OPERATORS HAVING 
NO NORMAL EXTENSIONS 

EARL A. CODDINGTON 

1. Introduction. The domain and null space of an operator A in a Hilbert 
space § will be denoted by 35(^4) and 9Î(^4), respectively. A formally normal 
operator N in § is a densely defined closed (linear) operator such that 
35(iV) C 2)(iV*), and ||iV/|| = ||JV*/|| for a l l / G SD(iV). A »<wwaZ o^rator in 
§ is a formally normal operator N satisfying 35 (N) = 35 (iV*). A study of the 
possibility of extending a formally normal operator i V t o a normal operator 
in the given § , or in a larger Hilbert space, was made in (1). Necessary and 
sufficient conditions for such an extension in § were presented, as well as 
sufficient conditions for a normal extension in a larger Hilbert space. At the 
time of the writing of that paper it was not known to us whether or not a 
given formally normal N always could be extended to a normal operator, in 
a possibly larger Hilbert space. The main purpose of this paper is to present 
an example of a formally normal N in a Hilbert space § which has no normal 
extensions in § or in any larger Hilbert space. This situation thus contrasts 
sharply with that which obtains for symmetric operators, for every sym­
metric operator in § may be extended, in a trivial way, to a self-adjoint 
operator in a larger Hilbert space. 

When we mentioned to B. Fuglede our suspicion that such an example 
existed, he recalled his knowledge of a pair of densely defined symmetric 
operators Si, S2 in a Hilbert space § which have a common invariant domain 
2) (Si 35 C 35, S2 35 C 35), Si S2 u = S2 Sx u for all u 6 35, and the closures 
Si, S2 self-adjoint, but such that the spectral resolutions of Si, S2 do not 
commute. He then indicated to us that the closure of the operator Si + iS2 

is a formally normal operator having no normal extensions. Although Fuglede 
never published his interesting example, a different pair of such operators 
Si, S2 was exhibited by E. Nelson in (3, p. 606). 

Our example is of a different nature, and is of interest since it has a certain 
minimum character. It is an ordinary differential operator of the third order 
for which dim CD(iV*)/ï)(iV)) = 1. Using this operator one can construct 
further examples of formally normal operators N having no normal extensions, 
such that dim (35(iV*)/£)(A0) is any given positive integer. In our example 
the symmetric operators Re N = (N + N)/2, Im N = (N — N)/2i (N being 
the restriction of N* to 35 (N)) have deficiency indices (0,0) and (0, 1) re­
spectively. 
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We indicate that, for our example, the domains of N*, N*, (Re N)*, (Im N)* 
are not comparable. In a concluding section we show that in some situations, 
where these domains are comparable for a formally normal N in £>, normal 
extensions exist in § . 

2. General considerations. Let ®(T) denote the graph of an operator T 
in a Hilbert space § . If A, B are closed operators with dense domains, and 
A C B, then it is easy to verify that ®(B) 0 ®(^4) consists of all {u, Bu) 
6 ®(B) such that u Ç 31(1 + A*B), where I is the identity operator. Since 

®(B) = ®(A) ® [®(B) 0 ®(A)]f 

we have 

(1) 35(3) = 3)(i4) + 5R(J + .4*5), 

which is a direct sum. 
If N is formally normal in § , and iV is iV* restricted to 35 (iV), then N C N* 

since TV" C JV*. The above shows that 

35(iV*) = W ) + 2R, 9tt = 5R(I + iV*iV*), 

35(iV*) = 35(iV) + SK, SR = 5R(/ + iV*iV*). 

The example we give is an N for which 

(2) dim m = dim 9K = 1, dim (9ft H 3W) = 0. 

We shall now indicate that any such N is maximal formally normal in § (has 
no proper formally normal extensions in § ) , and has no normal extensions in 
any Hilbert space containing § as a subspace. 

Let N be a formally normal operator in § for which (2) is valid. It is not 
normal since 35 (N) ^ 35 (N*). Also N is a maximal formally normal operator 
in § . Indeed, the first condition in (1) will guarantee this. Suppose N± is a 
formally normal extension of N in § . Then we must have 

# C iVi C ft*, N C iVi* C iV*f 

and an application of the result (1) gives 

( 3 ) 35(iVi) = 35 (TV) + mh 2Ki = 31(1 + N*Nt), 

35(7Vi*) = 35 (iV) + Wlh Mi = 31(1 + tfW). 

