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Two Mechanical Integrators or Planimeters.
By A. Y. Fraskr, M.A,, F.R.S.E.

THE MEASUREMENT OF AREAS.

For the measurement of a plane area, bounded by an irregular
curve, various methods are adopted. Besides the well-known
methods of approximation in use among land measurers, the following
may be mentioned—

The area is divided by parallel ordinates. These are measured,
and the results are then treated in several ways to produce more or
less accurate results. See Williamson's Integral Calculus, third
edition, p. 211.

The area may be drawn on paper ruled in small squares (‘““ plotting
paper”), or a sheet of glass ruled in squares is placed over the area.
The complete squares included are counted, and the incomplete
squares estimated.

The area is drawn on cardboard or sheet metal, cut out, and then
weighed. The weight of a known area is then ascertained, and the
required result got. This method gives very good results. A varia-
tion of the same method is to cover the area with small shot, which
is weighed or counted.

A planimeter or mechanical integrator may be used. Here a
pointer has merely to be taken round the boundary, and the instru-
ment records the area traced out. Many planimeters have been
invented ; but for all practical purposes, the beautiful little instru-
ment invented by Prof. Amsler thirty years ago, holds its own
against all comers,

PLANIMETERS.
The problem, in general, attempted by planimeters, will be under-
stood by a reference to figure 24. While the tracing point of the
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instrument moves over any arc aa’, an index records the area aa'v'y.
Suppose, now, the pointer starts at A, the extreme right of the figure,
and passes round ABC to O; the area recorded will be ABCEF.
Suppose, again, that in bringing the pointer round CDA it is arranged
that the reading given by the index is subtracted from, and not
added to, the former reading (and the instrument can easily be made
to effect this), then the area recorded, when the pointer has returned
to A, will be ABCEF —~ CDAFE, that is the area ABCD.

This in fact is the mechanical integration of Jydz between the

limits z = OF and = OE.

It is a matter of indifference where the commencement with the
tracing point is made, so long as the point is stopped at the same
place.

For a full discussion of the problem to be solved by the inventor
of a planimeter, the reader may be referred to the papers of John
Sang* and Clerk Maxwell,* and, especially to the full account of the
whole matter by Professor Shaw.t+ Clerk Maxwell points out the
division of planimeters into two kinds—(1) Those that involve
slipping in some of their parts; (2) Those that involve rolling only.
He enforces the objection to the former class (errors on account of
friction), and gives a design for an instrument of the second kind—a
design which, so far‘as T know, never came to anything practically.

Of the two instruments to be described here, the first may be
taken to belong to the first class, that is, it involves rolling and
slipping in its movements, while the second belongs to the second or
purely rolling class. While it is not for a moment supposed that
these can compete as practical instruments with Amsler’s, they are
brought forward because they are of an entirely new design, and both
are of considerable mathematical interest.

THE SINGLE ROLLER PLANIMETER.

The essential portion of this instrument is a tapering roller or
spindle (fig. 25) mounted to turn on an axis, and made to turn by
placing the paper, on which the area is traced, on the surface of the
roller, pressing the paper against the surface with a pencil or other

* Transactions of the Royal Scottish Society of Arts, Vol. IV., p. 119; p. 420.

t Journal of the Imstitute of Civil Engineers, Vol. lxxxii., 1884-85, Part
IV., pp. 75-164; on “ Mechanical Integrators.”
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pointed object, and pulling or pushing the paper in a direction at
right angles to the axis of the roller, and tangentially to the surface.

The more easily to understand this motion, the reader may place
on a table in front of him a tumbler on its side with its bottom
towards him, lay a sheet of paper over the tumbler and press it
gently down on the tumbler with, say, a finger nail of the right hand.
Then on pulling the paper away to the left with the left hand, the
tumbler will roll along the table. If the tumbler could be mounted
to rotate in the same way, about an axis passing longitudinally
through it, the resemblance would be complete.

The dimensions of the spindle, of which a section is shown in
fig. 25, a8 actually constructed are: Length GH, measured along the
surface, 6 inches; circumference at H, 10 inches; at G, 2} inches.
The circumference at any point K is got thus: Let O be a point 2
inches from H ; measure the distance along the surface from K to O,
n inches say, that is, n — 2 inches from K to H, then the circumference
at K is 20/n inches.

The method of mounting the roller will be seen from figures 26,
27. LT is a box of §in. mahogany. Fig. 26 shows the box as looked
at when about to be used ; fig. 27, the back of the box through which
the wide end of the roller, which is graduated, is seen. The top of
the box is covered with two slips of tin, R, 8, which slide in from
each end, and do not meet in the middie by about half an inch. The
tins are bent to the shape of the roller, and through the middle open-
ing of half an inch, the roller projects so as to show a strip very
slightly above the level of the lids. A guiding strip of wood is
fastened from V to W, so that a pencil pressed vertically down on the
roller and against this strip of wood, will always be vertically above
the axis of the roller. The dimensions of the box are LM 16 ins.,
LN 5 ins., QP 84 ins,, NP 7 ins.

