BICYCLIC BICUBIC FIELDS

CHARLES J. PARRY

1. Introduction. There is an extensive body of literature on the bicyclic biquadratic fields. These fields provide the simplest examples of abelian noncyclic extensions of Q. In sharp contrast, there is a dearth of literature on the bicyclic bicubic extensions of the rational numbers. These fields together with the abelian noncyclic octic extensions provide the next simplest abelian noncyclic extensions.

In this article, we shall study abelian bicyclic bicubic extensions of Q of degree 9 . Hasse $[4, v-i x]$ has stated as important objectives: the computation of an integral basis, the determination of class number and the calculation of fundamental units for abelian fields. In this article, we will solve the first problem completely, and show that the solution to the unit problem leads to a solution of the class number problem. Moreover, we shall give a method for determining the unit group up to a subgroup which has index 1 or 3 and so determine the class number up to a factor of 3 .
2. Notation and terminology. The following notation will be used throughout this article.
Q : Rational number field.
$\zeta=e^{2 \pi i / 3}$: Primitive cube root of unity.
$k=Q(\zeta)$: Third cyclotomic field.
K : Bicyclic bicubic extension of Q of degree 9 .
$K_{i} \quad(i=1,2,3,4)$: Cyclic cubic subfields of K.
f : Conductor of K.
$f_{i} \quad(i=1,2,3,4): \quad$ Conductor of the field K_{i}.
$L_{i}=K_{i}(\zeta)$.
$L=K(\zeta)$.
$N_{E / F}$: Norm function for the extension E / F.
$S_{E / F}$: Trace function for the extension E / F.
D_{F} : Discriminant of the field F over Q.
h : Class number of K.
h_{i} : Class number of $K_{i} \quad(i=1,2,3,4)$.
U : Unit group of K.
$U_{i}: \quad$ Unit group of $K_{i} \quad(i=1,2,3,4)$.
$V=U_{1} U_{2} U_{3} U_{4}$: Product of subgroups in U.
$\bar{\alpha}$: Complex conjugate of a complex number α.

An integer $(x+y \sqrt{-3}) / 2$ of k is said to be normalized if either $x \equiv 2, y \equiv$ $0(\bmod 3)$ or $x=3 x_{0}, y=3 y_{0}$ with $x_{0} \equiv 2, y_{0} \not \equiv 0(\bmod 3)$. A normalized integer is said to be strongly normalized if $y>0$.

Lemma 1. If α is an integer of k relatively prime to 3 then α has exactly one normalized associate. If $(\alpha, 9)=3$, then α has exactly two normalized associates.

Proof. Since there are exactly six units in k, the lemma follows by an examination of cases.

Corollary. If α is an integer of k, which is not a rational integer, with $(\alpha, 9)=1$ (respectively 3), then α has exactly one (respectively two) associate(s) β such that either β or $\bar{\beta}$ (but not both) is strongly normalized.

Proof. If β is normalized and not a rational integer, then exactly one of β or $\bar{\beta}$ is strongly normalized.
3. Integral basis. It follows from Gras [1], Hasse [2] or Maki [5] that the field $K_{i} \quad(i=1,2,3,4)$ generated by the roots of a polynomial

$$
q_{i}(x)=x^{3}-\left(f_{i} / 3\right) x-f_{i} a_{i} / 27
$$

where $4 f_{i}=a_{i}^{2}+27 b_{i}^{2}$ and $\alpha_{i}=\left(a_{i}+3 b_{i} \sqrt{-3}\right) / 2$ is strongly normalized. It will be shown that α_{3} and α_{4} can be determined from α_{1} and α_{2}.

Lemma 2. Let $d=\left(f_{1}, f_{2}\right), \delta=\left(\alpha_{1}, \bar{\alpha}_{2}\right)$ and $\gamma=1 / 3\left(\alpha_{1}, \alpha_{2}\right)$ or $\gamma=\left(\alpha_{1}, \alpha_{2}\right)$ according as 3 divides both of α_{1} and α_{2} or not. Then $N_{k / Q}(\delta \gamma)=d$ and there exist integers β_{1} and β_{2} of k such that $\alpha_{1}=\gamma \delta \beta_{1}$ and $\alpha_{2}=\gamma \bar{\delta} \beta_{2}$. Moreover, either $\gamma \beta_{1} \beta_{2}=\rho$ or 3ρ where ρ is a square free integer of k relatively prime to 3 and divisible by no rational integer.

Proof. First note that $N_{k / Q}\left(\alpha_{i}\right)=f_{i}$ is square free except for a possible factor of 9 and α_{i} is an integer of k. Since the integers of k form a UFD, we can write

$$
\begin{aligned}
& \alpha_{1}=\pi_{0}^{e_{1}} \pi_{1} \pi_{2} \ldots \pi_{r} \pi_{r+1} \ldots \pi_{s} \pi_{s+1} \ldots \pi_{t} \epsilon_{1} \\
& \alpha_{2}=\pi_{0}^{e_{2}} \pi_{1} \pi_{2} \ldots \pi_{r} \bar{\pi}_{r+1} \ldots \bar{\pi}_{s} \pi_{s+1}^{\prime} \ldots \pi_{u}^{\prime} \epsilon_{2}
\end{aligned}
$$

where $\pi_{0}=(-3+3 \sqrt{-3}) / 2$ and $\pi_{1}, \ldots, \pi_{t}, \pi_{s+1}^{\prime}, \ldots, \pi_{u}^{\prime}$ are distinct, nonconjugate, normalized primes of k which do not divide $3, \epsilon_{1}, \epsilon_{2}$ are units of k, and $e_{1}, e_{2} \in\{0,1\}$. Since the product of normalized integers, not divisible by 3 , is again normalized and since α_{1} is normalized, we see $\epsilon_{1}=1$ when $e_{1}=0$. Similarly, $\epsilon_{2}=1$ when $e_{2}=0$. If $e_{1}=1$, then by dividing both sides of the expression for α_{1} by 3 and examining congruences modulo 3 , we see $\epsilon_{1}=1$ or $(-1+\sqrt{-3}) / 2$ according as $b_{1} \equiv 1$ or $2(\bmod 3)$. Similarly, when $e_{2}=1, \epsilon_{2}=1$ or $(-1+\sqrt{-3}) / 2$ according as $b_{2} \equiv 1$ or $2(\bmod 3)$. Let $m=\min \left\{e_{1}, e_{2}\right\}$ and note

$$
\begin{aligned}
\delta & =\pi_{0}^{m} \pi_{r+1} \ldots \pi_{s} \\
\gamma & =\pi_{1} \ldots \pi_{r} .
\end{aligned}
$$

Setting

$$
\beta_{1}=\pi_{0}^{e_{1}-m} \pi_{s+1} \ldots \pi_{t} \epsilon_{1} \quad \text { and } \quad \beta_{2}=\pi_{0}^{e_{2}-m} \pi_{s+1}^{\prime} \ldots \pi_{u}^{\prime} \epsilon_{2} \epsilon^{m}
$$

where $\epsilon=(-1-\sqrt{-3}) / 2$, the result follows.
Proposition 3. Let $f_{i}=d f_{i}^{\prime}$ for $i=1,2$ and $N_{k / Q}(\delta)=c, N_{k / Q}(\gamma)=g$. Then $f_{3}=g f_{1}^{\prime} f_{2}^{\prime}$ and $f_{4}=c f_{1}^{\prime} f_{2}^{\prime}$. Moreover $\alpha_{3}= \pm \bar{\gamma} \beta_{1} \beta_{2}$ or $\alpha_{3}= \pm \gamma \bar{\beta}_{1} \bar{\beta}_{2}$ and $\alpha_{4}= \pm \bar{\delta} \beta_{1} \bar{\beta}_{2}$ or $\alpha_{4}= \pm \delta \bar{\beta}_{1} \beta_{2}$.

