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ABSTRACT

We investigate the bounded derived category of coherent sheaves on irreducible singu-
lar projective curves of arithmetic genus one. A description of the group of exact auto-
equivalences and the set of all -structures of this category is given. We describe the moduli
space of stability conditions, obtain a complete classification of all spherical objects in this
category and show that the group of exact auto-equivalences acts transitively on them.
Harder—Narasimhan filtrations in the sense of Bridgeland are used as our main technical
tool.

1. Introduction

The purpose of this paper is to study the structure of the bounded derived category Dcoh( ) of
coherent sheaves on a singular irreducible projective curve E of arithmetic genus one.

In the smooth case, such structure results are easily obtained from Atiyah’s description [Ati57]
of indecomposable vector bundles over elliptic curves. However, if E has a node or a cusp, some
crucial properties fail to hold. This is illustrated by Table 1. Despite these difficulties, the main goal
of this paper is to find the common features between the smooth and the singular case. A list of
such can be found in Remark 5.13.

In §2, we review the smooth case and highlight where the properties mentioned above are
used. Our approach was inspired by [LM93]. Atiyah’s algorithm to construct indecomposable vector
bundles of any slope can be understood as an application of a sequence of twist functors with
spherical objects. From this point of view, Atiyah shows that any indecomposable object of D COh( )
is the image of an indecomposable torsion sheaf under an exact auto-equivalence of Dcoh( ).

In the case of a singular Weierstrafl curve FE, as our main technical tool we use Harder—
Narasimhan filtrations in Dth(E)a which were introduced by Bridgeland [Bri02]. Their general
properties are studied in § 3.

The key result of §4 is the preservation of stability under Seidel-Thomas twists [ST01] with
spherical objects. This allows us to show that, like in the smooth case, any category of semi-stable
sheaves with fixed slope is equivalent to the category of coherent torsion sheaves on FE.

In the case of slope zero, this was shown in our previous work [BKO05]. For the nodal case,
an explicit description of semi-stable sheaves of degree zero via étale coverings was given there as
well. A combinatorial description of semi-stable sheaves of arbitrary slope over a nodal cubic curve
was found by Mozgovoy [Moz04]. On the other hand, a classification of all indecomposable objects
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TABLE 1. Difficulties on singular curves.

Smooth Singular
homological dimension of Cohg 1 00
Serre duality holds in general with one object

being perfect
torsion free implies locally free yes no

indecomposable coherent sheaves yes no
are semi-stable

any indecomposable complex is yes no
isomorphic to a shift of a sheaf

of DP | (E) was presented in [BD04b]. A description of the Harder-Narasimhan filtrations in terms
of this classification is a task for future work.

However, if the singular point of E is a cusp, the description of all indecomposable coherent
torsion sheaves is a wild problem in the sense of representation theory, see for example [Dro72].
Nevertheless, stable vector bundles on a cuspidal cubic have been classified by Bodnarchuk and
Drozd [BD03].

It turns out that semi-stable sheaves of infinite homological dimension are particularly impor-
tant, because only such sheaves appear as Harder—Narasimhan factors of indecomposable objects
in D°  (E) which are not semi-stable (Proposition 4.6).

coh
The main result (Proposition 4.13) of §4 is the answer to a question of Polishchuk [Pol02, §1.4],
who asked for a description of all spherical objects on E. We also prove that the group of exact

auto-equivalences of Dth(E) acts transitively on the set of spherical objects.

In §5 we study t-structures on D® (E) and stability conditions in the sense of [Bri02]. We
completely classify all ¢-structures on this category (Theorem 5.6). This allows us to deduce a de-
scription of the group of exact auto-equivalences of Dtc’oh (E) (Corollary 5.8). As a second application,
we calculate Bridgeland’s moduli space of stability conditions on E (Proposition 5.12).

The hearts D(6, 6+1) of the t-structures constructed in § 5 are finite-dimensional non-Noetherian
Abelian categories of infinite global dimension. In the case of a smooth elliptic curve, this category
is equivalent to the category of holomorphic vector bundles on a non-commutative torus in the
sense of Polishchuk and Schwarz [PS03, Proposition 3.9]. It is an interesting problem to find such
a differential-geometric interpretation of these Abelian categories in the case of singular Weierstrafl

curves.

Using the technique of Harder—Narasimhan filtrations, we gain new insight into the classifica-
tion of indecomposable complexes, which was obtained in [BD04b]. It seems plausible that similar
methods can be applied to study the derived category of representations of certain derived tame
associative algebras, such as gentle algebras, skew-gentle algebras or degenerated tubular algebras;
see for example [BD04a]. The study of Harder-Narasimhan filtrations in conjunction with the action
of the group of exact auto-equivalences of the derived category should provide new insight into the
combinatorics of indecomposable objects in these derived categories.

