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Abstract. An extension from Riemann to Lorentz manifolds is proved for Anosov's
theorem on the hyperbolicity (or exponential sensitivity to initial conditions) of the
geodesic flow.

1. Introduction
In order to produce an intrinsic proof of the ergodicity of the geodesic flow on a
compact Riemann manifold of negative curvature, Anosov (cf. [1], [2]) focused
attention on the role played by the asymptotically exponential instability of the
flow, thus extending the scope of the Hadamard phenomenon (cf. [8]) of exponential
sensitivity to initial conditions: this analysis provided stimulating insights on how
chaotic behaviour could be obtained in deterministic, in fact Hamiltonian, systems.
Anosov further proved that the hyperbolicity property he isolated is stable.

In classical mechanics, the Galilean principle of relativity allows for a clean
separation between time (IR) and space (Mo); Anosov's results are thus directly
applicable to this situation: information on space-time trajectories can be lifted
readily from the information one has on their spatial projection. The question then
arises to how to extend this theory in order to take into account Einstein's (rather
than Galileo's) relativity principle. As a first, rather conservative, step in this
direction, one may want to consider a Lorentz manifold M equipped with the
structure of a warped product (cf. [16]) of IR (time) with a Riemann manifold Mo

(space) of negative curvature. This approach was considered in [15], under some
additional assumptions (homogeneity and compactness of Mo) that lead to rather
non-standard cosmologies.

In the present paper, we extend Anosov's theory to a class of manifolds M that
are equipped with Lorentz, rather than Riemann, metrics; in order to avoid violating
causality requirements (cf. [10], [16]), these manifolds are not taken to be compact;
nor do we assume that M's are warped products. We focus on the study of the
dynamical properties of the time-like geodesic flows denned in §§ 2, 3. In § 4, we
prove, under certain conditions on the time-like sectional (rather than spacial)
curvature along time-like geodesies, that these flows satisfy an exponential instability,
which we refer to as hyperbolicity, and which we define in § 2. We also discuss in
that section (see in particular theorem 2.8) the sense in which hyperbolicity of
time-like flows is a stable property; for time-like geodesic flows see remark 4.5.
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We note that the general conditions under which our results are proved hold in
particular for the time-like geodesic flow on complete, simply connected Lorentz
manifolds of constant positive curvature; these manifolds are Robertson-Walker
space-times (cf. [16], [17], [18]) with M a warped product of IR and a homogeneous
Riemann manifold Mo of positive curvature. This suggests we speculate on the
possible application of our type of results in the realm of standard relativistic
cosmology; these results indeed mean, in physical terms, that the trajectories of
freely falling particles diverge exponentially in time, and thus depend very sensitively
on initial conditions, so that the fine structures that might have initially existed in
a dust cloud would be very rapidly wiped out unless some deviation from the
conditions we have assumed could maintain them in place.

2. Time-like hyperbolic flows
Throughout this paper, we say that (Jt, $) is a space-time if the following four
conditions are satisfied:

(i) M is a connected, Hausdorff and paracompact smooth manifold of dimension
n > 2 ;

(ii) ^ is a Lorentz metric tensor on M with signature (-1- • • • ,+ ,—);
(iii) (M, <&) is oriented and time-oriented; and
(iv) (M, <&) is equipped with the Levi-Civita connection.
In this section, we assume that (M, $) is a space-time of dimension n > 3 and £

is a complete time-like vector field of class Cr, r > 2 , on M, with its complete flow
{(j>t| /6R} such that for some constants a, fi with a >/3 > 0 and for every xeM

/ 3 ^ | » ( & , & ) | s a . (2.1)

This condition is satisfied naturally by the time-like geodesic flow (cf. § 3).

Definition 2.1. For a given xoeM, the flow line {x, = (j>,x0\ t e R} generated by £ is
said to be hyperbolic if there exists a splitting of TXM over the flow line {x, \ t e U}
into ^- invariant subspaces Zj = Zi,, VJ = \s

Xi and V" = V"t such that for all teU,

TXM=Z)®\]®\U, (2.2)

where the subspaces Z), V* and V" depend smoothly on t, and satisfy the following
four conditions:

(i) Z[ is generated by the time-like vector £(x,);
(ii) dim VJ = k * 0 and dim V" = / * 0;
(iii) VJ©V" is space-like; and
(iv) V? (resp. V") contracts (resp. expands) exponentially: i.e. there are constants

n i l and b, b'>0 (possibly depending on x0) such that for all f>0 and £eV*
(resp. T?eV")

a- 1 | |^ | e - ' ' ' '< | | r^ | |<a | |^ | | e - i " (2.3)

"''>||T</,,r?||>a-1||T,||e(") (2.4)

where T<j>, is the differential of </>, and || • || is the positive definite quadratic form
on V'©V" induced by the metric <£
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Definition 2.2. The flow {<f>,\teU} is said to be hyperbolic if the following three
conditions are satisfied:

(i) every one of its flow lines is hyperbolic;
(ii) the constants a, b and b' can be chosen to be the same for all flow lines; and
(iii) the splitting of T^M is continuous in x.

The sub-bundle Vs (resp. V"), over M with fibre V* (resp. V") is referred to as the
stable (resp. unstable) sub-bundle of the flow {<$>, 11 e R}. A time-like vector field is
said to be hyperbolic if its flow is hyperbolic.

Remark 2.3. The hyperbolicity of a time-like vector field is clearly preserved under
a conformal change of the Lorentz metric by a function which is positive and
uniformly bounded.