Proof. By the cubic formula, $K_{i}=Q\left(\theta_{i}\right)$ for $i=1,2$ where

$$
\theta_{i}=1 / 3\left(\sqrt[3]{f_{i} \alpha_{i}}+\sqrt[3]{f_{i} \bar{\alpha}_{i}}\right)
$$

Also

$$
\theta_{i}^{\prime}=1 / 3\left(\zeta \sqrt[8]{f_{i} \alpha_{i}}+\zeta^{2} \sqrt[3]{f_{i} \bar{\alpha}_{i}}\right) \quad \text { and } \quad \theta_{i}^{\prime \prime}=1 / 3\left(\zeta^{2} \sqrt[3]{f_{i} \alpha_{i}}+\zeta \sqrt[3]{f_{i} \bar{\alpha}_{i}}\right)
$$

are the conjugates of θ_{i} and are also contained in K_{i}. Now

$$
L_{i}=k\left(\sqrt[3]{f_{i} \alpha_{i}}\right)=k\left(\sqrt[3]{f_{i} \bar{\alpha}_{i}}\right)
$$

and since there are exactly 4 cubic intermediate fields between k and L, we may number L_{3} and L_{4} so that

$$
L_{3}=k\left(\sqrt[3]{f_{1} \alpha_{1} f_{2} \alpha_{2}}\right) \quad \text { and } \quad L_{4}=k\left(\sqrt[3]{f_{1} \alpha_{1} f_{2} \bar{\alpha}_{2}}\right)
$$

Now

$$
\begin{aligned}
f_{1} \alpha_{1} f_{2} \alpha_{2} & =d f_{1}^{\prime} \gamma \delta \beta_{1} d f_{2}^{\prime} \gamma \bar{\delta} \beta_{2} \\
& =d^{2} f_{1}^{\prime} f_{2}^{\prime} \delta \bar{\delta} \gamma^{2} \beta_{1} \beta_{2} \\
& =(c g)^{2} c f_{1}^{\prime} f_{2}^{\prime} \gamma^{2} \beta_{1} \beta_{2} \\
& =c^{3} g(\gamma \bar{\gamma}) f_{1}^{\prime} f_{2}^{\prime} \gamma^{2} \beta_{1} \beta_{2} \\
& =(c \gamma)^{3} g f_{1}^{\prime} f_{2}^{\prime} \bar{\gamma} \beta_{1} \beta_{2}
\end{aligned}
$$

so

$$
L_{3}=K\left(\sqrt[3]{g f_{1}^{\prime} f_{2}^{\prime} \bar{\gamma} \beta_{1} \beta_{2}}\right)=K\left(\sqrt[3]{f_{3} \alpha_{3}}\right)
$$

Since $g f_{1}^{\prime} f_{2}^{\prime} \bar{\gamma} \beta_{1} \beta_{2}$ and $f_{3} \alpha_{3}$ are both cube free integers of k, it follows that $f_{3}=g f_{1}^{\prime} f_{2}^{\prime}$ and $\alpha_{3}= \pm \bar{\gamma} \beta_{1} \beta_{2}$ or $\alpha_{3}= \pm \gamma \bar{\beta}_{1} \bar{\beta}_{2}$. Similarly, $f_{4}=c f_{1}^{\prime} f_{2}^{\prime}$ and $\alpha_{4}= \pm \bar{\delta} \beta_{1} \bar{\beta}_{2}$ or $\alpha_{4}= \pm \delta \bar{\beta}_{1} \beta_{2}$.

Corollary 1. For any prime p, either p divides none or exactly 3 of the conductors $f_{1}, f_{2}, f_{3}, f_{4}$.

Corollary 2. We may choose f_{1} with $\left(f_{1}, 3\right)=1$. If this is done then

$$
\alpha_{3}=\bar{\gamma} \beta_{1} \beta_{2} \quad \text { or } \quad \alpha_{3}=\gamma \bar{\beta}_{1} \bar{\beta}_{2} \quad \text { and } \quad \alpha_{4}=\bar{\delta} \beta_{1} \bar{\beta}_{2} \quad \text { or } \quad \alpha_{4}=\delta \bar{\beta}_{1} \beta_{2} .
$$

Proof. The first statement is immediate form Corollary 1. Under the hypothesis $\left(f_{1}, 3\right)=1, e_{1}=0$ in the proof of Lemma 2. Hence $\epsilon_{1}=1$ and so β_{1} will be normalized. Also $m=0$ so that δ is normalized. If $e_{2}=0$ then all of $\gamma, \bar{\gamma}$, $\beta_{1}, \bar{\beta}_{1}, \beta_{2}, \bar{\beta}_{2}$ and α_{3} are normalized so the sign in the equation $\alpha_{3}= \pm \bar{\gamma} \beta_{1} \beta_{2}$ or $\alpha_{3}= \pm \gamma \bar{\beta}_{1} \bar{\beta}_{2}$ must be positive. If $e_{2}=1$ and $\alpha_{3}= \pm \bar{\gamma} \beta_{1} \beta_{2}$ then divide both sides of the equation by 3 and take congruences modulo 3 . Since $\bar{\gamma}, \beta_{1}$ and ($\beta_{2} / \pi_{0} \epsilon_{2}$) are normalized this reduces to

$$
2+b_{3} \sqrt{-3} \equiv \pm(-1+\sqrt{-3}) \epsilon_{2}(\bmod 3) .
$$

Recall $\epsilon_{2}=1$ or $(-1+\sqrt{-3}) / 2$, but in either case the sign must be positive. Similarly, the sign must be positive if $\alpha_{3}= \pm \gamma \bar{\beta}_{1} \bar{\beta}_{2}$. Likewise the sign in the equation for α_{4} must be positive.

Theorem 4. The discriminant D_{K} is given by

$$
D_{K}= \begin{cases}\left(9 p_{1} p_{2} \ldots p_{n}\right)^{6} & \text { if } 3 \mid f_{2} \\ \left(p_{1} p_{2} \ldots p_{n}\right)^{6} & \text { if } 3 \dagger f_{2}\end{cases}
$$

where $p_{1}, p_{2}, \ldots, p_{n}$ are the distinct prime divisors of $f_{1} f_{2}$ other than 3. Moreover,

$$
f= \begin{cases}9 p_{1} p_{2} \ldots p_{n} & \text { if } 3 \mid f_{2} \\ p_{1} p_{2} \ldots p_{n} & \text { if } 3 \dagger f_{2} .\end{cases}
$$

Proof. A prime p ramifies in K if and only if $p \mid f_{1}$ or $p \mid f_{2}$. Moreover, in $K(p)=\left(P_{1} P_{2} P_{3}\right)^{3}$ with $N_{K / Q}\left(P_{i}\right)=p$ or $(p)=P_{1}^{3}$ with $N_{K / Q}\left(P_{1}\right)=p^{3}$ where each P_{i} is a prime ideal of K. If $p \neq 3$, Dedekind's formula shows that the different $\Delta_{K / Q}$ is exactly divisible by $\left(P_{1} P_{2} P_{3}\right)^{2}$ or by P_{1}^{2} depending on the factorization of p. In either case p^{6} is the exact power of p dividing the discriminant D_{K}. If $3 \dagger f_{2}$ then $3 \dagger D_{K}$ and we are done. If $3 \mid f_{2}$ then $(3)=P^{3}$ in K_{2} where P is a prime ideal of norm 3 . Since P^{4} exactly divides the different $\Delta_{K_{2} / Q}$ and $\left(\Delta_{K / K_{2}}, 3\right)=1$, it follows that P^{4} exactly divides $\Delta_{K / Q}$. Hence 3^{12} exactly divides the discriminant D_{K}.

The conductor f of K is clearly the least common multiple of the conductors f_{i} of the fields $K_{i}(i=1,2,3,4)$. Thus f has the stated value.

Corollary. $D_{K}=D_{K_{1}} D_{K_{2}} D_{K_{3}} D_{K_{4}}$.
If $3 \mid f_{1}$ let $p_{i}(x)=q_{i}(x)$ and otherwise set

$$
p_{i}(x)=x^{3}-x^{2}+\frac{1-f_{i}}{3} x-\frac{f_{i}\left(a_{i}-3\right)+1}{27} \quad \text { for } i=1,2,3,4 .
$$

Let θ_{i} be a root of $p_{i}(x)$ then Maki $[5]$ shows that $1, \theta_{i}, \theta_{i}^{\prime}$ form an integral basis for K_{i} / Q where θ_{i}^{\prime} is a conjugate of θ_{i}.

