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Abstract 

The problem of the effects of mutual collisions for the dynamics 

of interplanetary dust particles and grains is reviewed. Collisions are 

shown to give a rather characteristic dynamical signature, the impor­

tance of these effects depending mainly on the mean free collision time 

and the degree of inelasticity. Although a few attempts to look for 

collisional effects in the solar system have been made, rather much 

work remains to be done before the problem is fully understood. 

Introduction 

The dynamics of small interplanetary bodies, grains and dust 

- in short the meteoritic complex - depend on the type and strength 

of perturbing forces acting. For the smallest, charged dust particles 

the Lorentz force will be decisive. For particles in the micron to the 

millimeter size range radiation pressure with the associated Poynting-

Robertson effect and solar wind pressure are important. For larger 

bodies planetary perturbations have to be taken into account. The dyna­

mical effects of these forces have been discussed to a considerable 

extent in the literature [1]. Recent progress has particularly been 

made regarding the radiation pressure effects through the application 

of Mie scattering theory. 

The types of forces mentioned above are examples of continu­

ously acting forces. Of a quite different nature is the impulsive force 
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resulting from mutual collisions between members of the meteoritic com­

plex. Such collisions have previously mostly been taken into account 

in order to explain the size spectrum of this complex [2]. Such studies 

concentrate on the fragmentational properties of high velocity impacts. 

The dynamical aspects of the collision process are grossly neglected 

by simply introducing the average impact velocity as a parameter in the 

model. 

Since the dynamical effects of mutual collisions have been given 

little regard we shall here concentrate on this aspect, reviewing the 

model studies that have been done so far. Subsequently, the importance 

of the obtained results for the present day solar system will be dis­

cussed. This topic has only been discussed to a limited extent yet. 

Many questions remain unanswered. We do, however, hope to point out 

some of the characteristic dynamical signatures of mu'tual collisions so 

that the cause can be recognized when one is facing the effect. 

The dynamical importance of mutual collisions was proposed by 

Alfvfen [3], predicting that particles moving in neighbouring Kepler 

orbits around a central body would tend to be collisionally focused 

into a stream - a Jetstream. This hypothesis constitutes a cornerstone 

of the cosmological theory of Alfvfen and Arrhenius [4], jetstreams being 

considered the parent structure in which accreation of planets and satel­

lites from smaller grains took place. 

Insight into the physics of jetstreams can be gained by studying 

a simple model. Consider a circular Jetstream with mass very much 

smaller than that of the central body so that selfgravitational effects 

are negligible. Let the mean free collision time in the stream be long 

compared to the orbital period. An individual grain in the stream will 

between collisions follow a Kepler orbit. Now compare the velocity 

components of this grain as it crosses the symmetry plane of the stream 

with the velocity Vn/r of an observer in a circular motion at the same 

distance. To lowest order in eccentricity e and inclination i the 

result is: 

v- = Vr e sln E 
L ' cl 

v = f? i cos (E - uu) (1) 

v _ YSL = i f t l e cos E . 
cp i r 2 i a 
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Here a is the semimajor axis, E the eccentric anomaly and uu the 

argument of pericentrum. As is easily seen the contribution from each 

grain to the velocity spread in the stream in the azimuthal direction 

is systematically down by a factor 2 relative to the contribution in the 

radial direction. The velocity distribution in the stream is therefore 

necessarily strongly non-Maxwellian. 

From the kinetic theory of gases it is well known that elastic 

collisions will tend to Maxwellize the velocity distribution. This 

menas - as seen from (1) - that a balance between the average eccentri­

city and inclination of the individual orbits in the stream should be 

established. However, the deficiency of the velocity spread in the 

azimuthal direction compared to the radial direction can only be de­

creased by steadily increasing the average eccentricity. This means 

that more and more grains are put onto hyperbolic orbits through colli­

sions. 

The conclusion is therefore that the stream configuration can 

only be maintained in the presence of collisions with a sufficient degree 

of inelasticity. The energy lost through collisions can in principle 

be taken from two sources, from the potential energy of the stream re­

sulting in a shrinking of the stream towards the central body, or from 

the thermal motions in the stream. If thermal motions constitute the 

main source of energy the mean eccentricity and inclination of the indi­

vidual orbits in the stream must decrease with collisions. This is 

equivalent to a focusing of the stream into its plane of symmetry while 

the individual orbits at the same time are becoming more and more circu­

lar. In addition to this effect Alfven also predicted the existence 

of a corresponding radial focusing in the sence that also the radial 

thickness of the stream should decrease with collisions under suitable 

conditions. 