Remark 2.4. Our definition 2.1. can be used as well for an incomplete flow line, in
which case the decomposition is over an interval on which the flow line is defined.

Remark 2.5. The subspaces V* and V" are determined uniquely by their defining
properties, and they are flow invariant:

7WS = n, (2.5)

7WS=V;, . (2.6)

Remark 2.6. The dimension k (resp. /) of Vs (resp. V") is a constant over M.

Remark 2.7. The hyperbolicity of the flow is preserved under a change of time by
a smooth bounded positive function with bounded derivatives; i.e. if <j>, is a hyper-
bolic flow generated by a time-like vector field £ and a(x) is a smooth bounded
positive function with bounded derivatives, then the flow {</>,|feR} generated by
£(x) = a(x)g(x) is also hyperbolic; the proof proceeds as in [2].

Let n: TM -* M be the tangent bundle of M and let Sif be an arbitrary positive
definite metric on TM. Using "M, we construct in the standard way (cf. [7]) the
Whitney fine C"'-topology, r > 0 , on the set C{M) of all Cr-mappings of M into
itself, and a norm on the fields on each tensor bundle over M. The Whitney fine
Cr-topology so induced is independent of 3€. Moreover (cf. [14]), the set of complete
vector fields is open in rr(TM) the space of Cr-sections in TM with the Whitney
fine C'-topology.

The following theorem is given as an illustration of how some of the results of
Riemannian differential geometry (see e.g. [1], [3], [11]) translate to the Lorentzian
case. Note, in particular, that the arguments used in the proof of this theorem do
not involve any compactness conditions on M; this generalization is necessary if
one is to avoid violating the physically plausible causality conditions required in
the general theory of relativity (see e.g. [4], [10], [13], [16]).

THEOREM 2.8. Let {<f>,\teM} be a hyperbolic flow defined by a time-like complete
vector field £ Then the flow {tj/,t\ t e R} defined by a time-like vector field f which is in
a sufficiently small neighbourhood of $ in YX{TM) is also hyperbolic and the stable
and the unstable subspaces are continuous in f.
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Proof. We choose a positive definite metric 3( to be the metric defined by;

X(v,v) = -<S(v,v)+<3(.v,v), (2.7)

for v = v+veZx®Vx = TJL, where VX = V^©V^. (Note that, even if V* and \"
are only continuous in x, we can always approximate them by smooth ones as close
to V* and V" as we want in the C-topology (cf. § 6 in [1])). Let A :(x, v)e TM^U
be a function on TJt. We denote its derivative along the flow line <j>,x, for x e M, by

) A(&x, r<fc»)Uo (2-8)
at

when it exists. We define now positive definite quadratic forms si, 38 and 9 on Vs,
V and Z1 respectively as follows: for xeM,

st(x,p)=\T\\T4>,-p\\2dt forpeVL (2.9)
Jo

= I \\Tct>-rv\\2dt forve\u
x, (2.10)

Jo

where || • || is the length of a vector induced from Sif, and T > 0 is a sufficiently large
number which will be chosen below (see the proof, i.e. (2.18), of (2.12) and its
analogue for (2.13)). We extend si, 0& and 9 to non-negative definite quadratic
forms on T^M as follows: for any v e T^M, we express v uniquely as v = p + rj + p
for p e \s

x, 7) e V" and v e Zx, and define si, 38 and 9 on TJi by si{x, v) = ^(x, p),
38(x, u)= 38(x, 17) and 9(x, v)= 9{x, v). Then si, 38 and ̂  are continuous in x
and we can find some positive numbers at, a2 such that

-a2si(x, p)<D(si{x, p)<-a,^(x, p), forpeVJ (2.12)

a233(x, 7?)>Df38(x,T,)>a138(x)T?), forrjeV^ (2.13)

Df9(x, v) = 0, for v e Zi. (2.14)

Indeed, since

Jo p||2, (2.15)

for f = 0

D^(x,p)-- |^(</»pc,T^-p) | , = 0= | | r</ ,T-p | | 2 - | |p | | 2 . (2.16)

Hence, by the hyperbolicity of £ we have

)<-b I | | p | | 2 (2.17)

where bx= l-a2e~2br and b2= l-a~2e~2b'\ We also have

|p||2, (2.18)

where b3* (2a2b')"1(l - e~2b'T) and b4= a2(2b)~\l - e 2fcT). Then b,, i = 1, 2, 3 and

x , p ) = | ||T</>,-p||2^<
Jo
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4, are positive for some T large enough. Thus from (2.17) and (2.18), by taking
a, = bjb4 and a2=b2/b3, we obtain (2.12). Similarly for (2.13). For (2.14),

D^{x, v) =—}**''" ||2 = -T-(constant)Uo = 0. (2.14)
dt ||T0,-£(X)|| dt

These forms are continuous in x but are not necessarily smooth. Nevertheless (cf.
e.g. [1]), one can approximate any continuous non-negative quadratic form A(x, v)
with continuous derivative D(X(x, v) by a non-negative smooth (of class C°°)
quadratic form in such a way that for any e > 0, we can find a non-negative smooth
form A(x, v) such that

max |A(x, u)-A(x, v)\<e (2.19)

max |DEA(x, v)-Df\(x, v)\\<e, (2.20)

where || • || is the norm induced from $f. Indeed, since this is a local property of
maps, in order to obtain such an approximation all we need is a partition of unity
subordinate to a locally finite atlas of M, (cf. § 6, 7 in [1]). Let us denote smooth
non-negative forms which approximate our si, 98 and 3> by si, 98 and ZF again.
Using these quadratic forms we define a positive definite metric W via the quadratic
form

v\2=si(x, v) + 3H(x, v) + 2F{x, v), (2.21)

for v e T^M., x&M. Then, from the hypothesis, it is easy to check that $T and X are
equivalent (i.e. there is a positive constant p on M such that

/r 'llull^lulsspllull, (2.22)
for all veTM).