Lemma 5. The basis $1, \theta_{1}, \theta_{1}^{\prime}, \theta_{2}, \theta_{2}^{\prime}, \theta_{3}, \theta_{3}^{\prime}, \theta_{4}, \theta_{4}^{\prime}$ for K / Q has discriminant $3^{6} D_{K_{1}} D_{K_{2}} D_{K_{3}} D_{K_{4}}$.

Proof. A straight forward, but tedious calculation using the standard representation of the discriminant as a determinant, gives the result.

Theorem 6. An integral basis for K / Q consists of $1, \theta_{1}, \theta_{1}^{\prime}, \theta_{2}, \theta_{2}^{\prime}, \theta_{5}, \theta_{6}, \theta_{7}$, θ_{8} where

$$
\begin{aligned}
& \theta_{5}=1 / 3\left[-\epsilon+\epsilon \theta_{1}+\theta_{2}+\theta_{3}+\theta_{4}\right] \\
& \theta_{6}=1 / 3\left[-\epsilon+\epsilon \theta_{1}^{\prime}+\theta_{2}+\theta_{3}^{\prime}+\theta_{4}^{\prime}\right] \\
& \theta_{7}=1 / 3\left[\epsilon \theta_{1}+\theta_{2}^{\prime}+\theta_{3}^{\prime}-\theta_{4}-\theta_{4}^{\prime}\right] \\
& \theta_{8}=1 / 3\left[\epsilon \theta_{1}^{\prime}+\theta_{2}^{\prime}-\theta_{3}-\theta_{3}^{\prime}+\theta_{4}\right]
\end{aligned}
$$

and $\epsilon \equiv f_{2}(\bmod 3)$ is 0 or 1 .
Proof. First we need to show that $\theta_{5}, \theta_{6}, \theta_{7}$ and θ_{8} are integers. Since $3 \dagger f_{1}$ it follows from Cardan's formula, (see [6, p. 179])

$$
\theta_{1}=1 / 3\left[1+\sqrt[3]{f_{1} \alpha_{1}}+\sqrt[3]{f_{1} \bar{\alpha}_{1}}\right]
$$

and for $i=2,3,4$

$$
\theta_{i}=1 / 3\left[\epsilon+\sqrt[3]{f_{i} \alpha_{i}}+\sqrt[3]{f_{i} \bar{\alpha}_{i}}\right] .
$$

Here we choose conjugates so that

$$
\theta_{i}^{\prime}=1 / 3\left[\epsilon^{\prime}+\zeta \sqrt[3]{f_{i} \alpha_{i}}+\zeta^{2} \sqrt[3]{f_{i} \bar{\alpha}_{i}}\right]
$$

where $\epsilon^{\prime}=1$ or ϵ according as $i=1$ or $i>1$.
Now by Corollary 2 to Proposition 3,

$$
\begin{aligned}
\theta_{1} \theta_{2} & =1 / 9\left[\epsilon\left(1+\sqrt[3]{f_{1} \alpha_{1}}+\sqrt[3]{f_{1} \bar{\alpha}_{1}}\right)+\sqrt[3]{f_{2} \alpha_{2}}+\sqrt[3]{f_{2} \bar{\alpha}_{2}}\right. \\
& \left.+\sqrt[3]{f_{1} f_{2} \alpha_{1} \alpha_{2}}+\sqrt[3]{f_{1} f_{2} \bar{\alpha}_{1} \bar{\alpha}_{2}}+\sqrt[3]{f_{1} f_{2} \alpha_{1} \bar{\alpha}_{2}}+\sqrt[3]{f_{1} f_{2} \bar{\alpha}_{1} \alpha_{2}}\right] \\
& =1 / 3\left[-\epsilon / 3+\epsilon \theta_{1}+\theta_{2}\right. \\
& \left.+c / 3\left(\gamma \sqrt[3]{f_{3} \alpha_{3}}+\bar{\gamma} \sqrt[3]{f_{3} \bar{\alpha}_{3}}\right)+g / 3\left(\delta \sqrt[3]{f_{4} \alpha_{4}}+\bar{\delta} \sqrt[3]{f_{4} \bar{\alpha}_{4}}\right)\right],
\end{aligned}
$$

where we are assuming for the moment that $\alpha_{3}=\bar{\gamma} \beta_{1} \beta_{2}$ and $\alpha_{4}=\bar{\delta} \beta_{1} \bar{\beta}_{2}$. Since $\left(f_{1}, 3\right)=1$, Lemma 2 shows that both γ and δ are relatively prime to 3 and are normalized. Thus

$$
\begin{array}{ll}
\gamma=1 / 2(u+v \sqrt{-3}) & \text { and } \quad \delta=1 / 2(r+s \sqrt{-3}) \quad \text { with } u, v, r, s \in Z \\
& \text { and } u \equiv r \equiv 2(\bmod 3) \quad \text { and } \quad v \equiv s \equiv 0(\bmod 3) .
\end{array}
$$

Now

$$
\begin{aligned}
\theta_{1} \theta_{2} & =1 / 3\left[-\epsilon / 3+\epsilon \theta_{1}+\theta_{2}+\frac{c u}{6}\left(\sqrt[3]{f_{3} \alpha_{3}}\right.\right. \\
& \left.+\sqrt[3]{f_{3} \bar{\alpha}_{3}}\right)+\frac{c v \sqrt{-3}}{6}\left(\sqrt[3]{f_{3} \alpha_{3}}-\sqrt[3]{f_{3} \bar{\alpha}_{3}}\right)+\left(\frac{g r}{6}\right)\left(\sqrt[3]{f_{4} \alpha_{4}}+\sqrt[3]{f_{4} \bar{\sigma}_{4}}\right) \\
& \left.+\frac{g s \sqrt{-3}}{6}\left(\sqrt[3]{f_{4} \alpha_{4}}-\sqrt[3]{f_{4} \bar{\alpha}_{4}}\right)\right] \\
& =1 / 3\left[-\epsilon\left(1 / 3+\frac{c v}{2}+\frac{g s}{2}+\frac{c u}{6}+\frac{g r}{6}\right)+\epsilon \theta_{1}+\theta_{2}+\frac{c u \theta_{3}}{2}\right. \\
& \left.+\frac{c v}{2}\left(\theta_{3}+2 \theta_{3}^{\prime}\right)+\frac{g r}{2} \theta_{4}+\frac{g s}{2}\left(\theta_{4}+2 \theta_{4}^{\prime}\right)\right] \\
& =1 / 3\left[-\epsilon\left(\frac{c v}{2}+\frac{g s}{2}+1 / 3\left(1+\frac{c u}{2}+\frac{g r}{2}\right)\right)+\epsilon \theta_{1}+\theta_{2}\right. \\
& \left.+\frac{c(u+v)}{2} \theta_{3}+c v \theta_{3}^{\prime}+\frac{g(r+s)}{2} \theta_{4}+g s \theta_{4}^{\prime}\right] .
\end{aligned}
$$

By an analysis of cases $c u+g r \equiv-2 r u(r+u) \equiv 4(\bmod 9)$, so that

$$
0 \equiv 3 \theta_{1} \theta_{2} \equiv-\epsilon+\epsilon \theta_{1}+\theta_{2}+\theta_{3}+\theta_{4}(\bmod 3)
$$

Hence

$$
\theta_{5}=1 / 3\left(-\epsilon+\epsilon \theta_{1}+\theta_{2}+\theta_{3}+\theta_{4}\right)
$$

is an integer of K. If $\alpha_{3}=\bar{\gamma} \beta_{1} \beta_{2}$ and/or $\alpha_{4}=\delta \bar{\beta}_{1} \beta_{2}$ then the signs are changed on the $c v$ and/or $g s$ terms respectively. Since these terms vanish modulo 3, the same proofs holds. Since θ_{6}, θ_{7} and θ_{8} are conjugates of θ_{5}, they are also integers of K.

By direct computation, the index of the basis $1, \theta_{1}, \theta_{1}^{\prime}, \theta_{2}, \theta_{2}^{\prime}, \theta_{5}, \theta_{6}, \theta_{7}$, and θ_{8}, relative to the basis of Lemma 5 , is 3^{-3}. Therefore the new basis has discriminant equal to $D_{K / Q}$ and so is an integral basis for K / Q.
4. Class number considerations. The following class number relation is immediate from [7].