From this qualitative discussion of basic Jetstream physics 

- which can also be repeated for eccentric jetstreams - we then proceed 

to the more quantitative model studies. 

Analytical model studies 

The model studies that have been performed so far have all re­

stricted themselves to the simple situation of a stream of negligible 

total mass, consisting of grains of equal size, subject only to the 
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perturbing force due to mutual collisions and with a mean free colli­

sion time long compared to the typical orbital period. The Boltzmann 

equation: 

at + ̂ * a7 + S.-Sv = I(f,f) (2) 

constitutes the natural framework for a quantitative discussion of this 

system. Here f(£,,,v»t) is the distribution function of the stream 

particles in phase space, a_ is the acceleration of an individual grain 

due to the gravitational field of the central body. The nonlinear Boltz­

mann collision operator can be given in the general form [5]: 

I(f,f) = J dg dn | | |g|{f(v + -| g- - \ g)f(v + \ g< + \ g) 

- f(v)f (v + g)} , (3) 

where g and g' are the relative velocity vectors of two colliding 

particles before and after the collision, 0 is the scattering solid 

angle and da/dfi is the scattering cross section as a function of rela­

tive velocity. The degree of inelasticity is determined by the func­

tional relationship between g and g' . For completely inelastic 

collisions g' = 0 while |g'| = |g| for elastic collisions. A more 

specific form of the collision operator for a particular collision model 

is given in [6]. 

Two types of expansion procedures for the Boltzmann equation 

have been attempted, both based on the assumption of a mean free colli­

sion time long compared to the orbital period. This author [6] makes 

use of a power series expansion in time of the distribution function. 

The collisional induced deviation &f(£,v_,t) o f the distribution func­

tion from an initial state f (r,v) , chosen as a function of r and 
o —'— ' — 

v_ only through constants of motion of the two-body problem, is for 

small enough times t given by: 
df 1 , 32f 

6f(r,v,t) = t(-̂ °-) + 4 t ( £) + ... . (4) 
at 2 " ^ 2 -

The time derivatives are determined from the Boltzmann equation. It 

can now be shown that the collisional induced change in the distribution 

function gives rise to an additional mass flux in the stream: 

6(nU_) = I dv v 6f = - -| t2 V-J d v v v I(f ,fQ) . (5) 
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By calculating the direction of the flux vector 6(nU) at different 

points of a cross-section of the stream an idea of the initial dispersal 

or focusing of the stream can be gained. 

The obvious weakness of this approach, as clearly demonstrated 

by the numerical simulations to be described below, is that (5) might 

only portray initial transients in the stream due to "improper" starting 

conditions. It is, however, felt that combined with the experience 

gained from the numerical simulations, the method could give valuable 

information of the dependence of stream dynamics on the choice of speci­

fic collision models. Such a study has not yet been done. 

The other expansion approach to the Boltzmann equation by Baxter 

and Thompson [5] directs itself to the question of the existence of the 

radial focusing mechanism, as predicted by Alfvfen. These authors con­

sider both three and two dimensional streams - the stream particles 

being constrained to move in the same plane in the latter case. Since 

their results are similar for the two cases, we restrict ourselves to 

the simpler two-dimensional case. 

Circular jetstreams are considered. It is assumed that the 

distribution function depending on r_ and v_ only through angular 
2 

momentum L and eccentricity e , f(L,e ) , remains a slowly varying 

function of L . Making use of a Taylor series expansion of f in L 

the authors then derive an equation for the evolution of the angular 

momentum distribution: 

h(L) = J dr dcp dvr f (L,e
2 (r, vr ,L)) , (6) 

2 2 
which with the additional assumption f(L,e ) = h(L)|(e ) takes the 
simple form: 

2 
|£ = D(L) - ^ h2(L,t) . (7) 

The diffusion coefficient is given as: 

D(L) = ̂  L4 f dg dg de^ de' = — ^ - * (e ) i|» (e' ) 
o(e ,e' ) 

^(g)|g|[(gj - g*>e<s) - g^ a(2)] . (8) 

Here a(g) and 0(g) are the average fractional energy loss and ave-
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rage fractional energy deflected in a collision with relative velocity 

g = (g ,g ) . These quantities are therefore measures of how much the 

relative velocity vector shrinks and twists in an average collision, 

respectively. Further, e and e' are the eccentricities of particles 

at (r,v ,L) and (r,v + g ,L + r g ) respectively, while I|I , a 

and the Jacobian determinant are all positive quantities. 