Since Vx and V" are space-like closed subspaces in TyM, the angle 8(x) with
respect to the Riemann metric $f between the subspace V£©V" and the null cone
is positive. Let S(x) be the set of space-like vectors in T^M whose angle with the
null cone is greater than or equal to i#(x). We now consider the following closed
sets; for all xeM,

%{x) = {ve S(x) | si(x, v) > 38(x, v), st(x, v) > &{x, v)}, (2.23)

${x) = {ce S(x)198(x, v)>^(x, v), 98(x, v)> &(x, v)}. (2.24)

Then clearly V^ c %(x), V" c if(x), and for p G 3if(x), T? e i?(x), we have

) (2.25)

l). (2.26)

We now show that, for another time-like vector field £ which is sufficiently close to
£ in the Whitney fine C1 -topology, we still have the inequalities;

-c2si(x, v)<D(si{x, v)S-cisi(x, v) (2.12')

c238(x, v) s Di98(x, v) > ^ ^ ( x , v) (2.13')

for some constants clt c2>0, we 7"^, and we also have

(2.27)
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Indeed, by understanding D( as the Lie derivation of functions on TM in the
direction of f which is the vector field on TM generating the flow T<j>,, we have

D(-DC = D$.C. (2.28)

Moreover, for a quadratic form A on TM, we claim that for any e > 0 we can find
a continuous positive function 8: M -* R+ on M such that if a vector field £ is in a
5-neighbourhood of £ in the C'-topology (i.e. ||(£(x) - £(x)|| < S(x) and ||V£(x) -
V£(x)| |<S(x) for all xeM), then

|Df_ :A(x,o) |s e | |« | | 2 , f o r a l l ( x ; » ) € T ^ , (2.29)

where || • || is the norm induced by SK Indeed, we write J< =LC=i ^« where, for
each «, iCn is a compact set such that Knc Int (Xn+1). Set Ln = Kn-Int (/£„_,) for
each n. Then clearly M = {J™=i Ln. For each n, we choose a finite set of charts
covering Ln, and choose one of them, say (°U, <p). Then for (x, v) e T%, we can write

A(x, o) = (A(X)D, V) = I Aiy(x)t;'V, (2.30)

where ( , ) is the Euclidean inner product in the Euclidean space and A(x) is the
symmetric matrix determined by A. If £ is another vector field on M, by using the
Lie derivation,

Dj_fA(x, v) = (D(_(\(x)v, v) + 2(\(x)v, D^v), (2.31)
and hence,

|D,_,A(x, u) |< | |DwA(x) | | | | O f + 2||A(x)|| ||i;|| | |D W « | | . (2.32)

Notice that by the chain rule

n n l

Df-Mx)=l.-Z(tk-Ck) (2.33)
k = l dXk

and
Df-{v = D(v - D{v = r(x)(f - £ »), (2.34)

where F(x) is the matrix of Christoffel symbols and is considered here as a bilinear
form on TM (cf. e.g. [1], [12]). Then we can choose positive constants C'n and C"n

on Ln such that

|D{_,A(x)|<C;,| |f-£||cLii (235)
and

\D(-cv\<C*nU-£\\clnh\\. (2-36)
And hence, from (2.32), for some constant Cn on Ln

|D f _ f A(x ,«) | sC n | | f -^ | | c i J |o | | 2 . (2.37)

Define Sn(x) = e/Cn > 0 for x e Ln, and then we can construct a continuous function
5: M -» R+ such that 0 < 8{x) < Sn(x) for all n and x € Ln. From this one can derive
the inequalities: (2.12'), (2.13') and (2.27).

We now assert that, for t> 0,

T^_,3ir(x)£3ir( </,_,*) (2.38)
and

), (2.39)
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where {(/>, | t e R} is the flow of £. We prove for instance (2.39). lfv = p + r) + ve iP(x),
with v 5* 0, where p e V*, T7 e V" and v e Zx, then since 17 5̂  0 from the condition on
i?(x), the length of space-like component T<p,(p + -q) increases exponentially while
the length of T<j>,p remains bounded for t > 0, and hence the angle between v and
the null cone is non-decreasing for t > 0. Hence, for t > 0, T<f>tv e S(x). This is also
true for Ti//,v with £ close enough to £ Now for t = 0, M(x, u)/58(x, t>)<l and
&{x, v)/98(x, u ) < l and

)Dls£{x, v) - s£(x, v)Dc@l(x, v)

(2.40)

38(x, v)2

— cs£{x, v)9S(x, v) — csi{x, u)33(x, v)

®(x, vf

-2cd{x, v)

fl(x, v)

Hence ^(i/'pc, Ti^,u) < ^(i/'.x, T ^ D ) for f > 0. Similarly, &{<l/jc, T<ptv) < %(<\>tx, T<p,v)
for t > 0 . This proves (2.39); (2.38) is proved similarly.