Proposition 7. $3^{5} h=Q^{*} h_{1} h_{2} h_{3} h_{4}$ where $Q^{*}=\left[U: U_{1} U_{2} U_{3} U_{4}\right]=[U: V]$.
Lemma 8. $Q^{*}=3^{a}$ with $0 \leqq a \leqq 5$.
Proof. Let G denote the Galois group of K / Q and G_{i} denote the Galois groups of K / K_{i} for $i=1,2,3,4$.

For any subgroup H of G, let \tilde{H} denote the sum of the elements of H in the integral group ring $Z G$. The direct norm relation

$$
\tilde{G}_{1}+\tilde{G}_{2}+\tilde{G}_{3}+\tilde{G}_{4}=3 e+\tilde{G},
$$

where e is the identity of G, shows that for any unit ϵ of $K, \epsilon^{3} \in V$. Hence $Q^{*}=3^{a}$ with $0 \leqq a \leqq 8$.

Suppose now $\epsilon \in U$ with $\epsilon \notin V$ and that $\epsilon^{3} \in U_{i}$, for some $i=1,2,3,4$. Set $\epsilon^{3}=\epsilon_{0}$ and note since $\epsilon \notin U_{i}, K=K_{i}(\epsilon)=K_{i}\left(\sqrt[3]{\epsilon_{0}}\right)$. But K_{i} does not contain the third roots of unity so $K_{i}\left(\sqrt[3]{\epsilon_{0}}\right) / K_{i}$ is a nonnormal extension, while K / K_{i} is a normal extension. Thus $\epsilon^{3} \notin U_{i}$. Now choose bases B for U and B^{*} for V such that $B^{*}=\left(\epsilon_{1}, \epsilon_{2}, \ldots, \epsilon_{8}\right)$ where $\epsilon_{2 i-1}$ and $\epsilon_{2 i}$ form a basis for U_{i} with $i=1,2,3,4$. We may assume that all elements of B and B^{*} are positive. Let A denote the 8×8 matrix which expresses the cubes of the elements of B in terms of the elements of B^{*}. Then by changing only the basis B, we may assume that A is a triangular matrix. Now $Q^{*} \cdot \operatorname{det} A=3^{8}$. Replacing ϵ_{i} with ϵ_{i}^{-1} if necessary, we may assume that the diagonal elements $a_{i i}$ are all positive and so $a_{i i}=1$ or 3. It follows from the remarks above that $a_{11}=a_{22}=3$. Suppose that $a_{33}=1$, then $e^{3}=\epsilon \epsilon_{3}$ for some units e of K and ϵ of K_{1}. If σ is a generator of G_{1} then

$$
e^{3(1-\sigma)}=e_{3}^{(1-\sigma)}
$$

again contradicting the above remarks. Hence $a_{33}=3$, so $3^{3} \operatorname{divides} \operatorname{det} A$ and the lemma follows.

The class number of a cyclic cubic field is relatively prime to 3 if, and only if, the conductor of the field has exactly one prime divisor. An analogous result is obtained for bicubic fields. When the conductor f of K has exactly two prime divisors, set $f=p q$ where $p \neq 3$ is prime and either $q \neq p$ is a prime of $q=9$.

Theorem 9. The abelian bicubic field K has class number relatively prime to 3 if, and only if, $f=p q$ (as above) has exactly two prime divisors such that not both p and q are cubic residues of one another.

Proof. By Hasse [3, p. 98] the number of ambiguous classes for K / K_{i} is given by

$$
a_{K / K_{i}}=3^{d+q^{*}-3} h_{i}
$$

where d is the number of primes of K_{i} which ramify in K and $3^{q^{*}}=\left(N(\beta): U_{i}^{3}\right)$ where $N(\beta)$ denotes the subgroup of the unit group U_{i} of K_{i} consisting of norms of elements of K. Note that q^{*} must be 0,1 or 2 . Now $(3, h)=1$ if, and only if, $\left(3, a_{K / K_{i}}\right)=1$ for some $i=1,2,3,4$. Assume that the conductor of K has exactly two prime divisors and let p, q be as above. We may choose K_{1} and K_{2} so that K_{1} has conductor p and K_{2} has conductor q. If q is not a cubic residue
modulo p then q (or 3 when $q=9$) stays prime in K_{1} and so q (or 3) is the only prime divisor of K_{1} which ramifies in K. Thus

$$
d=1 \quad \text { and } \quad a_{K / K_{1}}=3^{q^{*}-2} h_{1} .
$$

But $3 \dagger h_{1}$ and $q^{*} \leqq 2$, so $q^{*}=2$. Hence $3 \dagger a_{K / K_{1}}$, so $(3, h)=1$. A similar argument can be given when p is not a cubic residue modulo q.

Conversely, assume $(3, h)=1$. If $9 \mid h_{i}$ for some i, then class field theory shows that $3 \mid h$. Thus for each $i=1,2,3,4$ the conductor of K_{i} has at most two prime divisors. Since any prime divisor of the conductor of K, divides the conductors of exactly 3 of the subfields K_{i}, it follows that the conductor of K can have at most two prime divisors, and so has exactly two prime divisors. Let p and q be as above, but suppose that both are cubic residues of one another. Then p splits into three distinct prime divisors in K_{2} and q (or 3) splits into 3 distinct prime divisors in K_{1}. Thus $d=3$ for each of the extensions K / K_{1} and K / K_{2}, hence

$$
a_{K / K_{i}}=3^{q_{i}^{*}} h_{i},
$$

so $q_{1}^{*}=q_{2}^{*}=0$. Now $9 \dagger h_{i}$, for any i, while h_{1}, h_{2} are relatively prime to 3 and h_{3}, h_{4} are divisible by 3 , so Proposition 7 shows $Q^{*}=3^{3}$. If A is the matrix described in the proof of Lemma 8, then $\operatorname{det} A=3^{5}$. Hence the diagonal entry $a_{i i}=1$ for some $i \leqq 6$. For such an i,

$$
e_{i}^{3}=\epsilon_{1}^{b_{1}} \epsilon_{2}^{b_{2}} \ldots \epsilon_{i-1}^{b_{i-1}} \epsilon_{i}
$$

where e_{i} is a unit of K and $0 \leqq b_{j} \leqq 2$. In the proof of Lemma 8 , it was shown that the right hand side of the equation must contain units from at least two fields K_{j}. Thus $b_{k} \neq 0$ for some k with $1 \leqq k \leqq 4$. Now $\epsilon_{k} \in K_{j}$ for $j=1$ or 2 and

$$
N_{K / K_{j}}\left(e_{i}\right)=\epsilon_{2 j-1}^{b_{2 j-1}} \epsilon_{2 j}^{2_{2 j}}
$$

but $k=2 j-1$ or $2 j$, and so $q_{j}^{*} \geqq 1$, contradicting $q_{j}^{*}=0$. Thus not both p and q can be cubic residues of one another.

Corollary 1. There are infinitely many fields K with class number not divisible by 3 and for each of these fields $Q^{*}=27$.

Corollary 2. If p and q are distinct primes congruent to 1 modulo 3 or $q=9$ and not both p and q are cubic residues of one another, then any cyclic cubic field K_{i} of conductor pq has class number $h_{i} \equiv 3(\bmod 9)$.

Proof. Let K be the bicubic abelian field with conductor $p q$. It follows from Theorem 9 that $h_{i} \not \equiv 0(\bmod 9)$. Suppose $h_{i}=3 h^{\prime}$, then h^{\prime} is the order of the 3-complement of the ideal class group of K_{i}. Call this group H^{\prime} and decompose it into orbits under the action of the Galois group $G\left(K_{i} / Q\right)$. Each orbit, except the identity, has length 3 so $h^{\prime} \equiv 1(\bmod 3)$. Hence $h_{i} \equiv 3(\bmod 9)$.

Corollary 3. If p and q are distinct primes congruent to 1 modulo 3 or $q=9$ and both p and q are cubic residues of one another, then any cyclic cubic field K_{i} with conductor pq has class number $h_{i} \equiv 0(\bmod 9)$.