Notation. We fix an algebraically closed field k of characteristic zero. By E we always denote a
Weierstrafl curve. This is a reduced irreducible curve of arithmetic genus one, isomorphic to a cubic
curve in the projective plane. If not smooth, it has precisely one singular point s € E, which can
be a node or a cusp. If x € E is arbitrary, we denote by k(z) the residue field of x and consider it
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as a sky-scraper sheaf supported at x. By Dgoh(E) we denote the derived category of complexes of

Op-modules whose cohomology sheaves are coherent and which are non-zero only in finitely many
degrees.

2. Background: the smooth case

The purpose of this section is to recall well known results about the structure of the bounded
derived category of coherent sheaves over a smooth elliptic curve. Proofs of most of these results
can be found in [Ati57, Oda71, LM93, Tu93|. The focus of our presentation is on the features and
techniques which are essential in the singular case as well. At the end of this section we highlight the
main differences between the smooth case and the singular case. It becomes clear that the failure
of Serre duality is the main reason why the proofs and even the formulation of some of the main
results do not carry over to the singular case. The aim of the subsequent sections will then be to
overcome these difficulties, to find correct formulations which generalise to the singular case and
to highlight the common features of the bounded derived category in the smooth and singular cases.

With the exception of §2.7, throughout this section E denotes a smooth elliptic curve over k.

2.1 Homological dimension

For any two coherent sheaves F,G on E, Serre duality provides an isomorphism
Ext”(F,G) = Ext' (G, F)".

This follows from the usual formulation of Serre duality and the fact that any coherent sheaf has a
finite locally free resolution. As a consequence, Ext”(F,G) = 0 for any v > 2, which means that Cohg
has homological dimension one. This implies that any object X € DP (E) splits into the direct sum

coh
of appropriate shifts of its cohomology sheaves. To see this, start with a complex X = (F~! iR FO)
and consider the distinguished triangle in D°_ (E)

coh
ker(f)[1] — X — coker(f) —— ker(f)[2].

Because ¢ € Hom(coker(f),ker(f)[2]) = Ext?(coker(f),ker(f)) = 0, we obtain X = ker(f)[1] @
coker(f). Using the same idea we can proceed by induction to get the claim.

2.2 Indecomposable sheaves are semi-stable

It is well known that any coherent sheaf F € Cohg has a Harder—Narasimhan filtration
OCfnC'--C}_1C.7'—0:.7'—

whose factors A, := F,/F,+1 are semi-stable with decreasing slopes p(A,) > u(Ap—1) > -+ >
1(Ap). Using the definition of semi-stability, this implies Hom(A,+;,.4,) = 0 for all v > 0 and i > 0.
Therefore, Ext*(Ag, F1) = Hom(Fi, Ag)* = 0, and the exact sequence 0 — F; — F — Ag — 0 must
split. In particular, if F is indecomposable, we have 71 = 0 and F = Ay and F is semi-stable.

2.3 Jordan—Holder factors

The full sub-category of Cohg whose objects are the semi-stable sheaves of a fixed slope is an
Abelian category in which any object has a Jordan—Holder filtration with stable factors. If F and
G are non-isomorphic stable sheaves which have the same slope, we have Hom(F,G) = 0. Based on
this fact, in the same way as before, we can deduce that an indecomposable semi-stable sheaf has
all its Jordan—Hoélder factors isomorphic to each other.
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2.4 Simple is stable

It is well known that any stable sheaf F is simple, i.e. Hom(F,F) = k. On a smooth elliptic curve,
the converse is true as well, which equips us with a useful homological characterisation of stability.

To see that simple implies stable, we suppose for a contradiction that F is simple but not
stable. This implies the existence of an epimorphism F — G with G stable and u(F) > u(G).
Serre duality implies dim Ext'(G, F) = dimHom(F,G) > 0, hence x(G,F) := dimHom(G,F) —
dim Ext!(G, F) < dim Hom(G, F). Riemann-Roch gives x(G,F) = (u(F) — u(G))/ rk(F) rk(G) > 0,
hence Hom(G, F) # 0. But this produces a non-zero composition 7 — G — F which is not an
isomorphism, in contradiction to the assumption that F was simple.

2.5 Classification

Atiyah [Ati57] gave a description of all stable sheaves with a fixed slope in the form £(r,d) ® L,
where £ is a line bundle of degree zero and &(r,d) is a particular stable bundle of the fixed slope.
The bundle £(r,d) depends on the choice of a base point py € E and its construction reflects
the Euclidean algorithm on the pair (rk, deg). We look at this description from a slightly different
perspective. We use the twist functors Tp and Tjp,), which were constructed by Seidel and Thomas
[STO1] (see also [Mel97]). They act as equivalences on DP_ (E) and, hence, preserve stability.

coh
A stable sheaf of rank r and degree d is sent by Tp to one with (rk, deg) equal to (r — d,d). If
r < d this is a shift of a stable sheaf. The functor Tj,,) sends the pair (r,d) to (r,r + d) and its
inverse sends it to (r,d — r). Therefore, if we follow the Euclidean algorithm, we find a composition
of such functors which provides an equivalence between the category of stable sheaves with slope
d/r and the category of simple torsion sheaves. Such sheaves are precisely the structure sheaves of
closed points k(z), € E. They are considered to be stable with slope co.