To find the area of any surface, we proceed as follows :—The roller
is first turued round so that the zero point of the scale (fig. 27) may
be under the pointer. A small mirror laid over against the box may
be used to keep the scale always in view. Suppose the area in fig.
24 is to be integrated. The slip of paper on which the area is traced
is passed along the top RS of the box, under the guide VW. The
paper is placed so that A can be brought under the point of a pencil
resting against the guide VW. The pencil is then put down so as to
press the paper gently against the surface of the roller. The paper is
pushed away to the right, the projecting ledge QY of the box, fig. 26,
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guiding the paper, the pencil all the time being slid up and down
against the guide VW so as to follow the curve ABC. When the
pencil has reached C, the area ABCEF has been recorded on the
scale. The paper is now pulled to the left, and the pencil is made to
follow CDA, the roller meanwhile rotating backwards, and the indicator
recording the area CDAFE in the negative sense. The indicator has
now recorded the area ABCFE - CDAFE, that is the area ABCD;
the result being given in square inches, and whatever fraction of an
inch the scale may be made to show. We shall now prove that the
result is as stated.

If, while the paper lies on the top of the box, a line (OF, fig. 24)
be drawn on the paper parallel to Au (fig. 26), and two inches beyond
it, that is, through the point O of figure 25, we can prove that the
instrument, in passing over the arc aa/, records the area aa'v'v.
Suppose the length of the arc aa’ is 8, and that it is = inches from
OF; the area of aa'v'y, if ¢ be taken small, will be sn inches. To
prove that the reading on the scale is sn.

The roller immediately below ad’ (at K, say, fig. 25) is 20/n inches
in circumference, and ¢ inches of this circumference passes round in
tracing the arc aa’. Now s inches is 8/(20/n) of the whole circum-
ference at that place, that is sn/20ths, and in making this movement
there will be sn/20ths of a complete revolution of the roller. But in
a whole revolution the index records 20 inches (fig. 27), therefore in
making sn/20ths of a revolution the record will be (s2/20) x 20 inches,
that is #n inches. And aa’ is any portion of the boundary, so that
the proof is complete.*

* Strictly speaking, perhaps, the arc aa’ should be considered as the
hypotenuse of a right-angled triangle, having one side s parallel, the other ¢
perpendicular to OF, The pointer would then be supposed to be taken over
s during which the roller would rotate (with the result as above), then over
t during which there would be no rotation. Censidered in this way the total
area accounted for is less than the area ABCD by the sum of the elementary
triangles round the curve (if we suppose the triangles always made to the in-
side of the figure); and the length of the path traversed by the pointer is
greater than the curve ABCD by a corresponding sum of small lengths.
Finally, if the triangles be taken small, the limit to the areas thus considered
is the area ABCD, and at the same time the limit to the curve as thus traced
is the curve ABCD ; therefore in passing round ABCD the area integrated is
the area ABCD.
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Of course instead of 20 as the fundamental constant for the
roller, any other quantity might have been taken. The part of the
curve also which is taken for the spindle may be varied, only at the
low end it must be steep enough to show a change in the readings, and
at the other end it must not be inconveniently steep.

The general equation in rectangular co-ordinates to the curve
GKH (fig. 25), can be determined from the defining property, which
may be put as follows :—Let the arc OK =3 then the circumference
at K is 20/s, say ¢/s. If y Dbe the ordinate at K we have y =c¢/2ws,
from which the equation to GKH can be found in terms of = and y.

The general result, which I get in what for the part of the curve
to be used is a convergent series of powers of ¥, is not of any interest.
The particular equation, terms beyond a certain distance being omitted,
from which the actual curve under discussion was traced is

z=C + 1YL LY 90058
y 6¢ 56¢
where ¢=10/r=3183.
The curve reduces to an equilateral hyperbola whenever the terms
after the first can be neglected.

Though there is slipping in this instrument in the working parts,
that is, between the pencil and the paper, there is none where it
would be of any consequence, namely, between the paper and the
roller.

The difficulty with this planimeter, beyond the difficulty of con-
structing the roller, which can be got over well enough, is in
co-ordinating the movements of the right and left haunds so that the
curve is accurately followed. This difficulty of avoiding small de-
partures from the curve, led to the attempt to devise a modification
of the instrument, where the paper should rest on a table and a pointer
could be guided over the curve with a single motion. This attempt
resulted in the construction of a much mere interesting planimeter,
of which a brief account will now be given.

THE DouBLE ROLLER PLANIMETER.