Proof. Let K be the bicubic abelian field with conductor $p q$. By Theorem 9 , the class number h of K is divisible by 3 . Hence 3 divides $a_{K / K_{i}}=3^{d+q^{*}-3} h_{i}$, but $d=0$ and $q^{*} \leqq 2$. Thus $9 \mid h_{i}$.
5. The unit index. In this section we study the unit index $(U: V)$. According to Hasse [2] we may choose the fundamental units $\epsilon_{2 i-1}$ and $\epsilon_{2 i}$ of K_{i} to be conjugates. The following lemma provides a basis for the study of the unit index.

Lemma 10. For each $i=1,2,3,4$, there exists a cube free positive integer b_{i} and an integer B_{i} of K_{i} with

$$
\epsilon_{2 i-1} \epsilon_{2 i}^{2}=b_{i} / B_{i}^{3} \quad \text { and } \quad N_{K_{i} / Q}\left(B_{i}\right)=b_{i} .
$$

Moreover, $b_{i} \neq 1, b_{i}$ is uniquely determined and $b_{i} \mid f_{i}^{2}$.
Proof. Let $G\left(K_{i} / Q\right)=(\sigma)$, where σ is chosen so that $\epsilon_{2 i}=\epsilon_{2 i-1}^{\sigma}$. By Hilbert's Theorem 90, there exists an integer B of K_{i} with $\epsilon_{2 i-1}=B^{1-\sigma}$. Since B is unique up to rational multiples, we may assume it is divisible by no rational prime and that it has positive norm. Since $(B)=\left(B^{\sigma}\right)$ as ideals of K_{i}, it follows that only ramified primes of K_{i} can divide B. Since no rational primes can divide B, the ramified primes can only divide B to the first or second power. Hence $b_{i}=N_{K_{i} / Q}(B)$ is a cube free positive divisor of f_{i}^{2}. Now $\epsilon_{2 i}=\epsilon_{2 i-1}^{\sigma}=B^{\sigma-\sigma^{2}}$ so that

$$
\epsilon_{2 i-1} \epsilon_{2 i}^{-1}=B^{1-2 \sigma+\sigma^{2}}=B^{1+\sigma+\sigma^{2}} / B^{3 \sigma}=b_{i} / B^{3 \sigma} .
$$

Set $B_{i}=\epsilon_{2 i}^{-1} B^{\sigma}$, then

$$
\epsilon_{2 i-1} \epsilon_{2 i}^{2}=b_{i} /\left(\epsilon_{2 i}^{-1} B^{\sigma}\right)^{3}=b_{i} / B_{i}^{3}
$$

Suppose now that

$$
\epsilon_{2 i-1} \epsilon_{2 i}^{2}=a / A^{3}
$$

where a is a positive cube free integer and A is an element of K_{i}. Then

$$
\left(A / B_{i}\right)^{3}=\left(a / b_{i}\right)
$$

so a / b_{i} must be a rational cube. Since both a and b_{i} are positive cube free integers, $a / b_{i}=1$ and so $a=b_{i}$.

Since $\epsilon_{2 i-1}$ and $\epsilon_{2 i}$ form a fundamental system of units of K_{i}, it follows that $b_{i} \neq 1$.

Lemma 11. The unit index $(U: V)$ is a divisor of 3^{3}.
Proof. Lemma 8 shows that ($U: V$) divides 3^{5}. If the index is 3^{5} then by examining the matrix A described in the proof of Lemma 8 , it is seen that the equation

$$
e^{3}=\epsilon_{1}^{a} \epsilon_{2}^{b} \epsilon_{3}^{c} \epsilon_{4}
$$

has a solution e in K with $0 \leqq a, b, c \leqq 2$. The proof of Lemma 8 shows that not both a and b can be zero. However,

$$
e^{3\left(1-\sigma_{2}\right)}=\epsilon_{1}^{a+b} \epsilon_{2}^{-a+2 b}
$$

and

$$
e^{3\left(1-\sigma_{1}\right)}=\epsilon_{3}^{c+1} \epsilon_{4}^{-c+2} \quad \text { where } G\left(K / K_{i}\right)=\left(\sigma_{i}\right) \text { for } i=1,2
$$

It follows that $a \equiv 2 b$ and $c \equiv 2(\bmod 3)$. Hence

$$
e_{1}^{3}=\left(\epsilon_{1} \epsilon_{2}^{2}\right)^{a}\left(\epsilon_{3}^{2} \epsilon_{4}\right)
$$

has a solution e_{1} in K with $a=1$ or 2 . Lemma 10 shows that $x^{3}=b_{1}^{a} b_{2}^{2}$ has a solution x in K, so $b_{1}^{a} b_{2}^{2}$ must be a cube of a rational integer. Thus the prime divisors of b_{1} and b_{2} must be identical. Suppose p is any prime divisor of b_{1}, then $p \mid f_{1}$. Since p divides exactly three of the conductors f_{1}, f_{2}, f_{3} and f_{4}, we may number the fields so that $p \dagger f_{2}$. Thus $p \dagger b_{2}$ and so the above equation has no solution. Hence ($U: V$) divides 3^{4}.

Suppose now $(U: V)=3^{4}$, then the matrix A of Lemma 8 shows that

$$
e^{3}=\epsilon_{1}^{a} \epsilon_{2}^{b} \epsilon_{3}^{c} \epsilon_{4}^{d} \epsilon_{5}
$$

has a solution e in K with $0 \leqq a, b, c, d \leqq 2$. The proof of Lemma 8 shows that at least one of a or b and at least one of c or d is nonzero. Now

$$
e^{3\left(1-\sigma_{1}\right)}=\epsilon_{3}^{c+d} \epsilon_{4}^{-c+2 d} \epsilon_{5} \epsilon_{6}^{-1}
$$

and

$$
e^{3\left(1-\sigma_{2}\right)}=\epsilon_{1}^{a+b} \epsilon_{2}^{-a+2 b} \epsilon_{5}^{2} \epsilon_{6} .
$$

Since $\epsilon_{5} \epsilon_{6}^{-1}$ and $\epsilon_{5}^{2} \epsilon_{6}$ cannot be cubes in K,

$$
a+b \not \equiv 0 \not \equiv c+d(\bmod 3) .
$$

The argument given above shows that b_{1}, b_{3} and b_{2}, b_{3} have identical sets of prime divisors, so b_{1} and b_{2} have the same prime divisors. This contradicts the way K_{1} and K_{2} were chosen above. Thus $(U: V)$ is a divisor of 27 .

Let W denote the units e of K such that $e \in V$ or

$$
\begin{equation*}
e^{3}=\epsilon_{1}^{a_{1}} \epsilon_{2}^{2 a_{1}} \epsilon_{3}^{a_{2}} \epsilon_{4}^{2 a_{2}} \epsilon_{5}^{a_{3}} \epsilon_{6}^{2 a_{3}} \epsilon_{7}^{a_{4}} \epsilon_{8}^{2 a_{4}} \tag{1}
\end{equation*}
$$

where $a_{1}, a_{2}, a_{3}, a_{4}$ are any integers.
Lemma 12. If $e \in U$ then $e^{1-\tau} \in W$ for any $\tau \in G(K / Q)$.
Proof. Suppose $e=\epsilon_{1}^{a_{1}} \ldots \epsilon_{8}^{a_{8}}$ then

$$
e^{3(1-\tau)}=\epsilon_{1}^{a_{1}(1-\tau)} \ldots \epsilon_{8}^{a_{8}(1-\tau)}
$$

For each $i=1,2,3,4$ the terms $\left(\epsilon_{2 i-1}^{a_{2 i-}} \epsilon_{2 i}^{a_{2 i}}\right)^{1-\tau}$ will be one of

$$
1, \epsilon_{2 i-1}^{a_{2 i-1}+a_{2 i}} \epsilon_{2 i}^{-a_{2 i-1}+2 a_{2 i}} \quad \text { or } \quad \epsilon_{2 i-1}^{2 a_{2 i}-1-a_{2 i}} \epsilon_{2 i}^{a_{2 i-1}+a_{2 i}} .
$$

