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Abstract

We consider the numerical approximation of the filtering problem in high dimensions, that
is, when the hidden state lies in R

d with large d. For low-dimensional problems, one of the
most popular numerical procedures for consistent inference is the class of approximations
termed particle filters or sequential Monte Carlo methods. However, in high dimensions,
standard particle filters (e.g. the bootstrap particle filter) can have a cost that is exponential
in d for the algorithm to be stable in an appropriate sense. We develop a new particle
filter, called the space–time particle filter, for a specific family of state-space models in
discrete time. This new class of particle filters provides consistent Monte Carlo estimates
for any fixed d , as do standard particle filters. Moreover, when there is a spatial mixing
element in the dimension of the state vector, the space–time particle filter will scale much
better with d than the standard filter for a class of filtering problems. We illustrate this
analytically for a model of a simple independent and identically distributed structure and
a model of an L-Markovian structure (L ≥ 1, L independent of d) in the d-dimensional
space direction, when we show that the algorithm exhibits certain stability properties
as d increases at a cost O(nNd2), where n is the time parameter and N is the number
of Monte Carlo samples, which are fixed and independent of d. Our theoretical results
are also supported by numerical simulations on practical models of complex structures.
The results suggest that it is indeed possible to tackle some high-dimensional filtering
problems using the space–time particle filter that standard particle filters cannot handle.
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1. Introduction

We consider the numerical resolution of filtering problems and the estimation of the as-
sociated normalising constants for state-space models. In particular, the data is modelled
by a discrete-time process {Yn}n≥1, Yn ∈ R

dy , associated to a hidden signal modelled by a
Markov chain {Xn}n≥0, Xn ∈ R

d ; we are concerned with high dimensions, that is, large d.
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Particle filter in high dimensions 25

For simplicity, we assume that the location of the signal at time 0 is fixed and known, but the
algorithm can easily be extended to the general case. We write the joint density (with respect
to an appropriate dominating measure) of (x1 : n, y1 : n) as

p(x1 : n, y1 : n) =
n∏

k=1

g(xk, yk)f (xk−1, xk) (1.1)

for kernel functions f, g, and X0 = x0 so that, given the hidden states X1 : n = {X1, . . . , Xn},
the data Y1 : n = {Y1, . . . , Yn} consist of independent entries with Yk depending only on Xk . The
objective is to approximate the filtering distribution Xn | Y1 : n = y1 : n. This filtering problem
for large d is notoriously difficult in many scenarios.

In general, the filter cannot be computed exactly and one often has to resort to numerical
methods, for example by using particle filters (see, e.g. [10]). Particle filters make use of a
sequence of proposal densities and sequentially simulate from these a collection of N > 1
samples, termed particles. In most scenarios it is not possible to use the distribution of interest
as a proposal. Therefore, one must correct for the discrepancy between proposal and target
via importance weights. In the majority of cases of practical interest, the variance of these
importance weights increases with algorithmic time. This can, to some extent, be dealt with
via a resampling procedure consisting of sampling with replacement from the current weighted
samples and resetting them to 1/N . The variability of the weights is often measured by the
effective sample size (ESS). If d is small to moderate then particle filters can, in many cases, be
effective for increasing the time parameter n, for instance, by possessing a time-uniform error
under conditions; see [6].

For some state-space models with specific structures, particle algorithms can be effective in
high dimensions, or at least can be appropriately modified to be so. We note, for instance, that
one can setup an effective particle filter even when d = ∞, provided one assumes a finite (and
small, relative to d) amount of information in the likelihood (see, e.g. [12] for details). This
is not the class of problems for which we are interested in here. In general, it is mainly the
variability of the likelihood g(xk, yk) that determines the algorithmic challenge rather than the
dimension d of the hidden space per se (this is related to what is called the ‘effective dimension’
in [4]). The function xk �→ g(xk, yk) can convey a lot of information about the hidden state,
especially so in high dimensions. If this is the case, using the prior transition kernel f (xk−1, xk)

as the proposal will be ineffective. We concentrate here on the challenging class of problems
with large state-space dimension d and an amount of information in the likelihood that increases
with d. The standard particle filter will typically perform poorly in this context, often requiring
that N = O(κd) for some κ > 1; see, e,g. [4]. The results of [4], amongst others, have
motivated substantial research in the literature on particle filters in high dimensions, such as
the recent work in [15], which attempted an approximate split of the d-dimensional state vector
to confront the curse of dimensionality for importance sampling, at the cost of introducing a
difficult to quantify bias with magnitude that depends on the position along the d coordinates.
See [15] and the references therein for some algorithms designed for high-dimensional filtering.
To date, there are few particle filtering algorithms that are simultaneously

(i) asymptotically consistent (as N grows),

(ii) of fixed computational cost per time-step (‘online’),

(iii) supported by theoretical analysis demonstrating a subexponential cost in d.

https://doi.org/10.1017/apr.2016.77 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2016.77


26 A. BESKOS ET AL.

There is substantial interest in developing an algorithm which can possess these attributes.
In this paper we attempt to provide an algorithm which has the above properties. However,
in the context of (iii) we can verify this only for a subclass of filtering problems for which
there is a spatial mixing element in the dimension. It is stressed that we have found that the
algorithm we develop can be applied in other contexts, with empirical evidence suggesting
effective performance in high dimensions, but there is no mathematical proof that there is a
subexponential cost in d .

Our method develops as follows. In a general setting, we assume that there exists an
increasing sequence of sets {Ak,j }τk,d

j=1, with Ak,1 ⊂ Ak,2 ⊂ · · · ⊂ Ak,τk,d
= {1 : d} for

integer 0 < τk,d ≤ d , such that we can factorise

g(xk, yk)f (xk−1, xk) =
τk,d∏
j=1

αk,j (yk, xk−1, xk(Ak,j )) (1.2)

for appropriate functions αk,j (·), where we denote xk(A) = {xk(j) : j ∈ A} ∈ R
|A|. As we

remark later on, this structure is not an absolutely necessary requirement for the subsequent
algorithm, but will clarify the ideas in the development of the method. Within a sequential
Monte Carlo context, one can think of augmenting the sequence of distributions of increasing
dimension X1 : k | Y1 : k, 1 ≤ k ≤ n, moving from R

d(k−1) to R
dk , with intermediate laws on

R
d(k−1)+|Ak,j | for j = 1, . . . , τk,d . The structure in (1.2) is not uncommon. For instance,

one should typically be able to obtain such a factorisation for the prior term f (xk−1, xk) by
marginalising over subsets of coordinates. Then, for the likelihood component g(xk, yk), this
could, for instance, be implied when the model assumes a local dependence structure for the
observations. Critically, for this approach to be effective it is necessary that the factorisation
is such that it allows for a gradual introduction of the ‘full’ likelihood term g(xk, yk) along the
τk,d steps. For instance, trivial choices such as

αk,j = p(xk(j) | xk−1, xk(1 : j − 1)), 1 ≤ j ≤ d − 1,

αk,d = p(xk(d) | xk−1, xk(1 : d − 1))g(xk, yk)

are ineffective, as they introduce the complete likelihood term only in the last step.
Our contribution is based upon the idea that particle filters are, in general, robust with regard

to the time parameter (e.g. the error in approximation can be shown to be time uniform). Thus,
we exploit the structure in (1.2) to build up a particle filter in space–time moving vertically
along the space index; for this reason, we call the new algorithm the space–time particle filter
(STPF). We break the kth time-step of the particle filter into τk,d space-substeps and run a system
of N independent particle filters for these substeps. This is similar to a tempering approach
employed in [2], [3], in the context of sequential Monte Carlo algorithms [8] for a single target
probability of dimension d . There, the idea is to use annealing steps, interpolating between
an easy to sample distribution and the target with an O(d) number of steps. In the context of
filtering, for the filter, say, at time 1 we break the problem of trying to perform importance
sampling in one step for a d-dimensional object (which typically does not perform well, as
noted by [4]) into τ1,d easier steps via the particle filter along space; as the particle filter on low
to moderate dimensions is typically well behaved, one expects the proposed procedure to work
well even if d is large. A similar idea is used at subsequent time-steps of the filter.