Since, from (2.38) and (2.39), we have, for r> t >0 ,

TVr-rV^c T^r3V(^rx) c T^M^x) (2.41)

x), (2.42)

we can choose convergent subsequences of the sequences of linear subspaces of
T ^ ; {7ty_,V^iX} and {r^ (v; i X}, as f^oo. We denote their limits by VJ and V".
Then, for t>0, we obtain from (2.41) and (2.42):

(2.43)

^ (2.44)

which imply that Vx and V" are space-like subspaces. Moreover, for t > 0, we obtain
from (2.38) and (2.39):

(2.45)

T<l>,\u
x s T^^ (x ) c if(^,x). (2.46)

That is, for -oo < t < oo,

r^V^c^^x) and T^V^c^^x). (2.47)

Therefore by (2.12') and (2.13'), for teU,

— sd(t}/tx, Tijj,p) < -ddit.x, T4>,p) for p € VJ, (2.48)
at

S8(^ r / ) S9(^ 7 ^ ) for TJ 6 V^. (2.49)

By integration, for l > 0 ,

V 2 2 3 < r c ' ' | p | , (2.50)

3-1ec.'|r/|
2. (2.51)
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Since %" and S€ are equivalent, we obtain, for t > 0,

f (2.52)

(2.53)

where p is some positive constant. In this way, we obtained the contracting and
expanding subspaces V* and V", respectively, for the flow (/>,. The inequalities (2.52)
and (2.53) also show that

V i n V ; = {0}, (2.54)

and moreover we have

Z1
xn(V*x®V") = {0}, (2.55)

where Zi is the 1-dimensional time-like subspace generated by £(x). By counting
the dimensions of these subspaces, we have

TxJ<=Zi©VJ©V^. (2.56)

•
3. Definition of the time-like geodesic flow
In this and the next sections (M, g) is supposed to be a space-time which is time-like
geodesically complete, unless otherwise stated. We denote by V the Levi-Civita
connection associated to g, and by D the connection map (cf. [12]) from T(TM)
to TM induced by V; we have then the commutative diagram:

TM <—^— T(TM)

(3.1)

M < TM.

The connection map D determines a splitting of the bundle p: T( TM) -> TM into
two sub-bundles over TM, namely Hor T( TM) = Ker D and Ver T( TM) = Ker TTT.
Over each X e TM we thus have the fibre decomposition

Tx(TM) = HorTx(TM)©VerTx(TM) (3.2)

where Hor TX(TM) [resp. Ver TX(TM)] is isomorphic to T^(X)M; the isomorphism
being given by the restriction of Tv [resp. D] to Hor TX(TM) [resp. Ver TX(TM)].
(Henceforth, we implicitly identify, for f = £*©£" = (f\ f ) , ^ e Hor TX(TM)
[resp. f £ Ver Tx( TM)] with Txv^h [resp. D£] e Tw(X)M). This splitting allows one
to define a pseudo-Riemannian metric gT and a symplectic structure coT on TM:

f, &) + gMl £), (3-3)
?, f2) -gAtf, ti), (3.4)

where X e T M , X=TT(X), and (for i = l,2) ;̂ = (£?, fHe Hor TX(TM)©
VerTx(TM).

Note that w T is the pull-back of the canonical symplectic form w on T*M, via
the metric g. Note further that wx equips the 2n-dimensional vector space TX(TM)
with a symplectic structure, and that o)x vanishes identically on each of the n-
dimensional subspaces Hor TX(TM) and Ver TX(TM); these are thus complemen-
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tary Lagrangian subspaces of Tx( TM). Note finally that v is a surjective submersion
and that for each Xe TM, TXTT:HOT T X ( T M ) - » T^X)M is an isometry, i.e. v is
an isometric submersion. Upon using the splitting (3.2), we can rewrite the Hamil-
tonian vector field £H on TMfortheHamiltonianfunctionH:Xe TM>-»5g(X, X)e
R in the form

£H : X e TM-+(X,0)e Hor Tx(TM)0Ver Tx(TM). (3.5)

When (M,g) is complete in every direction, the flow {(/>,|/eR) of gH satisfies the
following properties for all X e T M : (i) <j>,X is well-defined for all teU; (ii)
{7x(t) = v(f>tX 1t e R} is the geodesic on M determined by yx(0) = <j>{X) and -yx(0) =
X; (iii) 0, is symplectic for all teR; (iv) {<£,X|f eR} is a geodesic in TM; (v) for
a<0 , H~\a) is a submanifold of codimension 1 and {<f>,X\t €R}c H~l(a)
whenever H{X) = a; (vi) for a, bsU with a-fc>0, H~\a) and H~l{b) are isomor-
phic. Consequently, the study of time-like geodesic flows can be carried out, without
loss of generality, on one of the connected component $M of H~x{-\); we choose
M = $M to be sub-bundle of TM, the elements of which are the future-directed,
time-like, unit tangent vectors to M.

Remark 3.1. Properties (ii)-(vi) do not require the geodesic completeness of (M; g).
Neither does the following lemma; however, if a geodesic line is incomplete, the
argument should be understood as extending only up to points where the geodesic
line (or flow line) is defined.