Thus $e^{1-\tau} \in W$.
Theorem 13. W is a subgroup of U and $(W: V)=3^{4-\tau}$ where r is the rank of the $n \times 4$ matrix $M=\left(m_{i j}\right)$ over Z_{3} where

$$
b_{i}=p_{1}^{m_{1 i}} p_{2}^{m_{2 i}} \ldots p_{n}^{m_{n i}}
$$

for $i=1,2,3,4$. Here p_{1}, \ldots, p_{n} denote the distinct prime divisors of the conductor f of K. Moreover, either

$$
(U: V)=(W: V)=1,3 \text { or } 9 \quad \text { or } \quad(U: V)=3(W: V)=27 .
$$

Proof. Clearly, W is a subgroup of U. It follows from Lemma 10 that (1) has a solution for $a_{1}, a_{2}, a_{3}, a_{4}$ if and only if $b_{1}^{a_{1}} b_{2}^{a_{2}} b_{3}^{a_{3}} b_{4}^{a_{4}}$ is the cube of a rational number. But this is equivalent to

$$
\begin{gathered}
m_{11} a_{1}+m_{12} a_{2}+m_{13} a_{3}+m_{14} a_{4} \equiv 0(\bmod 3) \\
\cdot \\
m_{n 1} a_{1}+m_{n 2} a_{2}+m_{n 3} a_{3}+m_{n 4} a_{4} \equiv 0(\bmod 3)
\end{gathered}
$$

The number independent solutions is the dimension of the null space of M over Z_{3}. This is $4-r$. Hence $(W: V)=3^{4-r}$.

Let p_{1} be a prime divisor of b_{1}, then p_{1} divides f_{1}. Since any prime divides none or exactly 3 of f_{1}, f_{2}, f_{3} and f_{4}, we may assume p_{1} does not divide f_{2}. Let p_{2} be a prime divisor of b_{2}. Then the upper left hand corner of M is the 2×2 matrix $\left[\begin{array}{cc}m_{11} & 0 \\ m_{21} & m_{22}\end{array}\right]$ where $m_{11} m_{22} \not \equiv 0(\bmod 3)$. Thus the rank of M is at least 2 . Hence $(W: V)=3^{4-r}$ divides 9 .

Next it will be shown that $(U: V)$ divides $3(W: V)$. First assume that $(U: V)=27$ then the matrix A of Lemma 8 shows that the equation

$$
\begin{equation*}
e^{3}=\epsilon_{1}^{a_{1}} \epsilon_{2}^{a_{2}} \epsilon_{3}^{a_{7}} \epsilon_{4}^{a_{4}} \epsilon_{5}^{a_{5}} \epsilon_{6} \tag{2}
\end{equation*}
$$

has a solution e in K with $0 \leqq a_{i} \leqq 2$. Assume that $e \notin W$ and note that

$$
e^{3\left(1-\sigma_{1}\right)}=\epsilon_{3}^{a_{3}+a_{4}} \epsilon_{4}^{-a_{3}+2 a_{4}} \epsilon_{5}^{a_{5}+1} \epsilon_{5}^{-a_{5}+2}
$$

and

$$
e^{3\left(1-\sigma_{2}\right)}=\epsilon_{1}^{a_{1}+a_{2}} \epsilon_{2}^{-a_{1}+2 a_{2}} \epsilon_{5}^{2 a_{5}-1} \epsilon_{6}^{a_{5}+1}
$$

Since $e \notin W$, we may assume that $a_{5} \not \equiv 2(\bmod 3)$ so that $a_{5}+1 \not \equiv 0(\bmod 3)$. Thus both $e^{1-\sigma_{1}}$ and $e^{1-\sigma_{2}}$ are in W and must be independent. Hence $(W: V)=9$. Suppose now that $e \in W$, then 3 divides $(W: V)$. Since $(U: V)=3^{3}$, the equation

$$
\begin{equation*}
e_{1}^{3}=\epsilon_{1}^{c_{1}} \epsilon_{2}^{c_{2}} \epsilon_{3}^{c_{3}^{3}} \epsilon_{4}^{c_{4}^{4}} \epsilon_{5}^{c_{5}^{5}} \epsilon_{6}^{c_{6}} \epsilon_{7} \tag{3}
\end{equation*}
$$

has a solution in K for some c_{i} with $0 \leqq c_{i} \leqq 2$. Now

$$
e_{1}^{3\left(1-\sigma_{1}\right)}=\epsilon_{3}^{c_{3}+\epsilon_{4}} \epsilon_{4}^{-c_{3}+2 c_{4}} \epsilon_{5}^{c_{5}+c_{6}} \epsilon_{6}^{-c_{6}+2 c_{6}} \epsilon_{7} \epsilon_{8}^{-1}
$$

Thus not both of $c_{3}+c_{4}$ and $c_{5}+c_{6}$ can be congruent to 0 modulo 3 , so $e_{1}^{\left(1-\sigma_{1}\right)}$ is in W. Now e and $e_{1}^{\left(1-\sigma_{1}\right)}$ are independent elements of W so $(W: V)=9$.

Assume now that ($U: V$) $=9$ then either equation (2) or equation (3) has a solution in K and as above ($W: V$) is divisible by 3 .

Finally, we show $(U: V)=(W: V)$ when $(W: V)=1$ or 3. First assume that $(W: V)=1$. Suppose there exists an $e \in U$ with $e \notin W$. Then

$$
e^{3}=e_{1}^{a_{1}} \ldots \epsilon_{8}^{a_{8}} \quad \text { with } a_{2 i-1} \not \equiv 2 a_{2 i}(\bmod 3) \quad \text { for some } i=1,2,3, \text { or } 4 .
$$

Let $j \neq i$ be $1,2,3$ or 4 and let σ be a nonidentity element of $G\left(K / K_{j}\right)$ then the expression for $e^{3(1-\sigma)}$ involves either the terms

$$
\epsilon_{2 i-1}^{a_{2 i-1}+a_{2 i}} \epsilon_{2 i}^{-a_{2 i-1}+2 a_{2 i}} \quad \text { or } \quad \epsilon_{2 i-1}^{2 a_{2 i-1}-a_{21}} \epsilon_{2 i}^{a_{2 i-1}+a_{2 i}} .
$$

Thus $e^{(1-\sigma)} \in W$, but not in V, contradicting the hypothesis that $(W: V)=1$. Thus $U=W$ and so $(U: V)=1$.

Now assume that $(W: V)=3$. Then there is exactly one unit and its square (where exponents are reduced $(\bmod 3)$), of the form $e_{0}=\epsilon_{1}^{c_{1}} \ldots \epsilon_{8}^{c_{8}}$ where $c_{i}=0,1$ or 2 are not all zero and $c_{2 i-1} \equiv 2 c_{2 i}(\bmod 3)$, such that e_{0} is the cube of another unit of U. Suppose that $(U: W)>1$. Then there exists $e \in U$ with $e \notin W$ and $e^{3}=\epsilon_{1}^{a_{1}} \ldots \epsilon_{8}^{a_{8}}$ where each $a_{i}=0,1$ or 2 and $a_{2 j-1} \not \equiv 2 a_{2 j}(\bmod 3)$
for some $j=1,2,3$ or 4 . In the proof of Lemma 8 , it was shown that $c_{i} \neq 0$ for units ϵ_{i} from at least two fields K_{i}. Choose $t \neq j$ such that $c_{2 t} \equiv \equiv 0(\bmod 3)$. Let σ be a generator of $G\left(K / K_{t}\right)$, then by Lemma 12, $e^{1-\sigma} \in W$. However, the expression for $e^{3(1-\sigma)}$ does not involve either $\epsilon_{2 t-1}$ or $\epsilon_{2 t}$, so $e^{3(1-\sigma)} \neq e_{0}$ or e_{0}^{2}. This implies that $(W: V)>3$, a contradiction. Thus $(U: W)=1$ and $(U: V)=(W: V)=3$.

Corollary. If f has exactly two distinct prime divisors then $(W: V)=9$ and iff has exactly three prime divisors then $(W: V)=3$ or 9 .