In the main part of the paper and in all theoretical derivations, we work under the easier to
present scenario τk,d = d and Ak,j = {1 : j}. We establish that our algorithm is consistent
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Figure 1: Computational cost per time-step to achieve a predetermined RMSE versus model dimension,
for the standard PF and STPF. The two algorithms are applied on Model 1 in Section 4; see Section 4.1

for more details.

as N grows (for fixed d), that is, that one can estimate the filter with enough computational
power in a manner that is online. Then we look at two simple models:

• an independent and identically distributed (i.i.d.) scenario both in space and time,

• an L-Markovian model along space.

In both cases, we present results indicating that the algorithm is stable at a cost of O(nNd2).
As we remark in Section 3.2, this cost is optimistic in general. We stress here that there is a lot
more to be investigated in terms of the analytical properties of the proposed algorithm to fully
explore its potential, certainly in more complex model structures than the above. In this paper
we aim to make an important first contribution to a very significant and challenging problem
and open up several directions for future investigation. In particular, it is not claimed that there
is a subexponential cost in d for every filtering problem where the algorithm could be applied.

Numerical results shown later in the paper strongly suggest that the STPF can be very
effective in high dimensions. Indicatively, in Figure 1, we show results from applying the
standard particle filter (PF) and the STPF on Model 1 defined later in the paper (Section 4). In
the figure we show the computational cost per time-step required to achieve a predetermined
RMSE (root-mean squared error) versus model dimension for estimates of E[Xn(1) | Y1 : n],
with n = 1000. In this case, the numerics suggest that the STPF is much more robust than the
PF, which suffers from the curse of dimensionality.

This paper is structured as follows. In Section 2 the STPF algorithm is given. In Section 3
our mathematical results are given; some proofs are housed in the appendices. In Section 4 our
algorithm is implemented and compared to existing methodology. In Section 5 we conclude
the paper with several remarks for future work.

2. The STPF

We develop an algorithm that combines a local filter runningd space-steps usingMd particles,
with a global filter making time-steps and using N particles. In Section 3 we establish that, for
any fixed Md ≥ 1, d ≥ 1, the algorithm is consistent, with respect to some estimates of interest,
as N grows. A motivation for using such an approach is that it can potentially provide better
estimates for expectations over the complete d-dimensional filtering density Xn | Y1 : n = y1 : n,
versus a standard filter with N = 1, due to an extra selection step that resamples over the N ≥ 1
local filters. This approach has been motivated by the island particle model of [17], where a
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related method for standard particle filters (and not related with confronting the dimensionality
issue) was developed, but is not a trivial extension of it, so some extra effort is required to
ensure correctness of the algorithm. We also explain how to set Md as a function of d to ensure
some stability properties with respect to d in some specific modelling scenarios.

2.1. Time-step n ≥ 1

We describe separately the local and global filters.
Low level: local filter. We assume availability of a collection of d-dimensional particles

x̌l
n−1, 1 ≤ l ≤ Md , from the end of step n − 1 (if n = 1, all Md particles at time 0 are equal

to the initial position x0 ∈ R
d , assumed fixed). At the end of each space-step 0 ≤ j ≤ d, a

single particle will be comprised of (xn−1, xn(1 : j)), under the convention xn(1 : 0) = ∅, that
is the algorithm keeps track of the j coordinates at time n and their ancestry at time n − 1. At
space-step j , particle (xn−1, xn(1 : j − 1)) will be propagated according to a proposal density
qn,j (xn(j) | xn−1, xn(1 : j − 1)) for 1 ≤ j ≤ d. Thus, given the factorisation of the target in
(1.2) with Ak,j = {1 : j}, the incremental weight at step j for particle (xn−1, xn(1 : j)) will
be equal to

Gn,j (xn−1, xn(1 : j)) = αn,j (yn, xn−1, xn(1 : j))

qn,j (xn(j) | xn−1, xn(1 : j − 1))
.

The Md particles, of dimension d + j , will be resampled according to their weights at each
step 1 ≤ j ≤ d . At the end of all d space-steps, the algorithm will provide Md particles
xl
n, 1 ≤ l ≤ Md , to be used at the next time-step.

Let Ḡn,j denote the average of the Md weights at step j . We define the product

Gn =
d∏

j=1

Ḡn,j . (2.1)

High level: global filter. An outer algorithm repeats the above described nth time-step of
the local filter N times, independently, with the ith execution initialised by the collection of
particles x̌

i,l
n−1, 1 ≤ l ≤ Md , for every 1 ≤ i ≤ N . Let Gi

n denote the value of the estimate of
the normalising constant in (2.1) from the ith execution. The ith execution is assigned weight
equal to Gi

n and the N systems will be resampled according to these weights. After resampling,
the complete algorithm will provide samples x̌

i,l
n , 1 ≤ l ≤ Md, 1 ≤ i ≤ N , to be used as

initial positions for the next time-step of the global and local filters.
We call the complete algorithm the STPF. We note here that the normalising constant

∫
Rdn

( n∏
k=1

g(xk, yk)f (xk−1, xk)

)
dx1 : n

can be estimated by
∏n

k=1 Ḡk , where we have set Ḡk = ∑N
i=1 Gi

k/N . Also, for ϕ : R
d → R,

the expectation over the filter at time n,
∫

Rnd ϕ(xn)
∏n

k=1 g(xk, yk)f (xk−1, xk) dx1 : n∫
Rnd

∏n
k=1 g(xk, yk)f (xk−1, xk) dx1 : n

can be estimated by

1

NMd

Md∑
l=1

N∑
i=1

ϕ(x̌i,l
n ). (2.2)
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In Algorithm 1 below we provide a more precise definition of the method in a pseudocode
form.

Algorithm 1. (STPF targeting the HMM model (1.1) under structure (1.2).) The algorithm
comprises three steps.

Step 0. At time t = 0, set x̌
i,l
0 = x0 for 1 ≤ l ≤ Md and 1 ≤ i ≤ N . Set n = 0.

Step 1. Set n = n + 1.
For i in 1 : N :

Initialise x̌
i,l
n−1,0 = x̌

i,l
n−1 for 1 ≤ l ≤ Md .

For j in 1 : d:
For l in 1 : Md :

Propose x
i,l
n (j) ∼ qn,j (xn(j) | x̌

i,l
n−1,j−1, x

i,l
n,j−1(1 : j − 1)).

Assign weight G
i,l
n,j = Gn,j (x̌

i,l
n−1,j−1, x

i,l
n,j−1(1 : j − 1), x

i,l
n (j)).

Calculate Ḡi
n,j = ∑Md

l=1 G
i,l
n,j /Md .

Resample from weighted particle population

{Gi,l
n,j , (x̌

i,l
n−1,j−1, x

i,l
n,j−1(1 : j − 1), xi,l

n (j))}Md

l=1

to obtain Md equally weighted particles (x̌
i,l
n−1,j , x

i,l
n,j (1 : j))

Md

l=1.
Assign weight Gi

n = ∏d
j=1 Ḡi

n,j .
Resample from weighted island population

{Gi
n, (x

i,l
n,d )

Md

l=1}Ni=1

to obtain N equally weighted islands ((x̌
i,l
n )

Md

l=1)
N
i=1.