Since the angular momentum distribution (6) is closely related 

to particle density in the stream, (7) tells that if D(L) < 0 then 
2 2 2 

the density at density maxima where 3 h /3L < 0 will increase, leading 

to still more enhanced maxima. This phenomenon for which the term "nega­

tive diffusion" was coined would be the conjectured radial focusing. 

From (8) it is seen that an increasing inelasticity decreases D(L) and 

therefore promotes such a focusing. The'effect of energy deflection 

depends on the explicit form of |3(g) and scattering cross-section. 

One would normally expect a decreased energy deflection to promote radial 

focusing of the stream. 

This conclusion is in qualitative agreement with the results of 

numerical simulations. The beauty of the result is, however, spoiled 

by the fact that the applied series expansion is valid only if the dis­

tribution function remains not only a slowly varying function of angular 

momentum but an even more slowly varying function of eccentricity. The 

latter requirement is clearly too restrictive. 

Numerical simulation studies 

Numerical simulations have by far given the best insight into 

stream dynamics yet [7], Results obtained indicate that it is natural 

to divide the dynamical evolution of streams into two separate stages. 

The first of these seems to be almost independent of the particular 

choice of collision model. Starting from an arbitrarily prescribed 

initial state a rapid "thermalization" takes place during the first 

1 - 2 mean free collision times. During this time the particle distri­

bution adjusts itself such that an approximate balance between the mean 

square velocities in the radial and polar directions in the stream is 

set up. Since the mean square of these velocity components are deter­

mined by the distributions of eccentricities and inclinations, the width 

of these distributions adjust to each other during the first transient 

evolutionary stage. 
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This is demonstrated in figure 1 for four different simulations 

starting from the same initial state but with different degrees of in­

elasticity. The specific collision model employed will be described 

below. The width of the distributions of eccentricities and inclina­

tions are represented by the average values of these quantities, <e> 

and <i> . In the present case we clearly has a rather "unbalanced" 

initial state. This type of effect is also predicted from the time 

expanded Boltzmann equation [6], 

<e> 

collisions/particle 

Figure 1. Evolution of the ratio of mean values of inclination 
and eccentricity for different degrees of inelasticity, 
starting from the same initial state. 

A more detailed analysis shows that not only the width but also 

the shape of the distribution of inclinations and eccentricities are 

adjusted during the first stage. This is demonstrated in figure 2 for 

a circular Jetstream. Shown are particle number histograms as a func­

tion of eccentricity at three different times for a particular simula­

tion. Starting from a uniform distribution of eccentricities in the 

interval e = 0.1 to 0.3 the distribution can be approximated quite 
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well with a Rayleigh distribution after only one mean free collision 

time. The same conclusion applies to the distribution of inclinations. 

INITIAL STATE 1/2 COLLISION/PARTICLE 1 COLLISION/ PARTICLE 

Figure 2. Evolution of the distribution of eccentricities. 

A simple physical explanation of this fact can be given along 

the following lines. Consider a particle with specified orbital ele­

ments. In the first approximation the motion of this particle can be 

considered as a circular motion superimposed two harmonic oscillations, 

one in the radial direction with amplitude ae and one in the polar 

direction with amplitude ai . A large number of such oscillators inter­

act via interparticle collisions. One would expect this system of inter­

acting oscillators to evolve towards a state a equilibrium with Rayleigh 

distributed oscillator amplitudes. This would again give rise to Ray­

leigh distributed eccentricities and inclinations: 

2 
F(e) ~ e exp(- ae ) (9) 

and 

F(i) ~ i exp(- 6i2) . (10) 

The result applies to circular jetstreams, that is for streams 

having an isotropic distribution of individual pericentrum vectors P, 

<^P^> = O. For elliptic jetstreams, \P^>= j? f 0, the distribution of 

eccentricities takes the alternative form: 

2 2 
F(e) ~ el (2arie)exp(- a(e + r\ )) , (11) 
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where I (z) is the modified Bessel function of zero order. This is a 
o 

Rice distribution. It is known from the theory of random signals to be 

the resulting amplitude distribution if a narrow-band gaussian noise is 

superimposed on a deterministic sinusoidal signal. Certain physical 

similarities exist between this system and our elliptic stream. For 

small degrees of anisotrophy, |< P_ >\/<\P_\> « 1 ; the Rice distribu-* 

tion reduces to a Rayleigh distribution. In the opposite case, ^P.-*!/ 

<|p_|> » 1 , a narrow gaussian distribution centered at e = r| results. 