It is now clear from the definitions of 93? and 3Jli that 3Jli C 3)1. Thus, if 
9ft i is non-empty, and dim 3JI = 1, we must have 9ft i = 9ft. But then 
Ni = iV"*, which is not formally normal, since 35(iV*) is not contained in 
the domain of (#*)* = iV. 

It is of interest to verify that the condition dim (9ft P\ 9ft) = 0 also implies 
that N is maximal formally normal, for it is this condition that is used to 
show that N has no normal extensions in any larger Hilbert space. (Thus 
any formally normal N such that 
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(2') dim 2K = dim 9ft > 0, dim (2R r\ $1) = 0, 

is maximal formally normal and has no normal extensions.) If N, Ni are 
formally normal in § , and N C iVi, then it will be shown that 2JJi C 3JÎ f~\ W. 
Therefore, if dim(9JJ Pi 3ft) = 0, N = Ni; see (3). We have indicated that 
TtiCM. To show that Mi C 9JÎ we note that, since S)(iVi) C 35(iVi*), 
2Wi C ®(iVi*) =_33(JV) + 2Wi. If * € 9Ki we may write * = / + $, where 
f £ £>(iV), ^ g «Kx. Then 

(N1<t>,N1f) = \ i : »*iiivi(0+*v)ii* 

or 

(iVx <*>, TV/) = (Nf, Nf) + (Nx* f, Nf). 

Thus 

(N*NKl>,f) = HA7II2 + 0V*7Vi*^,/), 

and using the definitions of 9fti and 9fti we see that 

- (* , / ) = P 7 i ! 2 - (4>j), 
or 

l|A7||2 + (<*> - * , / ) = | |#/ | |* + Il/H2 = 0. 

This implies t h a t / = 0 and consequently that <fi = \[/, showing that 9ft 1 C 9ft. 
The fact that dim (9ft P\ 9ft) = 0 implies that N has no normal extension 

in any Plilbert space § © $t was pointed out in (1, Theorem 4, Corollary). 
We sketch the reasoning briefly. If JV\ is a normal extension of a formally 
normal TV in § © S, then vV C ^SK*, and a consideration of graphs shows 
that 

3X-/K) = SD(iV) + 8, 8 = 5R(P + N*PAd, 

SD(^K*) = SD(iV) + 8, 8 = 5«(P + iV*P,yK*), 

where P is the orthogonal projection of >̂ © $ onto § . An argument similar 
to the one above, where we showed that 9fti C 9ft P\ 9ft, now can be used to 
show that P8 C 9ft H 9ft. But 9ft H 9ft = {0}, and J^[ normal implies that 
N must be normal, a contradiction. 

3. The example. Let L denote the formal ordinary differential operator 
on 0 < x < oo given by 

Lu = u!" + u" - 3 x - V + (3x~3 - 2 x - 2 K 
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Let No be the operator in the Hilbert space § = 82(0, °°) with domain 
SD(iVo) = Coœ(0, °°), the set of complex-valued functions on 0 < x < œ of 
class Cœ which vanish outside compact subsets of 0 < x < » , and defined 
by iVoW = Zw for u G T)(N0). Let N be the closure of No in § . This A" is 
formally normal and 2ft = ïït(I + iV*iV*) satisfies (2). 

We observe that L may be written as L = Z,3 + L2, where 

L3 w = w'" — 3xr2u' + 3x_3w, 

L2u = u" — 2x~2u, 

and these operators have formal adjoints L3
+, L2

+, satisfying L3
+ = — L3, 

L2
+ =1/2, which implies that L+ = —Z,3 + Z,2. Moreover, L2 and L3 for­

mally commute, that is 

L2Lzu = L% L2u, u G Cœ(0, œ ) ; 

a fact which was pointed out by J. L. Burchnall and T. W. Chaundy in (2). 
This and Green's formula now imply that 

(4) 11̂ /11 = 11^11. /€S>(tfo). 
Indeed, for such / wTe have 

(L2f,Lzf) = - ( L 3 L 2 / , / ) = -(UUfJ) = -(Lzf,L2f), 

and therefore 

IIL/H» = ||(L3 + Z2)/||
2 = ||L3/||

2 + ||L2/||2+ (L2/,L3/) + {Uf,Uf) 

= IIWII2 + ||WII2 = ||(-L8 + L2)f\\* = l|£+/ll2. 