Step 2. Return to step 1.

2.2. Remarks

In terms of the estimate of the filter (2.2), we expect a path degeneracy effect for the local
filter (see [10]), especially for large d , due to resampling forcing common ancestries for different
particles and the generation of the coordinates of a particle at time n requiring, in general, its
ancestry at time n − 1. For instance, in a worst case scenario, in some algorithmic execution
only one of the Md samples can be a good representation of the target filtering distribution; or
one can be left with the same ancestry at time n − 1 for all Md particles before the completion
of the d space-steps at time n. However, one can still average over all Md samples as we have
done; one can also select a single sample for estimation for each 1 ≤ i ≤ N , but there is not
an obvious advantage to doing so. To an extent, path degeneracy can be somewhat alleviated
using dynamic resampling (see, e.g. [9] and the references therein); also, the selection step over
the N local filters can have a strong positive effect, as we will see in the numerical applications
later on in the paper. In addition, in Section 2.3, we discuss one more approach for potentially
dealing with path degeneracy involving particle mutation steps.

Note that we have assumed that

g(xk, yk)f (xk−1, xk) =
d∏

j=1

αk,j (yk, xk−1, xk(1 : j)).

However, this need not be the case. All one needs is a collection of functions αk,j , such that
the variance (with respect to the simulated algorithm) of

g(xk, yk)f (xk−1, xk)∏d
j=1 αk,j (yk, xk−1, xk(1 : j))

(2.3)
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is reasonable (for instance, it is at least subexponential in d), especially as d grows. Then,
the Md particles of the form (xk−1, xk) ∈ R

2d obtained at the end of the kth time-step under
the employed

∏d
j=1 αk,j (yk, xk−1, xk(1 : j)) can be used as proposals within an importance

sampler targeting g(xk, yk)f (xk−1, xk), with the above ratio giving the relevant weights.
The algorithm is easily parallelised over N , at least between global resampling times. We also

note that the idea of using a particle filter within a particle filter has been used, for example,
in [11]. In general, the cost of the algorithm is O(nNMdd2), assuming a cost proportional
to j or d when sampling the proposal for the j th coordinate and calculating the corresponding
weight. The algorithm can also be thought of as a novel generalisation of the island particle
filter [17]. In our algorithm, one runs an entire particle filter for d time-steps, as the local filter,
whereas it is only one step in [17]; as we will see in Section 3, this appears to be critical in the
high-dimensional filtering context.

2.3. Dealing with path degeneracy

The path degeneracy effect may limit the success of the proposed algorithm, that is, produce
weights whose variance may be too substantial to provide reliable estimates. We expect the
method to be effective in practice when d is maybe too large for the standard particle filter,
but not overly large. We cannot prove, for instance, that the number of particles can scale
subexponentially with d to control variances, but will present numerical applications showing
that in practice one can treat values of d that are far out of the scope of a standard particle filter.

In addition to dynamic resampling and the selection step over the N local filters, one can also
attempt the following to reduce the effect of path degeneracy. At time-step n ≥ 1, one uses the
marginal particle filter (see, e.g. [14]) and targets, for each local particle filter at each space-step
1 ≤ j ≤ d, the marginal of xn(1 : j) under the model determined by the αn,k functionals via
the factorisation (1.2). Such marginals can be estimated, up to a constant, via the Monte Carlo
average

Md∑
l=1

j∏
k=1

αn,k(yn, x̌
i,l
n−1, xn(1 : k)),

where x
i,l
n−1 is the collection of particles at the end of the n−1 time-step. The complete algorithm

will involve both iterative importance sampling targeting the above sequence of marginals (their
Monte Carlo estimate) on a space of increasing dimension and mutation Markov chain Monte
Carlo (MCMC) steps which will preserve each of the targets and disperse the particles. Thus,
the method also requires a proposal kernel qn,j (xn(j) | xn(1 : j − 1)) for propagating particles
across space. The MCMC mutation steps can be applied in all or in only a subset of the
algorithmic steps across space.

Compared with the main algorithm in Section 2, here the method runs only on the xn-space,
and not the joint (xn−1, xn)-space. Assuming an effective design of the MCMC step and a
good performance of the Monte Carlo estimate of the marginal density, the path degeneracy
effect can be alleviated. Each time-step n of this algorithm will still have fixed (but increased)
computational complexity. The cost of this modified algorithm, assuming the cost of computing
αn,k is O(1) for each n, k, is O(nNM2

d d2), where the d2M2
d term is due to requiring the estimate

of marginal density for all Md particles, and the cost for each particle is j · Md at space-step j .
So long as Md is polynomial in d , the complexity can still be reasonable with regards to
computational cost.

We note that, even though we do not analyse this algorithm mathematically, simulation
results are provided.
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3. Theoretical results

3.1. Consistency of the space–time sampler

We now establish that if d, Md ≥ 1 are fixed then STPF will provide consistent estimates of
quantities of interest of the true filter as N grows. Indeed, one can prove many results about the
algorithm in this setting, such as finite-N bounds and central limit theorems (CLTs); however,
this is not the focus of this work and the consistency result is provided to validate the use of
the algorithm. Throughout, we condition on a fixed data record and we suppose that, for all
1 ≤ j ≤ d,

sup
x∈Rj

|G1,j (x0, x)| < +∞, sup
x∈Rd+j

|Gn,j (x)| < +∞, n ≥ 2.

Below ‘
P−→’ denotes convergence in probability as N grows, where P denotes the law under the

simulated algorithm. We denote by Bb(R
d) the class of bounded and measurable real-valued

functions on R
d . We will write, for n ≥ 1,

πn(ϕ) :=
∫

Rnd ϕ(xn)
∏n

k=1 g(xk, yk)f (xk−1, xk) dx1 : n∫
Rnd

∏n
k=1 g(xk, yk)f (xk−1, xk) dx1 : n

and

p(y1 : n) =
∫

Rnd

( n∏
k=1

g(xk, yk)f (xk−1, xk)

)
dx1 : n,

so that πn corresponds to the filtering density of Xn | y1 : n. The proof of the following theorem
is given in Appendix B. It ensures that the N -particle system corresponds to a standard particle
filter on an enlarged state space; once this is established standard consistency results for particle
filters on general state spaces (see, e.g. [6]) will complete the proof.

Theorem 3.1. Let d, Md ≥ 1 be fixed and let ϕ ∈ Bb(R
d). Then we have, for any n ≥ 1 and

N → ∞,

1

NMd

Md∑
l=1

N∑
i=1

ϕ(x̌i,l
n (1 : d))

P−→ πn(ϕ),

n∏
k=1

(
1

N

N∑
i=1

Gi
k

)
P−→ p(y1 : n).

Remark 3.1. The proof establishes that also (1/N)
∑N

i=1 ϕ(x̌
i,1
1 (1 : d)) is a consistent estimator

for the filter; this may be more effective than the estimator given in the statement of the theorem,
due to the path degeneracy effect mentioned earlier. In addition, one can assume the context
described in (2.3) with the target not having a product structure, but the weights in (2.3) having
controlled variance. Even in this more general case, one can follow the arguments in the proof
to obtain consistency (assuming the expression in (2.3) is upper bounded).

3.2. Stability in high dimensions for the i.i.d. model

We now come to the main objective of our theoretical analysis. We set N as fixed and consider
the algorithm as d grows. In order to facilitate our analysis, we will consider approximating a
probability, with density proportional to

n∏
k=1

d∏
j=1

α(xk(j)).
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We use the STPF with proposals qn,j (xn(j) | xn−1, xn(1 : j − 1)) = q(xn(j)). In the case of
a state-space model, this would correspond to

g(xk, yk)f (xk−1, xk) =
d∏

j=1

α(xk(j)),

which would seldom occur in a real scenario. However, analysis in this context is expected to
be informative for more complex scenarios as in the work of [2]. Note that, because of the loss
of dependence on subsequent observation times, we expect that any complexity analysis with
respect to d to be slightly over-optimistic; as noted, the path degeneracy effect is expected to
play a role in this algorithm in general.