Proof. If f has exactly two distinct prime divisors then M is a 2×4 matrix and so has rank at most 2 . But it was shown in the proof of Theorem 13 that M always has rank at least 2 , so $r=2$ and $(W: V)=9$. If f has exactly 3 prime divisors then M is a 3×4 matrix so has rank 2 or 3 . Thus $(W: V)=3$ or 9 .
6. Computation of $(W: V)$. The value of $(W: V)$ can be determined if the values of b_{1}, b_{2}, b_{3} and b_{4} of Lemma 10 are known. In this section we give a method for computing these b_{i} 's. To simplify notation we let $\epsilon=\epsilon_{2 i-1}$ for $i=1,2,3$, or 4 and $\epsilon^{\prime}=\epsilon_{2 i}, \epsilon^{\prime \prime}$ denote the conjugates of ϵ. Using the notation of Lemma 10, $G\left(K_{i} / Q\right)=(\sigma)$ and $\epsilon^{\prime}=\epsilon^{\sigma}, \sigma^{\prime \prime}=\epsilon^{\sigma^{2}}$.

Lemma 14. Not both of $\beta=1+\epsilon+\epsilon \epsilon^{\prime}$ and $\gamma=1+\epsilon+\epsilon \epsilon^{\prime \prime}$ can be zero. If $\beta \neq 0$ then $\epsilon=\beta^{1-\sigma}$ and if $\gamma \neq 0$ then $\epsilon=\gamma^{1-\sigma^{2}}$.

Proof. Since $\beta-\gamma=\epsilon\left(\epsilon^{\prime}-\epsilon^{\prime \prime}\right)$ and $\epsilon^{\prime} \neq \epsilon^{\prime \prime}$, it follows that $\beta \neq \gamma$ and so at least one is nonzero. Note that

$$
\epsilon \beta^{\sigma}=\epsilon\left(1+\epsilon^{\prime}+\epsilon^{\prime} \epsilon^{\prime \prime}\right)=\epsilon+\epsilon \epsilon^{\prime}+1=\beta
$$

so $\epsilon=\beta^{1-\sigma}$ when $\beta \neq 0$, similarly, $\epsilon=\gamma^{1-\sigma^{2}}$ when $\gamma \neq 0$.
Lemma 15. Let $S(\epsilon)=s$ and $S\left(\epsilon^{-1}\right)=t$ where S denotes the trace of K_{i} / Q. Then $\beta \gamma^{\prime \prime}=s+t+3$. Hence one of β or γ is zero if, and only if, $s+t+3=0$.

Proof.

$$
\begin{aligned}
\beta \gamma^{\prime \prime} & =\left(1+\epsilon+\epsilon \epsilon^{\prime}\right)\left(1+\epsilon^{\prime \prime}+\epsilon^{\prime} \epsilon^{\prime \prime}\right) \\
& =3+\epsilon+\epsilon^{\prime}+\epsilon^{\prime \prime}+\epsilon \epsilon^{\prime}+\epsilon \epsilon^{\prime \prime}+\epsilon^{\prime} \epsilon^{\prime \prime} \\
& =3+S(\epsilon)+S\left(\epsilon^{-1}\right) \\
& =3+s+t .
\end{aligned}
$$

Lemma 16.

$$
\begin{aligned}
& N(\beta)=6+3 S(\epsilon)+3 S\left(\epsilon^{-1}\right)+S\left(\epsilon \epsilon^{\prime-1}\right) \quad \text { and } \\
& N(\gamma)=6+3 S(\epsilon)+3 S\left(\epsilon^{-1}\right)+S\left(\epsilon^{-1} \epsilon^{\prime}\right)
\end{aligned}
$$

where N denotes the norm of K_{i} / Q.
Proof. By direct computation

$$
\begin{aligned}
N(\beta) & =\beta \beta^{\prime} \beta^{\prime \prime}=\left(1+\epsilon+\epsilon \epsilon^{\prime}\right)\left(1+\epsilon^{\prime}+\epsilon^{\prime} \epsilon^{\prime \prime}\right)\left(1+\epsilon^{\prime \prime}+\epsilon \epsilon^{\prime \prime}\right) \\
& =6+3\left(\epsilon+\epsilon^{\prime}+\epsilon^{\prime \prime}\right)+3\left(\epsilon \epsilon^{\prime}+\epsilon^{\prime} \epsilon^{\prime \prime}+\epsilon \epsilon\right)+\left(\epsilon \epsilon^{\prime 2}+\epsilon^{\prime} \epsilon^{\prime \prime 2}+\epsilon^{2} \epsilon^{\prime \prime}\right) \\
& =6+3 S(\epsilon)+3 S\left(\epsilon^{-1}\right)+S\left(\epsilon \epsilon^{\prime-1}\right) \\
& =6+3 s+3 t+S\left(\epsilon \epsilon^{\prime-1}\right)
\end{aligned}
$$

since $\epsilon \epsilon^{\prime 2}=\epsilon^{\prime} \epsilon^{\prime \prime-1}$ and $S\left(\epsilon^{\prime} \epsilon^{\prime \prime-1}\right)=S\left(\epsilon \epsilon^{\prime-1}\right)$. A similar computation gives the expression for $N(\gamma)$.

Lemma 17.

$$
S\left(\epsilon \epsilon^{\prime-1}\right)+S\left(\epsilon^{-1} \epsilon^{\prime}\right)=s t-3 \quad \text { and } \quad S\left(\epsilon \epsilon^{\prime-1}\right) \cdot S\left(\epsilon^{-1} \epsilon^{\prime}\right)=9+s^{3}+t^{3}-6 s t
$$

Proof. Since $s \cdot \epsilon^{-1}=1+\epsilon^{-1} \epsilon^{\prime}+\epsilon^{-1} \epsilon^{\prime \prime}$,

$$
s t=s S\left(\epsilon^{-1}\right)=S\left(s \epsilon^{-1}\right)=3+S\left(\epsilon^{-1} \epsilon^{\prime}\right)+S\left(\epsilon \epsilon^{\prime-1}\right)
$$

Also

$$
\begin{aligned}
S\left(\epsilon^{-1} \epsilon^{\prime}\right) \cdot S\left(\epsilon \epsilon^{\prime-1}\right) & =3+S\left(\epsilon^{3}\right)+S\left(\epsilon^{-3}\right) \\
& =3+s S\left(\epsilon^{2}\right)-t S(\epsilon)+3+t S\left(\epsilon^{-2}\right)-s S\left(\epsilon^{-1}\right)+3 \\
& =9+s\left(s^{2}-2 t\right)-s t+t\left(t^{2}-2 s\right)-s t \\
& =9+s^{3}+t^{3}-6 s t
\end{aligned}
$$

Lemma 18.

$$
S\left(\epsilon^{-1} \epsilon^{\prime}\right)=(s t-3-D) / 2 \quad \text { and } \quad S\left(\epsilon \epsilon^{\prime-1}\right)=(s t-3+D) / 2
$$

where $D^{2}=18 s t-4 s^{3}-4 t^{3}+s^{2} t^{2}-27$. (The sign of D is not specified.)
Proof. Set $w=S\left(\epsilon^{-1} \epsilon^{\prime}\right)$ and $v=S\left(\epsilon \epsilon^{\prime-1}\right)$. By Lemma 17,

$$
w+v=s t-3 \quad \text { and } \quad w v=9+s^{3}+t^{3}-6 s t
$$

Hence w and v are roots of the quadratic equation $y^{2}+(3-s t) y+9+s^{3}+t^{3}-6 s t$. The roots are

$$
y=1 / 2(s t-3 \pm D)
$$

where

$$
\begin{aligned}
D^{2} & =(3-s t)^{2}-4\left(9+s^{3}+t^{3}-6 s t\right) \\
& =18 s t-4 s^{3}-4 t^{3}+s^{2} t^{2}-27 .
\end{aligned}
$$

Note that D is the discriminant of $f(x)=x^{3}-s x^{2}+t x-1$, which has ϵ as a root. Thus D is a perfect square.