LEMMA 3.2. The restriction <& of gT to $ M is a Lorentz metric; and there exists a
T(j>-invariant splitting

r(SM)=T1(3M)©Tc(SM) (3.6)

such that: T\%M) is a line bundle over $M, on which % is negative-definite; TC(^M)
is a sub-bundle over $M, ^-orthogonal to T ' ^ M ) ; and a>T is non-degenerate over

Proof. For Xe^M we define TX(^M), with k= 1, 2, c, as follows: TX(^M) is the
one-dimensional subspace of TX(2$M) generated by gH(X) = (X, 0); TX(3M) is
the two-dimensional subspace of TX(TM) spanned by (X, 0)eHor Tx(TM) and
(0, X)eVer TX(TM); TC

X(%M) is the wT-orthogonal complement in TX(TM) of
TX(3M). Note that 7 x ( ^M)c TX(%M), and since, for X e ^ M ,

gl((X, 0)), (X, 0)) = gw(x)(X, X) = - 1 ,

gx is a negative-definite on T '^M). For every £ = (£\ f )e TX(^M], we have

0 = cux((X, 0), {t, D ) = g.lx)(X, n (3.7)

0 = ox((0, X), {t, n) = -g*lx)(X, t) (3.8)

so that both £h and £" are space-like; hence g x is positive-definite on TX($M).
Since <ox is non-degenerate on TX(^M), so is it on TX($M), and therefore we have

TX(3M) = T x (SM)0 r x (3M) . (3.9)

Hence the restriction ^ of gT to ^M is a Lorentz metric. Let Tlc(^M) (k = 1, c) be
the sub-bundle of T(%M) over £M with fibres TX(^M). All the claims of the lemma
follow then straightforwardly, except perhaps for the fact that the splitting (3.6) is
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T#-invariant. To show the latter recall, for setting the notation, that a Jacobi field
{J{ t) 1t e U} over a geodesic {y(t) 11 e R} is a vector field satisfying the Jacobi equation

V2yJ(t) + R(J(t), y(0)y(0 = 0, (3.10)

where R is the Riemann curvature tensor of the metric g. In particular, for X e $M,
the map

; ( 0 6 W M H » , ( 0 e r + | X ( T M ) (3.11)

with r)(t) = (J(t),VyJ(t))eHor T^iX(TM)®YeT T^,iX(TM) defines a bijection
between the Jacobi fields over the geodesic {yx(t) = Tr<f>,X\teU} and the T<t>-
invariant vector fields over the flow line {X(t) = <f>,X\teR} (see [12], and notice
that the proof given there in fact does not depend on the condition that the metric
be Riemannian). Consider then the Jacobi fields tangential to {yx{t)\teU} given
by {yx(t) = <j>,X\teU} and {tyx(t) = t4>,X\t€U}; they correspond, via (3.11), to
the 7</>-invariant vector fields over {X(f)|f eR} given, for all teU, by:

(yx(0,0)=T<fc(X,0) (3-12)

{tyx(t),yx(t))=T4>,(0,X). (3.13)

This implies that T ' ^ M ) , T2(^M) and thus TC(^M) are stable under T<f>, for all
teU, i.e. that the splitting (3.6) is T$-invariant. •

Remark 3.3. The Jacobi fields orthogonal to {yx(t)\t£U} correspond to the T<f>-
invariant vector fields in r c (^M) given by (3.11) with J(t)e yx(t)

±.

Remark 3.4. The splitting (3.6) can be refined to a ^-orthogonal decomposition of
T(\5M) into sub-bundles over $M, namely

7X3M) = T1(SM)©Hor Tc(^M)©Ver TC{%M) (3.14)

where the fibres
H o r T c

x ( ^ M ) = n ( 3 M ) n H o r T x ( r M ) (3.15)

Ver n (3M)= nC3M)nVer TX(TM) (3.16)
for Lagrangean subspaces TX(^M).

Definition 3.5. The flow {<f>t\teU} of £H, when restricted to (^M, <§), is called the
time-like geodesic flow of the space-time (M, g).

The properties of the flows just defined are studied in the next section; in particular,
their hyperbolicity (and its stability) is proven when the time-like sectional curvature
of the Lorentz metric is positive and satisfies certain boundedness conditions that
we specify.

4. Hyperbolicity for time-like geodesic flows

THEOREM 4.1. Let {<f>,\teU} be the time-like geodesic flow of a space-time (M, g).
Then the flow lines {<j>,X0\teU} are hyperbolic for each X o e$M that satisfies the
following condition: there exist constants Kt and K2 (possibly depending on Xo) such
that for every 2-plane cr, tangent to the geodesic line {y(t) = 7r</>,X0| t e U},

0<K\<K{<T)<K\, (4.1)

where K(cr) is the sectional curvature of a:
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Proof. Let Xo be a vector in %M satisfying condition (4.1); X ( T ) = <t>rX0; a>c
T the

symplectic form obtained by restricting wT to 7"X(T)(3>M); and

n( r )(3M) = Hor n( T ) (3M)e Ver Txir)(%M) (4.2)
be the decomposition of T ^ ^ M ) into Lagrangean subspaces obtained in the
proof of lemma 3.2 (see also (3.14)-(3.16)). Since both of these subspaces of
Fx(r)(3M) with

<(v,O=<Vh,n-<Vv,t), (4.3)
for all 7], £ s TC

X(T)(%M) are isomorphic to a Euclidean space (R""1, ( , )), the map

A^LA- {(r,, AT,) e Tc
Xir)(%M) \ v £ Hor n( r ) (3M)} (4.4)

establishes a bijection between the symmetric operators A acting on (R""1, ( , »
and the Lagrangean subspaces L of (7^ ( T ) ($M), wc

T) such that PL = Hor T * ( T ) ( 3 M ) ;

where P is the projection of 7"x(r)(SM) onto Hor Tx(T)($M) corresponding to the
decomposition (4.2). Under the inverse of the map (4.4), the image AL of a
Lagrangean subspace L = {(r,h, rj")} is given by