We consider the relative variance of the standard estimate of the normalising constant
p(y1 : n), given, for instance, in Theorem 3.1, which can now be written as

pN,Md (y1 : n) =
n∏

k=1

1

N

N∑
i=1

d∏
j=1

1

Md

Md∑
l=1

α(x
i,l
k (j))

q(x
i,l
k (j))

≡
n∏

k=1

1

N

N∑
i=1

Gi
k.

The proof of the following result is given in Appendix A. Note that due to the i.i.d. structure
along time and space, all variables x

i,l
k (j) can be assumed to be i.i.d. from q(·).

Proposition 3.1. Assume that ∫
α(x)2/q(x) dx

(
∫

α(x) dx)2
< +∞.

Then

E

[(
pN,Md (y1 : n)

p(y1 : n)
− 1

)2]
=

(
1

N

(
1

Md

∫
α(x)2/q(x) dx

(
∫

α(x) dx)2
+ Md − 1

Md

)d

+ N − 1

N

)n

− 1.

Remark 3.2. The Md = 1 case corresponds, in some sense, to the standard particle filter. In
this case, by Jensen’s inequality, the right-hand side of the above identity diverges as d grows,
unless N is of exponential order in d . As a result, we can stabilise the algorithm with an
O(ndκd) cost, where κ > 1. However, if one sets Md = d then the right-hand side of the
above identity stabilises and the cost of the algorithm is O(nNd2). This provides some intuition
about why our approach may be effective in high dimensions.

In fact, we can say a bit more. We suppose that α(x)/q(x) is upper and lower bounded;
this typically implies that x lies only on some compact subset of R. Denoting by ‘

w−→’ weak
convergence as d → ∞ and LN (μ, σ 2) the log-normal distribution of location μ, scale σ , we
have the following.

Proposition 3.2. Let Md = d/c for some 0 < c < +∞ and N, n ≥ 1 fixed. Suppose that

σ 2 :=
∫

α(x)2/q(x) dx

(
∫

α(x) dx)2
− 1 < +∞.

Then, as d → ∞, we have Gi
k/(

∫
R

α(x) dx)d
w−→ V i

k , and, subsequently,

pN,Md (y1 : n)

p(y1 : n)

w−→
n∏

k=1

1

N

N∑
i=1

V i
k ,

where V i
k

i.i.d.∼ LN (−cσ 2/2, cσ 2).
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Proof. The result follows from [1, Theorem 1.1] and elementary calculations, which we
omit. �

Remark 3.3. The result suggests that the algorithm stabilises as d grows at a O(nNd2) cost.
Using the continuous mapping theorem, for N > 1 one can show that the ESS will also
converge to a nontrivial random variable; see, e.g. [2, Proof of Theorem 3.2]. Moreover, based
on a personal communication with Pierre Del Moral, we conjecture that setting Md = d1+δ/c,
for some δ > 0, the ESS converges to N ; hence suggesting that Md = O(d) is an optimal
computational effort in this case.

Remark 3.4. An intuition behind the results is that for a standard particle filter, when run
for n steps with N particles and under assumptions, the relative variance of the estimate for
the normalising constant grows at most linearly in the number of steps n, provided N = O(n)

(see [5] for details). In the algorithm, the weights Gn are estimates of normalising constants
for the local filter, so one expects that if Md = O(d) then the algorithm should work well
for large d. There is, however, an important point to be made. The result above assumes an
i.i.d. structure which removes any path degeneracy effect, both within a local filter, and in the
time-dependence between observations.

Remark 3.5. In the case of no global resampling, one uses the estimate, for p(y1 : n),

1

N

N∑
i=1

n∏
k=1

d∏
j=1

1

Md

Md∑
l=1

α(xi
k(j))

q(xi
k(j))

.

A weak convergence result also holds in this case.

3.3. Stability in high dimensions for the L-Markov model

We now consider a more realistic scenario for our analysis in high dimensions. In order to
read this section, one will need to consult Appendices B and C; this section can be skipped with
no loss in continuity.

We consider the interaction of the dimension and the time parameter in the behaviour of the
algorithm. Let L ≥ 1 be given, with L < d independent of d. We now list some assumptions
and notation needed to describe the result.

(A1) For every n ≥ 1, we have

g(xn, yn)f (xn−1, xn) =
d∏

j=1

h(yn, xn(j))k(xn(j − L : j − 1), xn(j)),

where h = h(yn, ·) : R → R
+, xn(p) = xn−1(p + d), p ∈ {−d + 1, . . . , 0}, with xn(p)

null if p < −d + 1 and, for every x ∈ R
L,

∫
R

k(x, x′) dx′ = 1.

It is noted that even under (A1) a standard particle filter which propagates all d coordinates
together may degenerate as d grows. However, as we will remark, the STPF can stabilise under
assumptions, even if N = 1. Our algorithm will use the kernels k as the proposals. Define the
semigroup, for p ≥ 1,

q̂p(xp−1, dxp) = f (xp−1, xp)gp(xp) dxp,
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where gp(xp) = g(xp, yp). For ϕ ∈ Bb(R
d) define

q̂p,n(ϕ)(xp) =
∫

q̂p+1(xp, dxp+1) × · · · × q̂n(xn−1, dxn)ϕ(xn).

(A2) There exists a c < ∞, such that, for every 1 ≤ p < n and d ≥ 1,

sup
x,y

q̂p,n(1)(x)

q̂p,n(1)(y)
≤ c.

Note that (A2) is fairly standard in the literature (see, e.g. [7]) and given (A1) it will hold under
some simple assumptions on h and k. The scenario considered here is indicative of ones where
we expect the STPF to work well; when there is some aspect of spatial mixing, which allows
one to transfer the strength of sequential Monte Carlo methods in time to the spatial domain.

Now, we will consider the global filter with N particles, as standard results in the literature
can provide immediately CLTs and strong law of large numbers for quantities of interest. We
will then investigate the effect of the dimensionality d on the involved terms. Consider the
standard estimate for the normalising constant for the global filter

γ N
n (1) :=

n−1∏
p=1

ηN
p (Gp),

where ηN
p (·) simply denotes Monte Carlo averages over the N -particle systems at time p; see

Appendix B for analytic definitions. From standard particle filtering theory, it follows that
ηN

p (·) is an unbiased estimator of the corresponding limiting quantity, denoted γn(1); see, e.g.
[6, Theorem 7.4.2]. Also, under our assumptions, we have the following CLT as N → ∞ (see
[6, Proposition 9.4.2]):

√
N

(
γ N
n (1)

γn(1)
− 1

)
w−→ N (0, σ 2

n ), (3.1)

where N (0, σ 2) is the one-dimensional normal distribution with 0 mean and variance σ 2, and

σ 2
n = 1

γn(1)2

n∑
p=1

γp(1)2ηp((Qp,n(1) − ηp(Qp,n(1)))2).

All maths bold terms correspond to standard Feynman–Kac quantities and are defined in
Appendix B. We also show in Appendix B that the normalising constant of the global filter
coincides with the one of the original filters of interest, that is

γn(1) ≡ γn(1) =
∫ n−1∏

p=1

gp(xp)f (xp−1, xp) dx1 : p = p(y1 : n−1).

Thus, (3.1) provides, in fact, a CLT for the estimate of the STPF for p(y1 : n−1) proposed in
Theorem 3.1.