Proposition 19.

$$
\begin{aligned}
& N(\beta)=6+3 s+3 t+1 / 2(s t-3+D) \quad \text { and } \\
& N(\gamma)=6+3 s+3 t+1 / 2(s t-3-D)
\end{aligned}
$$

for some choice of the sign of D. Moreover,

$$
N(\beta) N(\gamma)=(s+t+3)^{3}
$$

Proof. Lemmas 16 and 18 give the values of $N(\beta)$ and $N(\gamma)$. It follows from Lemma 15 that

$$
\begin{aligned}
N(\beta) N(\gamma) & =N(\beta) N\left(\gamma^{\prime \prime}\right) \\
& =N\left(\beta \gamma^{\prime \prime}\right)=N(s+t+3)=(s+t+3)^{3}
\end{aligned}
$$

Proposition 20. Let $b=b_{i}$ of Lemma 10. If $\beta \neq 0$ then b is the cube free positive kernel of $N(\beta)$. If $\gamma \neq 0$ then b is the cube free kernel of $N\left(\gamma^{2}\right)$.

Proof. If $\beta \neq 0$ then $\beta^{1-\sigma}=\epsilon$ and so

$$
\epsilon \epsilon^{\prime 2}=\frac{N(\beta)}{\left(\beta^{\sigma^{2}}\right)^{3}}=b_{0}\left(\frac{a}{\beta^{\sigma^{2}}}\right)^{3}
$$

where b_{0} is the positive cube free kernel of $N(\beta)$. The uniqueness of Lemma 10 shows that $b=b_{0}$.
If $\gamma \neq 0$ then $\gamma^{1-\sigma^{2}}=\epsilon$ and so

$$
\epsilon \epsilon^{\prime 2}=\frac{\left(\gamma^{\sigma}\right)^{3}}{N(\gamma)}=N\left(\gamma^{2}\right)\left(\frac{\gamma^{\sigma}}{N(\gamma)}\right)^{3}
$$

The uniqueness of Lemma 10 shows that b is the cube free kernel of $N\left(\gamma^{2}\right)$.
7. Four examples. In the Corollary to Theorem 13, it was shown that (W : $V)=9$ when f has exactly two prime divisors. From Theorem 13, one would generally expect $(W: V)=3$ when f has 3 prime divisors and $(W: V)=1$ when f has 4 or more prime divisors. While it appears to be almost certain that
this index assumes each of the values 1 and 3 infinitely often, we have not been able to prove this. Four examples are described below. In two of these f has three prime divisors, but $(W: V)=9$ for the first and $(W: V)=3$ for the second. In the final two examples f has 4 prime divisors, but the unit index is 3 in one and 1 in the other.

Example 1.

$$
\begin{aligned}
& f=9709=7 \cdot 19 \cdot 73 \\
& f_{1}=133=7 \cdot 19, \alpha_{1}=\frac{-10+4(3 \sqrt{-3})}{2}, b_{1}=7^{2} \\
& f_{2}=511=7 \cdot 73, \alpha_{2}=\frac{37+5(3 \sqrt{-3})}{2}, b_{2}=7^{2} \\
& f_{3}=1387=19 \cdot 73, \alpha_{3}=\frac{65-7(3 \sqrt{-3})}{2}, b_{3}=19^{2} \cdot 73^{2} \\
& f_{4}=9709=7 \cdot 19 \cdot 73, \alpha_{4}=\frac{197+3 \sqrt{-3}}{2}, b_{4}=7 \cdot 19 \cdot 73 \\
& M=\left(\begin{array}{llll}
2 & 2 & 0 & 1 \\
0 & 0 & 2 & 1 \\
0 & 0 & 2 & 1
\end{array}\right) \text { has rank } 2, \text { so }(W: V)=9 .
\end{aligned}
$$

Example 2.

$$
\begin{aligned}
& f=819=9 \cdot 7 \cdot 13 \\
& f_{1}=9, \alpha_{1}=\frac{-3+3 \sqrt{-3}}{2}, b_{1}=3 \\
& f_{2}=91=7 \cdot 13, \alpha_{2}=\frac{-16+2(3 \sqrt{-3})}{2}, b_{2}=13 \\
& f_{3}=819=9 \cdot 7 \cdot 13, \alpha_{3}=\frac{-3+11(3 \sqrt{-3})}{2}, b_{3}=7^{2} \cdot 13^{2} \\
& f_{4}=819=9 \cdot 7 \cdot 13, \alpha_{4}=\frac{51+5(3 \sqrt{-3})}{2}, b_{4}=3^{2} \cdot 7^{2} \\
& M=\left(\begin{array}{llll}
1 & 0 & 0 & 2 \\
0 & 0 & 2 & 2 \\
0 & 1 & 2 & 0
\end{array}\right) \text { has rank 3, so }(W: V)=3 .
\end{aligned}
$$

Example 3.

$$
\begin{aligned}
& f=15561=9 \cdot 7 \cdot 13 \cdot 19 \\
& f_{1}=819=9 \cdot 7 \cdot 13, \alpha_{1}=\frac{-57+3 \sqrt{-3}}{2}, b_{1}=3 \cdot 7^{2} \cdot 13^{2}
\end{aligned}
$$

$$
\begin{aligned}
& f_{2}=1197=9 \cdot 7 \cdot 19, \alpha_{2}=\frac{-66+4(3 \sqrt{-3})}{2}, b_{2}=3^{2} \cdot 19^{2} \\
& f_{3}=1729=7 \cdot 13 \cdot 19, \alpha_{3}=\frac{29+15(3 \sqrt{-3})}{2}, b_{3}=7^{2} \cdot 13 \cdot 19^{2} \\
& f_{4}=2223=9 \cdot 13 \cdot 19, \alpha_{4}=\frac{87+7(3 \sqrt{-3})}{2}, b_{4}=3 \cdot 19 \\
& M=\left(\begin{array}{llll}
1 & 2 & 0 & 1 \\
2 & 0 & 2 & 0 \\
2 & 0 & 1 & 0 \\
0 & 2 & 2 & 1
\end{array}\right) \text { has rank 3, so }(W: V)=3 .
\end{aligned}
$$

Example 4.

$$
\begin{aligned}
& f=15561=9 \cdot 7 \cdot 13 \cdot 19 \\
& f_{1}=819=9 \cdot 7 \cdot 13, \alpha_{1}=\frac{24+10(3 \sqrt{-3})}{2}, b_{1}=7 \cdot 13 \\
& f_{2}=1197=9 \cdot 7 \cdot 19, \alpha_{2}=\frac{69+3 \sqrt{-3}}{2}, b_{2}=3 \cdot 7^{2} \cdot 19^{2} \\
& f_{3}=1729=7 \cdot 13 \cdot 19, \alpha_{3}=\frac{83+3 \sqrt{-3}}{2}, b_{3}=7^{2} \cdot 13 \cdot 19^{2} \\
& f_{4}=2223=9 \cdot 13 \cdot 19, \alpha_{4}=\frac{33+17(3 \sqrt{-3})}{2}, b_{4}=3 \cdot 13^{2} \cdot 19 \\
& M=\left(\begin{array}{llll}
0 & 1 & 0 & 1 \\
1 & 2 & 2 & 0 \\
1 & 0 & 1 & 2 \\
0 & 2 & 2 & 1
\end{array}\right) \text { has rank } 4, \text { so }(W: V)=1 .
\end{aligned}
$$

References

1. M. N. Gras, Méthodes et algorithmes pour le calcul numérique du nombre de classes et des unité des extensions cubiques cycliques de Q, J. Reine Angew. Math. 277(1975), 89-116.
2. H. Hasse, Arithmetische Bestimmung von Grundeinheit und Klassenzahl in zyklischen kubischen und biquadratischen Zahlkörpern, Abh. Deutsch. Akad. Wiss. Berlin 2 (1948), 1-95.
3.——Bericht über neuere Untersuchungen und Probleme aus der Theorie der algebraischen Zahlkörper, Würzburg, Wien (1970).
3. Über die Klassenzahl abelscher Zahlkörper, Berlin (1952).
4. S. Maki, The determination of units in real cyclic sextic fields (Berlin, Heidelberg, New York, 1980).
5. B. L. Van Der Waerden, Modern algehra (New York, 1964).
6. C. D. Walter, Kuroda's class number relation, Acta Arithmetica 35 (1979), 41-51.

Virgina Polytechnic Institute and State University,
Blacksburg, Virginia