ALV
h = Vv- (4-5)

If X , = A : 2 = A ; the Jacobi equation (3.10) reduces to V2J(t)~K2J(t) = 0 (where
we will henceforth denote simply V the covariant derivative V^,(0 = VX(I) along the
geodesic {y(0 = iT<t>,X0\teM}); hence one obtains the stable and unstable fields
explicitly as

Ut) = e-lKC,(0) (4.6)

Ut) = e'K(u(0). (4.7)

Now we assume K^ < K2 and choose a real T and a symmetric operator AT such
that the spectrum of Ar, denoted by Sp (AT), satisfies

Sp(AT)^[K,,K2] (4.8)

and let Lr be the Lagrangean subspace corresponding to Ar via (4.4). Since T<j>t-T

is symplectic for every teU and r c ( $ M ) is T</>-stable, Lr{t)= T<j>,_rLT is a
Lagrangean subspace of Tx(,)(3sM). Since T<j> is continuous in /, we know that
there exists e > 0 such that for tz(~e, e) the image of Lr(t) through P is
Hor 7*x(,)($M) (we shall see later in the proof that the argument can be extended
to all t eR). Lr(t) thus defines, through (4.5), a symmetric operator AT(t) acting on
Hor r i ( ( ) ( 3 M ) such that

(T ? ? , / I T (OT?! 1 )GL T (O f o r i j f e H o r T ^ o O i M ) . (4.9)

For every r / ^ H o r T X ( T ) ( S M ) , I ? ( 0 = T(f>,.r(v
h, ATr)h) belongs to LT(t), and can

therefore be written in the form v(t) = (ri^, AT{t)j]h,) with r,^=r,(t)h&
Hor rx(«)($M). This defines a 7</>-invariant vector field {y(t)\te ( -e , e)} over the
flow line {X(t) = <t>,X0\te(-e, e)}. Furthermore {J(t)= r)h,\t e ( - e , e)} is a Jacobi
field over the geodesic {y(t) = TT0(XO| (e (—e, e)} and satisfies

VJ(t) = AT(t)J(t). (4.10)

From the Jacobi equation for /, one obtains the Riccati-type differential equation

RX(T) = 0 (4.11)
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where Rx(r)J(t) = R(J(t),X(t))X{t). Since g(X(t),X(t)) = -l and g(J(t),
X(t)) = O, we have

g(Rx(r)J(t), J(t)) = -K(cr{J(t), X(t)})g(J(t), J(t)) (4.12)

so that (4.1) implies

sP(Rx(r))^[-K2
2,-K

2]. (4.13)

Consequently, for (J(t), VJ(t)) = (J(t), AT(t)J(t))e LT(t), we have:

~2\\J{t)f^K\\\J{t)\\2+\\Ar(t)J(t)f. (4.14)

Since J(t) is smooth on <f>,X0, AT(t) does not become infinite in a finite time, and
is therefore defined for all t<= U. Note also that (AT(t)Ji(t), J2{t)) = </,((), AT(t)J2(t)),
for all t G R. We now show

Sp(A T (0)c[K 1 ,X 2 ] for (>r . (4.15)

Let a(t) be the largest eigenvalue of AT(f), e > 0 be arbitrarily small, and tc be the
first value of t> T such that a(te) = K2+ e. From (4.11) we obtain

d(te)<-a{tE)2+K\{te), (4.16)

where K\(te) < K\ (see (4.13)) is the largest eigenvalue of -RXUt). From this remark
it follows that a(t) < K2 for all / > T. One can show similarly that )3(f), the smallest
eigenvalue of AT(<), is uniformly bounded below by K,.

We next show that for all a < T, the symmetric operators A<,(f) and AT(t) construc-
ted as above satisfy

H y M O - z M O N H ^ - y U T ) ! ! e-2K.('-T), (4.17)

where || • || is the operator-norm induced by the restriction of $ to r c (^M). Indeed,
with BTtT(t) = AT{t)-Aa{t), we obtain from (4.11) that

VBTlr(t) = -Ar(t)BTcr(t) ~ B^AM)- (4.18)

We can, therefore, write Br(T(t) in the form

BTM) = CTM)[AT-AIJ{T)]Drcr{t) (4.19)

where CTCT and DT<T satisfy the differential equations

(4.20)

(4.21)

with initial conditions CTO.(x) = / = DTa(r). Consequently,

^||cT^(0||s2A:1| |c7.CT(0|| (4.22)
at

^ (4.23)
at

with ||Cm(T)\\ = 1 = ||DTtr(T)||. We have thus, for f > T:

e-K.('-T) (4.24)

e-
K>('-T>. (4.25)

Hence (4.17) follows from (4.19) and (4.24), (4.25).
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It follows that, from (4.15) and (4.17),

A"(t) = lim AT(t) (4.26)

exists, and defines a symmetric operator on Hor Tx(t)($M) with

Sp{Au(0}c[K1,X2] . (4.27)

We define, for all teU, the Lagrangean subspace V" of rX ( I )(SM) by

\^{{v
h{t),Au(t)v

h(t))\v
h(t)eHorTXU)(^M)}, (4.28)

and then in order to obtain the stable subspace V* of 7"X(o(i5M) we consider the
flow line <f>',X0= #_,X0 which is generated by - £ and define, for teU,

Vs, = (y')-, (4.29)

where (V)", for reU, is the unstable subpace in 7*x(-r)(3M) obtained from the
flows 4>'r a n d T<f>'r.