The arrangement of this instrument is shown in figure 28, which
is an outline sketch of the prinsipal parts. The motion is imparted
to the lower spindle by the upper spiral roller, which is pivoted
about H and G. The axis HG is kept always in the same horizontal
plane by means of the two supports GC, HC), running on castors,
and the pointer P, which is rigidly attached to the frame FFF, carry-
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ing H, G; and HG is kept always parallel to itself and at right angles
to the axis of the lower spindle by means of a linkwork contrivance
(a pair of parallelograms) not shown in the figure. While the pointer
P traces out the area, the spiral roller moves about, subject to the
restrictions just mentioned, and acts as a driver of the spindle; the
connection between the two being always one of pure rolling contact.

Inasmuch as the area to be integrated has not now to be bent
along the surface of the roller, but lies in a horizontal plane, the
different circumferences of the under roller are determined not now
by distances measured along its surface, but by distances measured
along its axis. This change being made, the numbers already given
for the last spindle will apply here. 'The most interesting change is
in the equation to the curve. For instead of y=c/2ms we have
y=c/2wx that is

ry = a constant,
and therefore the curve is an equilateral hyperbola.

‘The proof that this instrument does integrate the area is so very
little different from that already given that it may be dispensed with
here.

A little consideration will show that it is theoretically indifferent
whether the spiral roller move with the pointer, the other roller
being fixed, or the under roller move with the pointer while the
spiral is fixed.

The spiral roller has one peculiarity not yet touched on. In order
to secure that when the pointer is moved back an inch say, the point
of contact of the two rollers should also move back the same horizon-
tal distance, it is arranged that the point of contact is in all positions
of the rollers vertically below the axis HG. This property makes
the finding of the equation to the spiral a very interesting problem.
‘We may conclude with the discussion of this problem.

To PIND THE EQUATION TO THE SPIRAL.

As 8 (fig. 29) moves along the line y = b, the spiral, whose centre
is 8, rolls along the hyperbola 2y =¢? s0 a8 to have the point of con-
tact Q always vertically below S.

Let x, y be the rectangular co-ordinates of Q considered as a
point on the hyperbola, and 7, 6 the polar co-ordinates of the same
point considered as belonging to the spiral.

Then QN =rdf =dz ;
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PN=dr = -dy (got either from the figure directly or

from y=b - 7r),
a0 dax
theref rav _ 9% N
erefore o o @
But xy=c*
therefore ‘_i'f = — ﬂ’ = ¢

dy §  @-oy
whence substituting in (1) we get
rd6 ¢
M= 2) .
ar (- r)’ ®;

therefore Jdﬂ c"J-r = r)
- 1 1 1
= J{E*b’(b_r)+b(b-r)21 ar;
1 1 1
3 S — ~log(d ~
therefore 6 c’{b2log'r 7 og(d ~r)+ 5o - r)} +%
c* r ¢

g T+ 4k
E Ogb—r+b(b—r)+ )
@ @

= % log,101
= Ooeooglo b(b 'r)

_g{z 3049lo0gi; +——+A} (4);

where 2:3049 =log,10

a=r
r)
)\=k+_ci.

b2
Equation (3) is the general equation to the spiral; (4) is the more
convenient form from which to trace the curve.

The spiral is seen to have an infinite number of windings about
the point 8, and to be asymptotic to a circle of radius &.

In the spiral as actually constructed the constants had to be
chosen 80 as to be practically convenient, and after a number of trials,
TA (fig. 29), that is the shortest radius of the part of the spiral to be
used, was taken equal to }b, and b is therefore { of AB, which again
is the radius of a circle 10 inches in circumference. The equation
actually used for tracing the spiral is

6=18533log %+ 8041_L_+-1107 )
l-a l-a
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Going from r=8b/40 by fortieths of & up to r=325/40, using
equation (5), and changing from circular measure to degrees, we get
the following values:—

| » (inches) O(degrees) A6  r(inches) 0 (degrees) A@

-398 0-00

‘448 874 874 1044 107-95 9-46
497 17-11 8-37 1-094 117-98 10-03
547 25°19 8-08 1-144 12874 10-76
597 33-09 790 1-194 140-21 1147
647 40-89 7-80 1-243 152:76 1255
696 4868 779 1293 166-52 13-76
746 56:50 7-82 1:343 181-81 15-29
796 6443 7-93 1-393 198-99 17-18
‘846 72:52 8-09 1-442 21858 19-59
895 80-86 834 1-492 241-28 2270
‘945 89-48 862 1-542 26815 26-87
995 98-49 9-01 1:592 300-64 3249

Only one remark will be made on the above table. Asr increases
uniformly the column for A shows that 0 is not increasing uniformly,
and that in fact there is a minimum value for d6/dr betweerrr = 135/40
and »=155/40. It may be interesting to show that this can be de-
duced from one of our equations.

From (2) we have

dé & _ o )
dr r(b-r) Br—2r+r’

PO_ B -4br+3_ (b-3r)(b-7)
| Y kO Rk Gl
therefore P (6 - 1) r(b—r)
b-3r
@ 90T
(b —r)® ©

Equating (6) to zero to find maximum or minimum values for
df/dr we have b—3r=0, that is r=4b=1316/40 which accords
with the result in the table.
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