We have the following result, whose proof is in Appendix C.

Theorem 3.2. Assume that (A1) and (A2) hold. Then there exists a c̄ < ∞ such that, for any
n, d ≥ 1 and any Md ≥ c̄d,

σ 2
n ≤ nc̄

(
d

Md

+ 1

)
.
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Remark 3.6. Our result establishes that the asymptotic in N -variance of the relative value of
the normalising constant estimate grows at most linearly in n and if Md = O(d) does not grow
with the dimension. The cost of the algorithm is O(nNd2). The linear growth in time is a
standard result in the literature (see [7]) and one does not expect to do better than this. Note that
a particular model structure is chosen and one expects a higher cost in more general problems.

Remark 3.7. We expect that in order to show that the error in the estimation of the filter is
time uniform, under (A1), we will need to set Md = O(d2), at least when L = 1. This is
because we are performing an estimation on the path of the algorithm; see [7, Theorem 15.2.1
and Corollary 15.2.2]. Indeed, we can be even more specific; if N = 1 then we can show that,
under (A1) and (A2), the Lp-error associated to the estimate of the filter (applied to a bounded
test function in R

d ) at time n is upper bounded by c‖ϕ‖∞d/
√

Md (via [7, Theorem 15.2.1,
Corollary 15.2.2]) with c independent of d and n. Thus, setting Md = O(d2), the upper bound
depends on d only through ‖ϕ‖∞.

4. Numerical results

4.1. Model 1

We consider an autoregressive model of order d. In particular, let Xn ∈ R
d be such that we

have X0 = 0d (the d-dimensional vector of zeros) and

Xn(j) =
j−1∑
i=1

βd−j+i+1Xn(i) +
d∑

i=j

βi−j+1Xn−1(i) + εn,j , (4.1)

where εn,j
i.i.d.∼ N (0, σ 2

x ) and β1 : d are some known static parameters. For the observations,
we set

Yn = Xn + ξn, (4.2)

where ξn(j)
i.i.d.∼ N (0, σ 2

y ), j ∈ {1, . . . , d}. It is easily shown that this linear Gaussian model
has the model structure (1.2) as in this case we have, for k ≥ 1,

g(xk, yk)f (xk−1, xk) =
d∏

j=1

p(xk(j) | xk−1(j : d), xk(1 : j − 1))p(yk(j) | xk(j))

with the shown conditional densities being analytically available via (4.1) and (4.2).
We consider the standard PF and the STPF. Data are simulated from the model with σ 2

x =
σ 2

y = 1, β1 : d = (1, 1, . . . , 1), n = 1000, and various choices of the dimension d. These
parameters are also used within the filters. Both filters use the model transitions as the proposal
and the likelihood function as the potential. Thus, the standard PF will propose from the
d-dimensional law p(xn(1 : d) | xn−1(1 : d)). The STPF will propose one coordinate at a time
from the model dynamics, that is we apply the algorithm described in Section 2 with proposal

qn,j (xn(j) | xn−1, xn(1 : j − 1)) = p(xn(j) | xn−1(j : d), xn(1 : j − 1)).

Adaptive resampling is used in all situations (with appropriate adjustment to the formula of
calculating the weights for each of the N particles, as well as the estimates).

In Figure 1 we adjusted the number of particles for the PF and STPF so that the methods gave
Monte Carlo estimates of E[Xn(1) | Y1 : n], n = 1000, with RMSE smaller than 0.005 (STPF
fixed N = 100 and modified Md ; the RMSE averaged individual errors over 100 independent
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Figure 2: Average of estimators of E[Xn(1) | Y1 : n] for Model 1 across 100 algorithmic runs.

algorithmic executions, and scaled errors relative to standard deviation of Xn(1) | Y1 : n; both
the STPF and PF were parallelised on a four-core PC, with the STPF sending N/4 islands at
each core and the PF also sending a quarter of used particles at each time-step at each core).

Some results for d ∈ {16, 128, 1024} are presented in Figures 2–4. For these figures, the
STPF used N = 100 and Md = d , and the standard PF used NMd particles. The analytical
solution for this model can be obtained via the Kalman filter and it is shown alongside the filter
results in Figure 2.

The averages of estimators per time-step for the posterior mean of the first coordinate given
all data up to time n, E[Xn(1) | Y1 : n], across 100 separate algorithmic runs are illustrated in
Figure 2. For the STPF, each estimator corresponds to the double average over Md , N as shown
in Section 2. In Figure 2 we see that the standard particle filter collapses when the dimension
becomes moderate or large. We see that there are no meaningful estimates when d = 1024 (as
the estimates completely lose track of the observations and the analytical mean). In contrast,
the STPF performs reasonably well in all three cases. In Figure 3 we show the ESS (calculated
over the global filter for the STPF, and scaled by the number of particles for both algorithms)
for each time-step of the two algorithms. The standard filter struggles significantly even in the
d = 16 case and collapses when d = 128. The performance of the new algorithm is stable up
to the dimension considered here. These conclusions are further supported in Figure 4 where
the MSE (using the Kalman filter to obtain correct values) per time-step for the estimators of
E[Xn(1) | Y1 : n], as estimated via 100 independent algorithmic runs, is displayed. To further
analyse the stability and behaviour of the STPF, we consider the RMSE as a measure of accuracy.
We consider the case N = 100 and Md = d , with increasing dimension d. Results in Figure 5
suggest that in this case adjusting Md = O(d) provides a robust algorithm for the choices of d

under consideration.

The runtime cost of the STPF is, in general, O(nNd3) when Md = O(d). However, in
many cases, the algorithm can be implemented with smaller cost. For example, in this case, it is
possible to apply the algorithm withO(nNd2) cost, as one can keep track of the conditional mean
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Figure 3: ESS plots of the PF and STPF algorithms for Model 1 from a single algorithmic run.

Figure 4: The MSE (on logarithm scale) of the PF and STPF algorithms for estimators of E[Xn(1) | Y1 : n]
for Model 1 across 100 runs.

for the proposal for the j th coordinate and the evolving particle (xk−1(j +1 : d) , xk(1 : j)) with
O(1) calculations, 1 ≤ j ≤ d . As the particles in the local filters now need to be resampled only
after all d dimension steps, the cost of resampling is reduced to O(nNMdd) from O(nNMdd2).
This is illustrated in Figure 6: the slopes for the generic and the ‘special’ implementation with
the O(1) calculation mentioned above, for this example are 3.026 and 1.981, respectively.

4.2. Model 2

4.2.1. Model and simulation settings. We consider a model on a two-dimensional graph, which
follows one described in [15]. Let the components of state Xn be indexed by vertices v ∈ V ,
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Figure 5: The RMSE of estimator of E[Xn(1) | Y1 : n] with n = 1000 for Model 1 over 100 algorithmic
runs (MSE is scaled relatively to the variance of Xn(1) | Y1 : n). We varied d and applied the STPF with

N = 100, Md = d.