From the equality (4) we see that if / G 3)(A0, and /„ G SD(iVo), / » - > / , 
L/w —> g, then Z,+/w tends to some limit g+. Thus / is in the domain of the 
closure of No, the operator L+ defined on 3)(iVo), and this closure is con­
tained in iVo* = N*. For 25(iV*) is the set of all u G § such that ^ C 2 ( 0 , œ ) , 
w" is absolutely continuous, and L+w G § ; moreover, N*u = L+u for u G 3)(iV*). 
Thus S(iV) C SD(iV*). The operator iV is just L+ defined on SD(iV), and 
iV"o* = A* is Z/ defined on S (N*)> which is the set of all u G § such that 
w Ç C2(0, oo), U" is absolutely continuous, and Lu G § . From (4) it now 
follows that \\Nj\\ = | | i / | | = ||L+/|| = | | ^ 7 | | , for all / G SD(iV). We have 
thus verified that TV is formally normal. 

The space 9K = 5ft (/ + N*N*) consists of all solutions w of the differential 
equation 

(5) (I + L+L)u = 0 

satisfying u £ &, Lu £ &; whereas 9W = 9Î(7 + iV*iV*) consists of all solu­
tions u of the same differential equation satisfying u G § , L+w G § . Note 
that all solutions of this question are analytic on 0 < x < & since L and L+ 
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have analytic coefficients. To compute the dimensions of the spaces 9K, 9W, 
and 9JÎ H ïft, we introduce the function 0 defined by 

0 0 , X) = (x-1 - X)ex*, 

for 0 < x < oo, and all complex X. It is readily verified that this function 
satisfies 

Lz 0 = X3 0, Z2 0 = X2 0. 

Thus 

L0 = p(\)4> = (X3 + X2)0, L+0 = p+(\)4> = ( -X 3 + X2)0, 

and 

(/ + L+L)0 = g(X)0 = (p+(\)p(\) + 1)0. 

The polynomial g(X) = — X6 + X4 + 1 has no pure imaginary roots; for, if 
X = - X , 

S(X) = P+(~VpM + 1 = pQÔp(\) + 1 > 1. 

If X is a root of q so are X, —X, and — X. The roots of q are distinct, and there 
is one negative real root Xi such that 1 < |Xi| < y/2. Two other roots X2, 
X3 = X2 have negative real parts, and |X2| = |X3| < 1. The other roots are 
X4 = — Xi, X5 = — X2, X6 = — X2, and have positive real parts. 

Let <i>k{x) = 0(x, X )̂, k = 1, . . . , 6, where the \k are the roots of q. The 
functions 0i, . . . , 06 form a basis for the solutions of the equation (5) on 
0 < x < 00. Indeed, if we have constants ch . . . , CQ such that, on 0 < x < 00 f 

6 6 

then 

£ ^ (1 -X*x)e x ** = 0, 

and a differentiation gives 

Since the X̂  are distinct, and none are equal to zero, this implies that 
C\ = c2 = . . . = CQ = 0. The functions 0i. 02, 03 are in S2(l, °°), whereas 
04, 05, 06 are not in this space. I t is easy to see that the solutions of equation 
(5) that are in £2(1, 00) are spanned by 0i, 02, 03. Thus, if 0 satisfies (5) and 
0 G § = £2(0. 00 )f we must have 

3 3 
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for some constants ci, c2, c$. This function has the form 

4>(x) = (d + c2 + c^xr1 + $(x), 

where $ is analytic at the origin. Thus $ G £> if and only if 

(6) d + c2 + cz = 0. 

Since 
3 3 

L<j) = 2-/ CkLfa = 22 CkpÇhk)<t>k, 

we see that L<f> G § if and only if 

(7) dpQa) + c2p{\2) + cz p(\z) = 0. 