The properties of Jetstream dynamics discussed so far seems to 

be essentially independent of the choice of collision model. For the 

subsequent and more slowly evolving stage this is not so. Here the 

degree of inelasticity and the amount of energy deflection in a typical 

collision seems to be of decisive importance. It is therefore necessary 

at this point to describe in some detail the different collision models 

that have been used. Both two and three-dimensional simulations were 

performed. The latter ones were all done with what will be called the 

P-model. It is described in terms of one parameter 0 by which help 

the degree of inelasticity can be varied. The pre-and post-collisional 

relative velocities g and g' are related by: 

g' = g - Pg-kk , (12) 

where k_ is the unit impact vector, parallel to the line connecting 

the centres of two colliding particles at impact. The component of the 

relative velocity normal to k_ is left unchanged while the parallel 

component is reversed and diminished, 0 taking values in the range 

(1, 2). Elastic collisions correspond to B = 2 . For B = 1 half 

the kinetic energy in the centre of mass system will be lost in an ave­

rage collision. 

The two-dimensional simulations were performed with different 

collision models. In addition to the g-model results for the snowflake 

model will also be reviewed. In this model the components of the post-

collisional relative velocity parallel and perpendicular to the pre-

collisional relative velocity is given by: 

gj = g(l - C cos 6) 

(13) 
g' = B g sin 0 cos 8 , 

where 8 is the angle between g and k_ . By varying the parameters 
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C and B the amount of energy lost and deflected in collisions can be 

varied, respectively. 

The simulations indicate that the evolution of the distributions 

of eccentricities and inclinations during the second stage depends mainly 

on the degree of inelasticity. When the inelasticity is sufficient, 

that is, when 30 - 40 per cent of the kinetic energy in the centre of 

mass system of two colliding particles is lost in an average collision, 

the widths of these distributions decrease with time. This means that 

the orbits of the individual particles will evolve towards circular 

orbits in the symmetry plane of the stream. If this requirement is not 

fulfilled the opposite evolution takes place. The average eccentricity 

and inclination then increase with time, more and more particles being 

put onto hyperbolic orbits and literally being "kicked off" from the 

central body. This is demonstrated in figure 3 which refers to the same 

set of simulations as discussed in figure 1. The g-values 1.1, 1.4, 1.7 

and 2.0 correspond to average energy losses of 50, 40, 25 and zero per 

cent respectively. The initial increase in eccentricity is due to the 

"thermalization process" described above. After only 5 elastic colli­

sions per particle an appreciable fraction of these particles belong to 

the tail of the distribution of eccentricities extending beyond e = 1 

and are therefore "kicked off". It is important to note that any amount 

of energy loss will not bring about a focusing of the stream in its plane 

of symmetry. The inelasticity has to exceed a certain limit before the 

inherent tendency of elastic collisions to Maxwellize the velocity dis­

tribution is overcome. This limit is not exceeded for |3 = 1.7 . The 

Figure 3. Evolution of the mean value of eccentricity for 
different degrees of inelasticity. 
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energy lost in this case is taken from the potential energy, the average 

value of 1/a increasing with time. 

The final effect to be discussed is that of the radial focusing 

of the stream. This effect seems to depend critically on the average 

amount of energy deflected. The smaller the deflection of the relative 

velocity vector in an average collision, the better are the chances that 

a radial focusing will take place. With the 0-model no radial focusing 

was observed in the three or two-dimensional simulations. The two-

dimensional simulations with the snowflake model do-, however, show this 

effect under favourable conditions, reductions in the radial width of 

the stream with a factor 2 to 3 having been observed. This does, how­

ever, require a rather small amount of energy deflected in the average 

collision. This is demonstrated in figure 4, where the spread of the 

0.0 8.0.5 

= 0.7 

B = 0.7 

B = 0.5 

B = 0.3 

B = 0.0 

10 collisions/particle 

Figure 4. Radial focusing for different amounts of energy 
deflection, starting from the same initial state. 
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individual semi-major axis has been taken as a measure of the radial 

width of the stream. 