Figure 6: Runtime cost of the SFTP applied on Model 1 against dimension for a generic and a ‘special’
implementation of smaller cost. In both cases the SFTP used N = 100, Md = d.

where V = {1, . . . , s}2. The dimension of the state space is thus d = s2. The distance
between two vertices, v = (a, b), u = (c, d), is calculated in the usual Euclidean sense,
D(v, u) = √

(a − c)2 + (b − d)2. At time n, conditionally on Xn−1, positions Xn(v), v ∈ V ,
are independent and, for given v ∈ V , the variable Xn(v) follows a mixture distribution

p(xn(v) | xn−1) =
∑

u∈N(v)

wu(v)p(xn(v) | xn−1(u)), (4.3)

where N(v) = {u : D(v, u) ≤ r} for r ≥ 1 is the neighbourhood of vertex v. For observations,
we have the model

Yn = Xn + ξn,

where ξn(v), v ∈ V , are i.i.d. errors.
In this example we use a Gaussian mixture for (4.3) with component mean Xn−1(u) and

unit variance. The weights are set to be wu(v) ∝ 1/(D(v, u) + δ) and
∑

u∈N(v) wu(v) = 1.
In other words, when δ → 0, each vertex evolves as an independent Gaussian random walk,
with more interesting spatial dependencies arising when δ > 0. The i.i.d. observation errors
are t-distributed with degrees of freedom ν. We simulated data from the model with r = 1,
δ = 1, ν = 10, and various choices of dimension d = s2. These true parameter values are also
used in the filters.
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We will compare the standard PF, the STPF, the marginal STPF algorithm (as described in
Section 2.3), and the block PF in [15] in the s = 32 case, so d = 1024. For the STPF, we add the
vertices one by one when applying the space-steps, in the order (1, 1), . . . , (1, s), (2, 1), . . . ,

(2, s), . . . , (s, s). The simulations for the STPF versions were performed with N = Md = 100.
The number of particles for the standard particle filter and block PF are NMd . For the marginal
algorithm, we also used N = 1 and Md = 1000. For the marginal algorithm, MCMC mutation
steps are applied in all d space-steps and are comprised of Gaussian random walk proposals
with variance (the scale) 0.5/j and the corresponding Metropolis–Hastings correction; also,
particles are propagated across space according to a kernel qn,j (xn(j) | xn(1 : j − 1)) ∝∑Md

l=1 p(xn(j) | x̌
i,l
n−1) (for island i), meant to be close to the marginal law of xn(j). The

block size of the block PF is set to be b2, b ∈ {1, . . . , s}, and the domain is partitioned such that
each block is itself a square. The optimal block size in [15] is about b = 7 for 104 particles and
a two-dimensional graph. Thus, we considered the cases b = 4 and 8, the two nearest integers
such that s is divisible by b.

Remark 4.1. The block PF partitions V into subsets V1, V2, . . . , Vκ for some κ ≥ 1. Given
particles {xl

n−1}Ml=1 approximating p(xn−1 | y1 : n−1), the block PF samples xl
n ∼ p(xn | xl

n−1),
1 ≤ l ≤ M . Each particle xl

n is split into subparticles xl
n(V1), x

l
n(V2), . . . , x

l
n(Vκ). Importance

sampling is performed at all subparticles {xl
n(Vj )}Ml=1 using only the subset of data Yn(Vj ) to

provide the weighted subparticle population {xl
n(Vj ), W

l
n(Vj )}Ml=1; this is repeated indepen-

dently for j = 1, 2, . . . , κ . Complete particles {xl
n}Ml=1 are obtained by resampling each of

subparticle xl
n(Vj ) from {xl

n(Vj ), W
l
n(Vj )}Ml=1 for 1 ≤ j ≤ κ . This process is iterated in

the next time-steps. Due to its nature, the block PF is characterised by bias, which is spread
nonuniformly across the vertices: vertices on the boundaries of the partition of V will have
higher bias, while one can control the bias in the centre of, say, Vj , by taking the boundary
of Vj far enough from its centre. In the context of our numerical example, V is split into blocks
corresponding to equally sized squares, with side length equal to b.

4.2.2. Results. A single run takes around two minutes for the standard particle filter and the
block filter on an Intel� Xeontm W3550 CPU, with four cores and eight threads. It takes around
10 minutes for the STPF. For the marginal algorithm, it takes about 40 minutes when N = 1
and Md = 1000, and about seven hours when N = Md = 100.

The standard particle filter performs poorly and cannot provide adequate estimates (similar to
the d = 1024 case in the previous example). In Figure 7 we observe the variance per time-step
of the estimators for two vertices, across 30 runs. The first vertex, Xn(3, 3) is in the interior of
a block PF for both block sizes b = 4 and 8, whereas the second vertex considered, Xn(8, 8), is
on a block boundary for both sizes. In either case, the STPF significantly outperforms the block
filter, albeit under slightly longer run times. The STPF does not collapse in high dimensions,
but perhaps does not have excellent performance. The marginal STPF performs very well,
but the computational time is substantially higher than all of the other algorithms. However,
with N = 1 and Md = 1000(= O(d)), the marginal STPF provides a good balance between
performance and computational cost in challenging situations where the path degeneracy may
hinder successful application of the new algorithm. The block filter variance is large already
from the version of the algorithm with b = 4.

In Figure 8 we show the RMSE versus model dimension for estimates of E[Xn(1, 1) | Y1 : n],
with n = 1000. This quantity is found for a number of choices of dimension d. The ground truth
values were obtained from a very expensive simulation. In all cases, the STPF uses N = 100 and
Md = d/8. The runtime costs, again, of a generic implementation and a ‘special’one exploiting
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Figure 7: Variance plots (on logarithm scale) for estimators of Xn(3, 3) and Xn(8, 8) for Model 2.
Variances are estimated from 100 independent runs for each algorithm. The STPF uses N = Md = 100;
the standard PF and block PF use NMd = 104 particles; the two marginal algorithms have used N =
Md = 100 and N = 1, Md = 1000. Note that the upper three plots are the PF and block PFs and the

lower three plots are the STPF and marginal STPFs.

Figure 8: The RMSE of estimators of E[Xn(1, 1) | Y1 : n] with n = 1000, for Model 2, over 100
algorithmic runs. We applied the STPF with N = 100, Md = d/8, and varying dimension d.

the particular structure of this model that reduces the cost to O(nNd2), are shown in Figure 9
(we omit details about the special implementation; the method is straightforward and we can
give details upon request). Indeed, the slopes of fitted lines are 3.013 and 1.964, respectively.
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Figure 9: Runtime cost of the SFTP applied on Model 2 against dimension, for a generic and a ‘special’
implementation of smaller cost. In both cases, the SFTP used N = 100, Md = d/8.

5. Summary

In this paper we have considered a novel class of particle algorithms for high-dimensional
filtering problems and investigated both theoretical and practical aspects of the algorithm. We
believe this paper opens new directions in an important and challenging contemporary Monte
Carlo problem; several aspects of the method remain to be investigated in future research. There
are indeed many possible extensions to the work in this paper. In particular, a theoretical analysis
of the algorithm when the structure of the state-space model is more complex than the structures
considered in this paper. Empirical results are encouraging, but may not tell the entire story with
regards to dimension dependence. In addition, the interaction of dimension and time behaviour
is of particular interest. Finally, an interesting approach in [13] has appeared subsequently to
the first versions of this paper, also investigating algorithmic behaviour in filtering problems in
high dimensions; it would be of interest to understand the relative theoretical benefits of both
approaches.

Appendix A.

Proof of Proposition 3.1. We set

X = 1

Md

Md∑
l=1

α(x
i,l
1 (1))

q(x
1,l
1 (1))

/ ∫
α(x) dx,

I = 1

N

N∑
i=1

d∏
j=1

1

Md

Md∑
l=1

α(x
i,l
1 (j))

q(x
i,l
1 (j))

/ ∫
α(x) dx.

Note that E[I ] = E[X] = 1, so that, due to the i.i.d. structure along j , we have

E[I 2] = 1

N
(E[X2])d + N − 1

N
.

Also, due to the i.i.d. structure along j, l, we have

E[X2] = 1

Md

∫
a2(x)/q(x) dx

(
∫

a(x) dx)2
+ Md − 1

Md

.
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Finally, it follows that, due to the i.i.d. structure along n,

E

[(
pN,Md (y1 : n)

p(y1 : n)
− 1

)2]
= E

[(
pN,Md (y1 : n)

(
∫

α(x) dx)nd

)2]
− 1 = (E[I 2])n − 1.