Similarly, L+<f> G § if and only if 

(8) ci p+(\i) + c2 £+(X2) + cz £+(X3) = 0. 

Thus <£ G 9ft if and only if (6) and (7) are valid, and 0 G 9ft if and only if 
(6) and (8) hold. 

The conditions (6) and (7) are independent. An easy way to see this is to 
note that if X;- ^ X*, then p(\j) 5* p(\k). Suppose, if possible that X;- 9

e Xy 

and£(X ;) = p(\k). Then, since p+(\j) = - |>(X ;)]-\ we have £+(X;) = p+(\k), 
and this implies that X/ = \k

2 and X/ = \k
z. Thus (\j/\k)

2 = (Xy/X&)3 = 1. 
Since (\j/\k) ^ 1, we must have (X /̂X )̂ = — 1; but this contradicts 
(XJ/XJCY = 1. Similarly, X;- =é \k implies that p+(\j) ^ P+(Xk), which in turn 
yields the independence of the conditions (6) and (8). We have now proved 
that dim 9ft = dim 9ft = 1. The function <j> G 9ft H 9ft if and only if (6), (7), 
and (8) are fulfilled. These constitute three independent conditions, for the 
determinant of the coefficients Ci, c2, £3 is just 

• * 

1 1 1 
Pfa) Pfa) Pfa) 

- 1 - 1 - 1 

Pfa) P(U) Pfa) 

= \PMPMP(\Z)T1 
1 1 1 

£(Xi) Pfa) PM 
p\*i) p\\2) p\W 

which is not zero, since p(\j) ^ p(\k), J ^ k. Therefore dim (9ft Pi 9ft) = 0, 
and we have verified that 9ft and 9ft for N satisfy (2). 

4. Remarks on the example. 

(i) Using the example N, which was exhibited in § 3, we can construct 
other examples of maximal formally normal operators having no normal 
extensions. Let 5 denote the maximal symmetric operator defined as the 
closure in 82(0, °°) of the operator i d/dx on C0°°(0, 00). Its 9ft-space, which 
is identical with its 9ft-space, is 51(2" + 5*2), which has dimension one. Con­
sider the operator 
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Ah = N © . . . e N © s © . . . © s, 

where there are p > 1 N's and q > 0 S"s in the sum. The operator iVi acts 
in the Hilbert space § i , which is the direct sum of p + q copies of £2(0, °°). 
Clearly, 

ivy = iv* © ... e iv* e 5* © ... © s*, 

iVY* = iV* © . . . © iV* © S* © . . . © S*. 

Any formally normal extension iV2 of Ni in § i must satisfy N± C Ar
2 C Ari*, 

and thus must be of the form 

N2 = N' © . . . © N' © S' © . . . © S', 

where N', S' are formally normal extensions of N, S, respectively. Since TV, 5 
are maximal formally normal, N' = N, Sf = S, and thus Ni is maximal 
formally normal. The 9W-space for Ni is the direct sum of those for the N's 
and the 5"s, and this implies that 

dim m = dim $R(Z + Nf iVi*) = p + q. 

Thus Ni is not normal. Moreover, we have 

dim(2WnSK) = q. 

Now N\ can have no normal extension in any larger Hilbert space, since it 
was shown in (1, Theorem 9), that a necessary condition for such an extension 
is that 9W = 9K in case dim 9ft < oo. Therefore, we have exhibited formally 
normal operators iVi, having no normal extensions, for which dim 9ft may 
be any finite integer, and for which dim (9ft Pi 9ft) may be any integer between 
zero and dim 9ft — 1. inclusive. We do not know of any such example for 
which 9ft = 9ft. 

(ii) Let Si, Si denote the real and imaginary parts of the operator N of 
§ 3 ; thus, 

Si= (N + N)/2, S2= (N - N)/2i, 

and hence Si = L2 on £)(iV), whereas S2 = —iLz on 5)(TV). These operators 
are symmetric, but not necessarily closed. Their deficiency spaces (and those 
for their closures) are the spaces 

Si(dbi) = {u 6 SD(Si*)|Si** = ±iu], for Si, 

g2(d=i) = {u G ®(S 2 *) |5 2 *^ = ±iu}, for S2. 