We now show that V" is T<t>-invariant and satisfies (2.4). Indeed, for large negative
number T, choose an element

r/T(0 = (J(t), AT{t)J{t)) € LT(0, (4.30)

where J(t) is a Jacobi field which yields ij(f)eV" as T-»-OO. Then

T<t>hr)r{t) = i)T(t+t0) = (J{t+t0), AT{t+t0)J(t+t0)) (4.31)
and

= lim T^lBr,T(t) = j,(t+t0)e\'!+kt. (4.32)
T - * — C O

From the following inequalities which are immediate consequences of our previous
estimates

2K4J(t)\\2^2(J(t),Au(t)At)) = jt\\J(t)\\2^2K2\\J(t)\\2 (4.33)

K\\\J(t)\\2^\\Au(t)J(t)\\2=\\VJ{t)\2^K2
2\\J(t)\\2, (4.34)

we get (for t >0):

eK>'\\J(t0)\\ =s ||J(r + Oil =£ ^'11/(011 (4-35)
and

^eK>'\\VAt0)\\<\\VJ{t+t0)\\^eK*'\\VJ(t0)\\. (4.36)

Hence, upon noticing that K^ K2, (4.35) and (4.36) give:

^e^\\r,(to)\\^\\T4>Mto)\\^^e^'\\V{to)\\, (4.37)
A.2 A.!

which is the inequality (2.4).
Therefore, V" (resp. VJ) is the unstable (resp. stable) subspace of 7"x(T)(3M) over

the hyperbolic flow line {<t>,X0\teU}. •

COROLLARY 4.2. The hyperbolicity of the flow line still holds for incomplete flow lines
under the same curvature condition as in theorem 4.1.

Indeed, in the proof of theorem 4.1 we choose T to be an interior point of the

domain of the geodesic line yx and in (4.26) define A"(t) = limT^a+ AT(t), where
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yx :{a, fc)-»M is a maximal geodesic with initial conditions yx(0) = ir(X) and
7x(0) = X

Therefore, if the timelike sectional curvature is positive and uniformly bounded
above, and below away from zero, on a compact subset of (M, g) we still have the
hyperbolicity of the geodesic flow at least on this compact set.

COROLLARY 4.3. Let (M, g) be a space-time. Suppose that every flow line of the
time-like geodesic flow satisfies the conditions in theorem 4.1. Then the time-like geodesic
flow of (M, g) is hyperbolic in the weakened sense that the constants a, b and b' in
the definition of hyperbolicity may depend continuously on X e ; J M .

Proof. Since the symmetric operator A"(T) on Hor 7"xo(T)(5M) was obtained as the
uniform limit of Ar(t) as T ^ -OO, it will depend continuously on X if we choose
Ar smooth in X e $ M where X is in a small neighbourhood of Xo. Note that the
spectrum of AT changes smoothly with X in a small neighbourhood of X since the
curvature of time-like 2-planes varies smoothly. •

Remark 4.4. In particular, when the time-like sectional curvature of (M, g) is positive
and uniformly bounded on M, the proofs of theorem 4.1 and corollary 4.3 show
that the flow is hyperbolic in the usual sense.

Remark 4.5. It follows from theorem 2.8 that a time-like flow obtained by a sufficiently
small perturbation of the time-like geodesic flow on a space-time of positive and
uniformly bounded curvature is also hyperbolic.

Remark 4.6. When dim M a 3, the supplementary assumption made in remark 4.4
is very strong; indeed, the sectional curvature of M must then be constant (cf. [9]).

SCHOLIUM 4.7. There exists a space-time (M, g) that satisfies the assumptions of
theorem 4.1 for all xoe $jM but that still have unbounded positive time-like sectional
curvature.

Proof. One example will suffice. Let M = {(xl,... ,x4, t)eM5\'£4
i=1x

2-t2=\} and
g = e2fU)g0 where f(t) = \\n{t2jr\) and go= R{t)2gs>-dt®dt with R(t)=e'2 and
£s3 = Zk=i n;

3=fc+i cos2 6jdOk®d9k. For a fixed se [0 ,1 ) , the sectional curvature
K{o-{v, ws}) with respect to the plane spanned by v = ddt and ws = ^
can be computed to be

2 \-t2

{(7^(?TT?(^T?]) (438)

and hence we have

0<K1(s)<K(cr{v,ws})<K2(s)<cc, (4.39)

for some positive numbers K^s) and K2(s). Since the hyperbolic angle between
two causal vectors is preserved along geodesies, the angle between a time-like
geodesic with initial condition

i (4.40)
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and a null geodesic is fixed; hence the time-like geodesic y^ stays away from the
light-cone. For every Xo e $M, it is possible to find a system of coordinates around
TT(X0) such that Xo takes the form (4.40). Hence the condition (4.1) of theorem 4.1
is satisfied for every Xoe !3M. The fact that K(cr) is unbounded follows then from
the explicit form of K(cr{v, ws}) as s approaches 1. •

Remark 4.8. A straightforward modification of the above example shows that there
exists space-time (M, g) of dim M = 2 with bounded but non-constant curvature.

When the assumptions of theorem 4.1 are satisfied, the stable and unstable fields
are space-like Jacobi fields over geodesic curves, which contract (resp. expend)
exponentially as t tends to infinity. The vector bundle TC(5M) over $ M is thus
Riemannian and the following result carries over from the purely Riemannian case
(cf. [1], [2], [6], [12]).