The radial focusing seems to require that a certain minimum width 

condition for the stream be satisfied. There thus seems to exist a 

maximal allowed radial density gradient in the stream for a given spread 

of eccentricities. This effect is demonstrated in figure 5 which refers 

to a set of two-dimensional simulations, keeping the collision model and 

the initial distribution of eccentricities unchanged, but varying the 

initial radial width of the stream. 

<e> 

0.3 

0.2 

0.1 

0 

V<a2>-<a>2' 

0.1 -

0.05 

0 

0 5 10 collisions/particle 

Figure 5. Radial focusing in streams of different initial 
radial thickness. 

Finally, any radial focusing requires a sufficient spread of 

eccentricities. It is through this spread that the necessary coupling 
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between particles in the stream is at all possible. When the average 

eccentricity has decreased to almost zero no more effect is seen in 

figures 4 and 5. 

Dynamical effects of collisions in the present solar system 

The studies reviewed above are all restricted to rather idealized 

stream models. Only streams of same sized spherical particles have been 

considered. Thus possible characteristic effects due to a broad par­

ticle size spectrum are not known. Particle spin has not been taken 

into account. 

The model studies have mainly considered number conserving colli­

sions. Fragmentational collisions are, however, expected to be of im­

portance - at least in other connections [2] - and possibly also accrea-

tional collisions. The latter ones will necessarily be completely in­

elastic. Laboratory studies on hypervelocity impacts indicate that 

about one half of the kinetic energy is spent on crushing and heating 

the rock [8] . This would bring fragmentational collisions in line with 

the most inelastic collisions studied in the numerical simulations. 

Another facet of fragmentational collisions is that dispersing a given 

mass in smaller particles will increase the collision frequency and 

therefore tend to enhance the dynamical importance of collisions. 

Contributions to the dynamics of the meteoritic complex come from 

different sources as noted in the introduction. A simple way of estima­

ting the relative importance of these sources is to compare their diffe­

rent characteristic time scales. For collisions the relevant time scale 

is clearly the mean free collision time. 

With these introductory remarks in mind we next turn to a discus­

sion of possible dynamical effects of collisions in our present day solar 

system. This discussion will necessarily have to be rather sketchy and 

partly speculative. 

It is expected that the thermalization effect of collisions 

would be one of their most characteristic dynamical signatures. A search 

for such characteristica can be made in the'visual asteroid population. 

The ratio of the mean values of inclination and eccentricity of the 

numbered asteroids turns out to be <i>/<e> » 1 . Further, in figure 6 

the number of these asteroids as functions of inclination and eccentri-
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city are plotted together with the Rayleigh distributions adjusted to 

the corresponding mean value. Inclinations are here taken relative to 

the ecliptic plane. A more correct procedure would require inclinations 

relative to the symmetry plane of the asteroid population. Even if the 

actual distributions do not fit the Rayleigh distributions to within the 
2 

95 per cent fractile of a x -test, similarities are clearly seen. It is 

tempting to speculate that we are here observing an effect of 

collisions in the asteroid population. 

280 n 

•J 200-

T5 160-

Z 8 0 - ! 

30 
Inclination, degrees 

140 

» 100 

0,22 0.33 
Eccentricity of orbit 

0.55 

Figure 6. Distributions of inclinations and eccentricities 
for the numbered main belt asteroids, together with 
the corresponding Rayleigh distributions. 
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A characteristic property of the Poynting-Robertson effect for 

the interplanetary dust population [l] is that the individual orbital 

planes remain unchanged while the average eccentricity decreases. This 

process would eventually lead to a collisionally "unstable" dust popula­

tion. If the mean free collision time in this population is comparable 

to Poynting-Robertson lifetimes, a thermalization process is expected 

to take place whereby a finite average eccentricity is maintained at the 

expense of a decreasing average inclination. Thus, since the Poynting-

Robertson effect only constitutes one of at least two competing processes 

in the real system, conclusions from existing Poynting-Robertson effect 

calculations should be taken with caution. Whether any decrease in ave­

rage inclination with decreasing solar distance has been observed is not 

known to this author. 