The dimensions of these spaces may be readily computed with the aid of 
the function <j> introduced in § 3. Indeed, Si* = L2 and 52* = — iLz on their 
respective domains, and so 

(Si(±i) = {u G 82(0, oo)| L2u = ±iu}% 

S 2 (± i ) = {u e 82(0,œ)| -iLzu = ±iu}. 
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Now L2<j> = \2<p = i<t> if X2 = i. Let Xi, X2 be the two roots of X2 — i, with 
Re Xi < 0, X2 = — Xi, and let <£i(x) = 0(x, Xi), 02(x) = 4>(x, X2). The solu­
tions of L2u = iu are spanned by <£i, 02. Since <j>i £ 82(1, °°), $2 € 82(1, °°), 
the solutions that are in 82(0, 00) must be of the form cfa, for some constant 
c. But this function behaves like c/x near the origin, and therefore cannot be 
in 82(0, 00) unless c = 0. Thus dim @i(+i) = 0, and similarly dim Si( — i) = 0, 
which implies that the closure of Si is self-adjoint. An analogous argument 
for S2 leads to the result that dim &2(+i) = 0, but dim S2( — i) = 1, so that 
the closure of S2 is maximal symmetric but not self-adjoint. 

(iii) We mentioned in Remark (i) above that a necessary condition for a 
maximal formally normal N (which is not normal) to have a normal extension 
in a larger space is that 9W = 95? in case dim 9W < °°, and consequently 
33 (iV*) = 33(TV*) must be valid. It is interesting to note that for the N of 
§ 3 (N = Si + iS2, in the notation of Remark (ii)) none of the domains 
33(#*), 33(iV*), 33(Si*), 33(52*) are comparable—none is included in any of 
the others. The function a, given by 

a(x) = (x_1 + l)e~x — x_1, 

is in 33 (iV*) but in none of the other domains. Let /3 be a function denned by 

(x-1 - !>* - x~\ 0 < x < 1, 

and jS smoothed to be of class C°°(0, 00). This /3 is in 33(TV*), but in none of 
the other domains. If 7 is given by 

, , Jx2, 0 < x < 1, 
7{X) " \ 0 , 2 < x < 00, 

and of class C°°(0, 00), then 7 G 33(Si*), but is in none of the remaining 
domains. Finally, if ô is defined as 

*/ N fx, 0 < x < 1, 
5 ( X ) = \ 0 , 2 < x < c o , 

and 8 6 C°°(0, 00 ), then ô 6 3)(S2*), but is in none of the other domains. 

5. Further remarks. Let N = Si + iS2, where Si = Re N, S2 = Im N, 
be formally normal in § . Here we consider some situations where the domains 
of N*, TV*, Si*, S2* are comparable, and show that in these cases N has a 
normal extension in § . The closure of an operator T in § will be denoted 
by f. 

First, we note that if Si is s elf-adjoint, and 33 (Si*) = 33 (N*), then N must 
be normal. This can be seen by observing that the mapping {u, Si* u} —• 
{u, N*u} is a closed mapping of the Banach space @(Si*) into the Banach 
space @(iV*). The closed graph theorem then implies that this mapping is 
continuous, and therefore there is a constant c such that 
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(9) ||iV*2i||2 < c(||5i* u\\* + IMI2), u G 35(SX*). 

Thus 

\\Nu\\*<c(\\Siu\\* + \\u\\>), ue ©(5). 

From this it follows that if « £ 35 (Si) = 35 (Si*), then w G 2)(iV) = 35(7V). 
Consequently, we have 35 (iV) = 3) (Si) C 2) (Si) = 35 (iV*) C 35 (iV), and 
hence 35 (iV*) = 35 (iV), which implies that iV is normal. 

The same result is valid if Si is self-adjoint and 35 (Si*) = 35 (iV*). Thus, 
in the Fuglede, or Nelson, examples mentioned in § 1, it must be true that 
the domains of Si or S2 are not equal to the domains of N* or N*. 