THEOREM 4.9. If the time-like sectional curvature of (M, g) is positive and uniformly
bounded on M, then for arbitrary Xoe^M, there exist two <f>-invariant immersions;

fxo :V^3M (k = s,u), (4.41)

that are respectively tangent to the stable (for k = s) and the unstable (for k=u)
fibres, i.e.

V^0=7Vf^[V5y) (4.42)

Moreover the image of the immersions

Vl
Xo:{t,i,)eZ1

Xa®\Zo~>4>,°tk
Xo{T,)e%M (4.44)

are respectively the stable (for k = s) and unstable (for k= u) manifolds of $M.

Proof. We can, without loss of generality, restrict ourselves to the stable case. For
Xo € M = $M, we have an immersion y:teM>-* <I>,XO = Xo, e M which is the geodesic
line on M determined by y(0) = A'o and y(0) = iXo. Since Tl

XoM = y%(ToU) and
TXoM are ^-orthogonal, we can construct the normal bundle fi: V -* U over "IR
associated with -y:R-»$M which is the pull-back of TCM such that for each t eR,

^-\t)=V,= TXoM. (4.45)

Hence, we have the following commutative diagram:

V ""* > TCM

(4.46)

U —> M

where, for teR, y*|v,: V,i-» Tc
XaiJi is a fibre isomorphism. Then T<f>, on

TC(M) induces a 1-parameter group of fibre-preserving diffeomorphisms
{0r = 7* l°T^>,\T

c
x M°y*\teU} on\ which are symplectic linear transformations

on fibres, and the induced bundle /A:V-»IR inherits a <£,-invariant splitting V, =
V'©V" for teU with Riemannian metric § on V-»R defined by, for teU,
<gt= - y * ^ ! ^ M induced by the Lorentz metric ^onM. Since £x, = y(t) is a parallel
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vector field along y(t) and any parallel translation along y preserves the metric,
we obtain a local trivialization of V with Mm+l = UxUm, where Mm+1 is the
Minkowski space of dimension m + l = 2 ( « - l ) + l, which is the model space of
M = 3JM. Using this trivialization and the exponential map of TM over M, we obtain
the Fermi charts along y on M. Notice that the tangential of the trivialization gives
a linear isomorphism of TUfi)\ with T^U)M. In these Fermi charts, the linear parts
of the covariant derivatives of vector fields along y are the ordinary derivatives.

Now a sufficiently small tubular neighbourhood of the 0-section in /u,:V-»R is
immersed into M via the Fermi charts. Thus V gives us a linearization of M; i.e.
we have a linear approximation of the flow line 4>,X near the orbit 4>,X0 by

teR~(t,fa;fau)eR@V,®\?, (4.47)

for £ = (£s, C) e VQ© VQ, where £ is a vector in the tubular neighbourhood. We can
thus write the vector field in V, given by the linear approximation 4>, of the flow,
in the form

U , S ; r , W ) e T ( u ) V , (4-48)

where S] and S" are the operators obtained by the restrictions of 4>, on V5 and V"
respectively. This vector field can be chosen to be time-like by having £ sufficiently
small.

Upon considering the time-like geodesic vector field £H as a perturbation of this
vector field, we can rewrite the coordinates of $H in the form

(l + Kl(t,£),SUs + Ks(t,£),S?r + ><"(t,O)eTM)\, (4.49)

w h e r e £ e V a n d K*(t, £) = G(\\£\\) f o r * e { l , s , u } .
In view of the inequalities (4.36) and (4.37), the following equations, for £, =

Wi, £D e V"© V," = V,, are well-defined; for t > 0, and for each £s e Vo in the tubular
neighbourhood,

JoO

Jo

have a solution £, = £(t, £s) depending differentiably on £s (cf. [1], [12]).
Then, from (4.36) and (4.37), we have

(4.50)

(4.51)

(4.52)

where c is a constant such that Q<c<Kl<2c. Hence, we can write

I - lit, £s) = UU £'„ £") e R©V(
s©V,", (4.53)

where £) = J ,̂ K\T, £T) dr. Then the tangent vector of the curve />-»(*, 0,0) + £, is
precisely the vector (4.49) at (t, £t)eV,, i.e. (t,0,0) + £, is the linear representation
of 4>,X near (j>,X0.

We now define fx0 on a neighbourhood of the origin in Tc
XoM:

(4.54)
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with

f ( y (4.55)T,C,j 4>-TK{T,Cr)

Then f, -» 0 as t -* oo, i.e. the orbit <£,X approaches the orbit 0,XO as (-* oo. Hence
(A, carries fs

Xo(Vj) into V;,Xoand for X = f X o ( D , with { ' E V S and | | H sufficiently
small, fx near OeV x and fXo near £ seVX o have the same image. Now we can
extend fXo uniquely to an immersion to all of VXo since Vo^R""1. •

Remark 4.10. From this theorem we conclude that for XefX o(£) with £e VXo, the
orbit {(j),X\teU} is asymptotic to $,X0 as t tends to +00, i.e. there exists a> 1 and
b > 0, constant over {</>,X | f e R}, such that

d(P,tt)sac"" forf>0, (4.56)

where d is the distance function on $ M induced from any positive definite bilinear
form which is an extension of ^|TC<3M) to T($M). The analogous conclusion holds
for Yef"Xo(r}) with 77 e VXo, as t tends to -00.
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