A synthesis of the above three equations gives the required result. �

Appendix B. Proof of Theorem 3.1

B.1. Further notation

To prove Theorem 3.1, we will first introduce another round of notation. Let (En, En)n≥0
be a sequence of measurable spaces endowed with a countably generated σ -field En. The set
Bb(En) denotes the class of bounded En/B(R)-measurable functions on En, where B(R) is
the Borel σ -algebra on R. We will consider nonnegative operators K : En−1 × En → R+ such
that, for each x ∈ En−1, the mapping A �→ K(x, A) is a finite nonnegative measure on En

and, for each A ∈ En, the function x �→ K(x, A) is En−1/B(R)-measurable; the kernel K is
Markovian if K(x, dy) is a probability measure for every x ∈ En−1. For a finite measure μ on
(En−1, En−1) and Borel test function f ∈ Bb(En), we define

μK : A �→
∫

K(x, A)μ(dx), Kf : x �→
∫

f (y)K(x, dy).

B.2. The Feynman–Kac model on an enlarged space

We will define a Feynman–Kac model on an appropriate enlarged space. That is, one Markov
transition on the enlarged space will correspond to one observation time and will collect all d

space-steps of the local filter for this time-step. Some care is needed with the notation as we
need to keep track of the development of the coordinates at time n, together with the states at
time n − 1, as the latter are involved in the proposal.

Time-step 1. Consider observation time 1 of the algorithm. We define a sequence of
random variables Zl

1,j with j ∈ {1, . . . , d + 1}, 1 ≤ l ≤ Md , such that Zl
1,j ∈ R

j , for
j ∈ {1, . . . , d}, and Zl

1,d+1 ∈ R
d . For j ∈ {1, . . . , d}, we will write the coordinates of Zl

1,j

as (Zl
1,j (1), . . . , Zl

1,j (j)), with the obvious extension for the j = d + 1 case. As x0 is fixed,
we will drop it from our notation, as will become clear below. Also, for simplicity, we simply
write q(·) instead of the analytical q1,j (·) as the subscripts are implied by those of Z1,j . We
follow this convention throughout Appendix B. We define the following sequence of Markov
kernels corresponding to the proposal for the coordinates at the first time-step:

M1,1(dz1,1) = q(z1,1) dz1,1, j = 1,

M1,j (z1,j−1, dz1,j )

= q(z1,j (j) | z1,j−1) dz1,j (j)δ{z1,j−1}(dz1,j (1 : j − 1)), j ∈ {2, . . . , d},
M1,j (z1,j−1, dz1,j ) = δ{z1,j−1}(dz1,j ), j = d + 1.

Next, we will take under consideration the weights and the resampling. For j ∈ {1, . . . , d} and
a probability measure μ on R

j , define

�1,j+1(μ)(dz) =
∫

Rj μ(dz′)G1,j (z
′)M1,j+1(z

′, dz)∫
Rj μ(dz′)G1,j (z′)

.
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For the local PF in observation time 1, write the unweighted empirical measure as

η
Md

1,j (dz) = 1

Md

Md∑
l=1

δzl
1,j

(dz), j ∈ {1, . . . , d}.

We also consider all random variables involved at time-step 1 and set

z1 = (z
1 : Md

1,1 , . . . , z
1 : Md

1,d+1).

The joint law of the samples required by the local filter is

η1(dz1) =
(Md∏

l=1

M1,1(dzl
1,1)

)(d+1∏
j=2

Md∏
l=1

�1,j (η
Md

1,j−1)(dzl
1,j )

)
. (B.1)

Note that in the notation we have established herein, the potential G1 defined in the main text
can now equivalently be expressed as

G1(z1) =
d∏

j=1

η
Md

1,j (G1,j ). (B.2)

We also set zl
1,d+1(1) = zl

1,d+1.
Time-step n ≥ 2. At subsequent observation times, n ≥ 2, we again work with variables

denoted Zl
n,j , with j ∈ {1, . . . , d +1}, but this time we have to keep track of the corresponding

paths at time n − 1, thus we will use the notation Zl
n,j = (Z

l,+
n,j , Z

l,−
n,j ), with Z

l,+
n,j ∈ R

j ,
Z

l,−
n,j ∈ R

d , with the latter component referring to the ‘tail’ at time n − 1 of the path found
at Z+

n,j at time n and space position j . So, we have Zl
n,j ∈ R

j+d , j ∈ {1, . . . , d} and
Zl

n,d+1 ∈ R
2d . We define the following sequence of kernels:

Mn,1(z
+
n−1,d+1, dzn,1) = q(z+

n,1 | z+
n−1,d+1) dz+

n,1δ{z+
n−1,d+1}(dz−

n,1), j = 1,

Mn,j (zn,j−1, dzn,j ) = q(z+
n,j (j) | zn,j−1) dz+

n,j (j)δ{z+
n,j−1}(dz+

n,j (1 : j − 1))

× δ{z−
n,j−1}(dz−

n,j ), j ∈ {2, . . . , d},
Mn,d+1(zn,d , dzn,d+1) = δ{zn,d }(dzn,d+1), j = d + 1.

For j ∈ {2, . . . , d} and a probability measure μ on R
j+d , define the measure on R

min{j+1,d}+d

as

�n,j+1(μ)(dz) =
∫

μ(dz′)Gn,j (z
′)Mn,j+1(z

′, dz)∫
μ(dz′)Gn,j (z′)

.

For the local PF at space-step j , we write the empirical measure

η
Md

n,j (dz) = 1

Md

Md∑
l=1

δzl
n,j

(dz), j ∈ {1, . . . , d}.

Set zn = (z
1 : Md

n,1 , . . . , z
1 : Md

n,d+1). The transition law of all involved samples in the local particle
filter is

Mn(zn−1, dzn) =
(Md∏

l=1

Mn,1(z
l,+
n−1, d+1, dzl

n,1)

)(d+1∏
j=2

Md∏
l=1

�n,j (η
Md

n,j−1)(dzl
n,j )

)
. (B.3)
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Then, we will work with the potential

Gn(zn) =
d∏

j=1

η
Md

n,j (Gn,j ). (B.4)

Algorithm 1 corresponds to a standard PF approximation (with N particles) of a Feynman–
Kac model specified by the initial distribution (B.1), the Markovian transitions (B.3), and the
potentials in (B.2), (B.4). Thus, for the Monte Carlo algorithm with N particles, set ηN

n for the
N -empirical measure of z1 : N

n and set, for μ a probability measure, n ≥ 2,

�n(μ)(dz) =
∫

μ(dz′)Gn−1(z
′)Mn(z

′, dz)∫
μ(dz′)Gn−1(z′)

.

Then our global filter samples, from the path measure up to observation time n,
( N∏

i=1

η1(dzi
1)

)( n∏
k=2

N∏
i=1

�k(η
N
k−1)(dzi

k)

)

do not include resampling at observation time n. We use the standard definition of the
normalising constant, for any n ≥ 1,

γn(ϕ) =
∫

η1(dz1)

n∏
p=2

Gp−1(zp−1)Mp(zp−1, dzp)ϕ(zn) (B.5)

and set ηn(ϕ) = γn(ϕ)/γn(1); thus ηn corresponds to the predictive distribution at time n for
the global filter. Note that, from (B.5), we can equivalently write for the unnormalised measure

γn(ϕ) = η1(G1M2(G2M3 · · · (Gn−1Mn(ϕ)))). (B.6)

B.3. Calculation of quantities for the global filter

We consider functions of the particular form

φ(zp) = 1

Md

Md∑
l=1

φ(z
l,+
p,d+1), φ ∈ Bb(R

d).