The simulation results have also been applied to the Saturnian 

ring problem [9]. Whatever the origin of the rings their particles must 

at present or in the past have suffered mutual collisions. From the 

mere existence of the rings it could then be concluded that these par­

ticles should have a rather high degree of inelasticity. Secondly, ring 

lifetime arguments put an upper limit to the possible ring thickness. 

This follows because increased thickness leads to increased collision 

frequency and thereby increased rate of energy dissipation. This ques­

tion can be studied using the results from the numerical simulations. 

From a given ring thickness the average inclination of the individual 

particle orbits in the ring is determined. This in turn determines the 

corresponding average eccentricity. With Rayleigh distributed inclina­

tions and eccentricities we thus see that the ring thickness uniquely 

determines the velocity distribution in the ring. In this way the energy 

dissipation rate can be estimated. The conclusion is reached that the 

ring thickness is at least an order of magnitude less than the 1 - 2 km 

thickness often inferred from optical observations [10]. 

The applications discussed so far all refer to what was previously 

denoted as circular jetstreams. We, however, also observe ellip­

tic stream configurations in the solar system, such as meteor streams 

and asteroidal jetstreams. The latter ones [3], [ll] are represented 

by clusterings of visual asteroids in similar orbits. Although a rigid 

analysis of the statistical significance of such clusterings has not yet 

been attempted, the probability of a random appearance at our times of 

the major asteroidal jetstreams seems sufficiently small that a physical 

mechanism able to hold the streams together against the secular perturba-
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tions due to Jupiter, should be sought. According to Alfvfen's hypo­

thesis, this mechanism is the collisional focusing effect, the visual 

Jetstream asteroids being taken as some kind of Brownian particles in 

a background collisionally dominated stream of subvisual asteroids. 

Attempts of looking for the collisional thermalization process in any 

of these proposed elliptic streams have not been made. Estimates of 

mean free collision times obviously do not exist. Upper limits to such 

times set by optical brightness constraints also seems to be lacking. 

For meteor streams Mendis [12] has made an attempt to estimate 

the relative importance of different perturbing forces. Planetary per­

turbations will give rise to a secular variation of the individual par­

ticle orbits in the stream. This will give rise to slowly changing and 

revolving orbits with typical times for a complete revolution of the 

order of 10 years. This time in itself is of little interest since a 

revolution of the whole meteor stream is of no relevance in the present 

connection. Mendis does, however, estimate the timescale for differen­

tial perturbations to bring individual grains out of the main bulk of 

the stream to be of the same order of magnitude. The timescale for the 

orbit of a 100 |am dust grain to shrink by an amount comparable to the 

radial thickness of typical meteor streams by the Poynting-Robertson 

effect is also found to be of the same order of magnitude. On the other 
4 

hand Mendis comes out with 10 years as a typical mean free collision 
18 7 

time for a meteor stream of mass 10 g, thickness 10 km, semi-major 

axis 3 a.u., consisting of particles of average size 100 (am and having 

an average internal velocity of about 100 m/s. This is certainly an 

indication that we are in the right ballpark and that important colli­

sional contributions to the dynamical evolution of meteor streams are 

expected. More detailed studies of this aspect are needed. 

A slight warning should be raised at this point. Discussions 

based entirely on the concept of mean free collision time will not al­

ways suffice to settle the problem. Thus, to establish the collisional 

effects on planetary induced longitudinal focusing in meteor streams 

[13], a more complete study would be necessary. 

Conclusion 

So far model studies of the dynamical importance of mutual colli­

sions have only treated rather idealized situations. Dynamical effects 

of fragmentational collisions and a broad particle size spectrum have 
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not been dealt with. The interaction between a stream and a background 

gas or sporadic meteor population has not been given any detailed dis­

cussion. Nevertheless, studies performed have already revealed charac­

teristic dynamical signatures expected from mutual collisions. 

Only limited effort has been made to apply these results to the 

real solar system. Evaluations of mean free collision times and expec­

ted degree of inelasticity are required. It is hoped that such questions 

will be given consideration in the future and that the effects of colli­

sions on the dynamics of our solar system will no more simply be over­

looked but ascribed their proper weights. 
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