The above argument can be carried a bit further in case dim 9JÎ < °°. 
Indeed, suppose N, Ni are operators in § having all the properties of formally 
normal operators, except that they are not necessarily closed, and let 

N C Nu dim [35 ( # * ) / £ (N) ] < œ, 

Si = Re iV, S2 = Im N, Tx = Re iVi, T2 = Im TVi. 

7/ f i « self-adjoint, and D(Si*) = /?(#*) (or D(5i*) = £>(iV*)), tte» iVi 
is normal. 

Both iV and iV\ are formally normal; it remains to check that 

35(iVi) = 35(i\\*) = 35 (i\V). 

The equality of the domains of Si* and N* implies, as before, an inequality 
(9). Since N C Ni we have 

N C Ni C iVi* C #*, 

# C iVi C # i * C N*, 

and thus 

^ C ^ C 77* C S , * (* = 1,2). 

An application of (9) to u G 3)(Ti) = 35(iVi) shows that 35 (fi) C 35(iVi), 
and using this inequality for u G 3) (Si) = 35 (iV), we obtain 35 (Si) C 35 (iV). 
But, for u G 35 (7\), we have 

l |ri«|| =mNi + Ni)u\\ < i ( | | i \MI + ll#i*ll) = | |^! «||, 

and this yields 35(iVx) C 35(?i); similarly 35(iV) C 2)(Si). Therefore 

(10) 35 (Si) = 35 (iV), 35 (fi) = 35(7Vi). 

The symmetric operator Si has a self-adjoint extension 7\. Consequently, 

(11) 3) (Si*) = 35(Si) + VI(Si* + il) + VI (Si* - il), 

with 

(12) dim m (Si* + il) = dim m (Si* - il) = k, 
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say. Then we know that 

(13) 35 (fi) = 35 (Si) + « l f dim « x = k. 

Also, since N has the formally normal extension Ni, we have 

(14) 35 (iV*) = SD(tf) + 9ft i + 9ft2, 

a direct sum, with 

(15) SD(#i) = 35(iV) + 2»lf 35(iVi*) = 35 (iV) + 9ft i, 

where 

(16) 2«i C Sfôi = iV*9ft2, dim 9fti = dim 9ft2; 

see Theorem 2, and the remark following the proof of this result, in (1). Thus 
(10)-(16) yield 

dim 2»! + dim 9ft i = dim[35(iV*)/35(iV)] = dim [35 (Si*)/35 (Si)] = 2*, 

dim 9ft i = dim[35(iVi)/35(iV)] = dim [35 (fi)/35 (Si)] = *, 

which implies dim 9ft i = & = dim 9fti. Since 9fti, 9fti are finite-dimensional, 
and 9fti C Sfti, we have 9fti = 9fti. Then (15) shows that 35(iVi) = 35(iVi*), 
and we have proved that Ni is normal. 

The argument is entirely similar if 3) (Si*) = 35(iV*). Instead of (9) we 
have an inequality 

(9r) ||iV* u\\> < c' (||Si* ^||2 + |M|»), u e 35(Si*), 

and use is made of the fact that 

dim[35(iV*)/35(iV)] = dim[35(iV*)/3)(iV)]. 

The above result may be applied to the case of regular ordinary differential 
operators. Let Li, Z2 be formally self-adjoint ordinary differential operators 

Lx = an D
n + . . . + a0, D = d/dx, 

L2 = bmDm + . . . + Jo, m < n, 

with coefficients ak, bk of class C° on some finite, closed interval a < x < b, 
and an(x) ?± 0, bm(x) ^ 0 there. Suppose L\L2u = L2 L\ u for all u G C°°(a, J). 
Let Si be Lj defined on Co°°(a, J), i = 1,2. Then, in the Hilbert space £2(0, J), 
the operator N = Si + iS2 has all the properties of a formal normal operator, 
except that it is not closed. Moreover, it is easy to see that 35 (Si*) = 35(N*) 
= 35 (N*), and dim[35(iV*)/35(iV)] = 2». The symmetric operator Si has self-
adjoint extensions in £2(0, b). If T\ is a symmetric extension of Si such that 
Ti is self-adjoint, and Ni = Ti + iT2 is formally normal, but not necessarily 
closed, then Ni is normal. Thus an example of the Fuglede, or Nelson, type 
cannot be found among regular ordinary differential operators. 
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