For functions of this type, we write φ ∈ Ap. We will illustrate that, upon application on this
family, several Feynman–Kac quantities of the global model (with signal dynamics η1, M2,. . . ,
and potentials G1, G2 . . . ) coincide with those of the original model of interest (with signal
dynamics f1, f2, . . . and potentials g1, g2, . . . ). In particular, we calculate Mp(Gpφ) as, from
(B.6), it is the building block for other expressions. Note that, we can write

Mp(Gpφ) =
∫

Mp(zp−1, dzp)Gp(zp)
1

Md

Md∑
l=1

φ(z
l,+
p,d+1)

=
∫ (Md∏

l=1

Mp,1(z
l,+
p−1,d+1, dzl

p,1)

)(d+1∏
j=2

Md∏
l=1

�p,j (η
Md

p,j−1)(dzl
p,j )

)

×
d∏

j=1

η
Md

p,j (Gp,j ) · η
Md

p,d+1(φ).

So, the integral now concerns the local PF with weights Gp,j and Markov kernels Mq,j .
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In particular, the integral corresponds to the expected value of the particle approximation of
the standard Feynman–Kac unnormalised estimator with standard unbiasedness properties [6,
Theorem 7.4.2]. That is, the integral is equal to

1

Md

Md∑
l=1

E[φ(zl
p,d+1)Gp,d(zl

p,d) · · · Gp,2(z
l
p,2)Gp,1(z

l
p,1) | z

l,+
p−1,d+1]

(note that here, for each l, the process zl
p,1, z

l
p,2, . . . , z

l
p,d+1 is a Markov chain evolving via

Mp,1(z
l,+
p−1,d+1, dzl

p,1), Mp,2(z
l
p,1, dzl

p,2), . . . , Mp,d+1(z
l
p,d , dzl

p,d+1), respectively). From
the analytical definition of the kernels and the weights, this latter quantity is easily seen to
be equal to

1

Md

Md∑
l=1

∫
φ(z)

d∏
j=1

αp,j (yp, z
l,+
p−1,d+1, z(1 : j)) dz(1 : j)

= 1

Md

Md∑
l=1

∫
φ(z)fp(z

l,+
p−1,d+1, dz)gp(z, yp) dz

= η
Md

p−1,d+1(fp(gpφ)).

So, we have obtained

Mp(Gpφ) = η
Md

p−1,d+1(fp(gpφ)) ∈ Ap−1. (B.7)

Thus, applying the above result recursively, we obtain, from (B.6),

γn(Gnφ) =
∫ n∏

p=1

fp(xp−1, dxp)gp(xp, yp)φ(xp). (B.8)

Using the standard Feynman–Kac notation, this latter integral can be denoted as γn(gnφ) for
the unnormalised measure γn. Thus, for instance, for the normalising constants, we have

γn(Gn) = γn(gn) ≡ p(y1 : n).

Proof of Theorem 3.1. We have established that the algorithm is a standard PF approximation
of a Feynman–Kac formula on an extended space. Thus, standard results, e.g. in [6], will give
consistency for Monte Carlo estimates on the enlarged state-space. It remains only to show
that indeed the quantities in the statement of Theorem 3.1 correspond to Monte Carlo averages
of the global filter in the enlarged space. We look at the two quantities in the statement of the
theorem. For the first, we set (we assume that n ≥ 2 as the n = 1 case is treated in an entirely
similar manner, with small changes in the notation)

ϕ(zn) = 1

Md

Md∑
l=1

ϕ(z
l,+
n,d+1) ∈ An,

and we immediately have (denoting by ži
n the resampled islands, under the weights Gn(z

i
n))

1

N

N∑
i=1

ϕ(ži
n)

P−→
∫

ηn(dzn)Gn(zn)ϕ(zn)∫
ηn(dzn)Gn(zn)

= γn(Gnϕ)

γn(Gn)
.
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Note that now the quantity on the left is precisely the double average in the statement of the
theorem and the quantity on the right, from (B.8), is equal to γn(gnϕ)/γn(gn) = πn(ϕ). For
the last statement in the theorem, the quantity on the left is γ N

n (Gn) which, from standard PF
theory converges in probability to γn(Gn) = γn(gn) = p(y1 : n). �

Appendix C.

Proof of Theorem 3.2. Recall the notation for the global filter from Appendix B. We define
the semi-group

Qp+1(zp, dzp+1) = Gp(zp)Mp+1(zp, dzp+1)

and we also set

Qp,n(ϕ) =
∫

Qp+1(zp, dzp+1) × · · · × Qn(zn−1, dzn)ϕ(zn).

Recall from the main result in (B.7) in Appendix B, connecting the global with the local filter,
that Mp(Gp) = η

Md

p−1,d+1(fp(gp)), and upon an iterative application of this result

Qp,n(1) = Gp(zp)η
Md

p,d+1(q̂p+1, n−1(1)).

We also have γn(1) = γn(1) = γp(gpq̂p+1, n−1(1)) = πp(q̂p+1, n−1(1))γp(gp) and, finally,
that γp(gp) = πp−1(fp(gp))γp(1). Using all these expressions, simple calculations reveal
that

σ 2
n =

n∑
p=1

γp(1)2

γn(1)2 ηp((Qp,n(1) − ηp(Qp,n(1)))2) =
n∑

p=1

ηp

((
Gp(zp)

Mp(Gp)
Ap − 1

)2)
, (C.1)

where we have defined

Ap = η
Md
p (q̂p+1, n−1(1))

πp(q̂p+1, n−1(1))

η
Md

p−1(fp(gp))

πp−1(fp(gp))
.

The main thing to note now is that Gp(zp)/Mp(Gp) corresponds to the standard estimate of
the normalising constant for the pth local filter divided with its expected value, and we can use
standard results from the literature to control its second moment. Indeed, by assumptions (A1),
(A2), and [7, Theorem 16.4.1] (see Remark C.1), there exists c̃ < ∞ (which does not depend
on p or zp) such that, for any d ≥ 1 and any Md ≥ c̃d,

Mp

((
Gp(zp)

Mp(Gp)
− 1

)2)
≤ c̃(2 + e) d

Md

,

where the upper bound depends only on d via the term d/Md . Note also that fp(gp) ≡
q̂p−1,p(1), so by (A2) and Jensen’s inequality (so that Md/

∑Md

i=1 xi ≤ ∑Md

i=1 1/xiMd for
positive xi), we have

0 ≤ Ap ≤ c4.
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Thus, returning to (C.1), and using the last two equations, we obtain, starting with the C2-
inequality,

ηp

((
Gp(zp)

Mp(Gp)
Ap − 1

)2)

≤ 2ηp

((
Gp(zp)

Mp(Gp)
− 1

)2

c8
)

+ 2ηp((Ap − 1)2)

= 2c8γp−1

(
Gp−1Mp

(
Gp(zp)

Mp(Gp)
− 1

)2)/
γp(1) + 2ηp((Ap − 1)2)

≤ 2c8c̃(2 + e) d

Md

+ 2c8.

From here, one can easily complete the proof and, hence, we conclude. �

Remark C.1. In the proof of Theorem 3.2 we have used [7, Theorem 16.4.1]. This is a result
on the relative variance of the particle estimate of the normalising constant, and as stated in [7]
does not include a function, that is, an estimate of the form

∏d
j=1 η

Md

p,j (Gp,j )η
Md

p,j (ϕ) for some
ϕ ∈ Bb(R

d). Based on a personal communication with Pierre Del Moral, [7, Theorem 16.4.1]
can be extended to include a function, by modification of the potential functions and the use of
the final formula in [7, p. 484].
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