More generally, this procedure provides an equivalence between the category of semi-stable
sheaves of rank r and degree d with the category of torsion sheaves of length equal to ged(r, d). This
shows, in particular, that the Abelian category of semi-stable sheaves with fixed slope is equivalent
to the category of coherent torsion sheaves.

2.6 Auto-equivalences

By Aut(DEOh(E)) we denote the group of all exact auto-equivalences of the triangulated category
DP . (E). This group acts on the Grothendieck group K(E) = K(D" , (E)). As the kernel of the Chern
character is the radical of the Euler form (X,Y") = dim(Hom(X,Y")) — dim(Hom (X, Y[1])) which is
invariant under this action, it induces an action on the even cohomology H**(E,Z) = 7. Because
dim(Hom(F,G)) > 0 if and only if (F,G) > 0, provided F 2 G are stable sheaves, the induced
action on Z? is orientation preserving. So, we obtain a homomorphism of groups ¢ : Aut(D,, (E)) —
SL(2,Z), which is surjective because Ty and Tj,,) are mapped to a pair of generators of SL(2,Z).
Explicitly, if G is an auto-equivalence, ¢(G) describes its action on the pair (rk, deg). To understand
ker(p), we observe that ¢(G) = 1 implies that G sends a simple torsion sheaf k(x) to some k(y)[2k],
because indecomposability is retained. By the same reason, G(Q) is a shifted line bundle of degree
zero. However, Hom(L, k(y)[l]) = 0, if £ is a line bundle and [ # 0. Hence, after composing G with
a shift, it sends all simple torsion sheaves to simple torsion sheaves, without a shift. Because FE is
smooth, we can apply a result of Orlov [Orl97] which says that any auto-equivalence G is a Fourier—
Mukai transform [Muk81]. However, any such functor, which sends the sheaves k(x) to torsion
sheaves of length one, is of the form G(X) = f*(£L® X), where f : E — E is an automorphism and
L € Pic(E) a line bundle. Hence, ker(yp) is generated by Aut(E), Pic’(E) and even shifts. This gives
a complete description of the group Aut(Dtc’oh (E)). A similar approach was used by Lenzing and
Meltzer to describe the group of exact auto-equivalences of tubular weighted projective lines [LMO0].
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2.7 Difficulties in the singular case

Let now E be an irreducible but singular curve of arithmetic genus one. The technical cornerstones
of the theory as described in this section fail to be true in this case. More precisely:

(i) the category of coherent sheaves Cohg has infinite homological dimension;
b

on(E) which are not just shifted sheaves (see

(ii) there exist indecomposable complexes in D
[BDO4b, §3]);

(iii) Serre duality fails to be true in general;
(iv) not all indecomposable vector bundles are semi-stable;

(v) there exist indecomposable coherent sheaves which are neither torsion sheaves nor torsion free
sheaves (see [BD04b]).

Most of the trouble is caused by the failure of Serre duality. The basic example is the following.
Suppose s € E is a node, then

Hom(k(s),k(s)) =k and  Ext'(k(s), k(s)) = k2.

Serre duality is available only if at least one of the two sheaves involved has finite homological
dimension. This might suggest that replacing Dtc’oh(E) by the sub-category of perfect complexes
would solve most of the problems (but see Remark 4.10).

In the subsequent sections we overcome these difficulties and point out the similarities between
the smooth and the singular cases.

3. Harder—Narasimhan filtrations

Throughout this section, E denotes an irreducible reduced projective curve over k of arithmetic
genus one. The notion of stability of coherent torsion free sheaves on an irreducible curve is usually
defined with the aid of the slope function u(-) = deg(-)/rk(-). To use the phase function instead
is equivalent, but better adapted for the generalisation to derived categories described below. By
definition, the phase ¢(F) of a non-zero coherent sheaf F is the unique number which satisfies
0 < ¢(F) <1 and m(F)exp(mip(F)) = —deg(F) + irk(F), where m(F) is a positive real number,
called the mass of the sheaf F. In particular, ¢(O) = 1/2 and all non-zero torsion sheaves have
phase one. A torsion free coherent sheaf F is called semi-stable if, for any exact sequence of torsion
free coherent sheaves

0—&—F —G—0,

the inequality ¢(€) < ¢(F), or equivalently ¢(F) < ¢(G), holds. It is well known [Rud97] that any
torsion free coherent sheaf F on a projective variety has a Harder—Narasimhan filtration

OcF,CFp1C---CF CFy=7F,

which is uniquely characterised by the property that all factors A4; = F;/F;;+1 are semi-stable and
satisfy

o(An) > p(An—1) > -+ > p(Ao).

Originally, this concept of stability was introduced in the 1960s in order to construct mod-
uli spaces using geometric invariant theory. It could also be seen as a method to understand the
structure of the category of coherent sheaves on a projective variety. By Simpson, the notion of sta-
bility was extended to coherent sheaves of pure dimension. A very general approach was taken by
Rudakov [Rud97], who introduced the notion of stability on Abelian categories. Under some finite-
ness assumptions on the category, he shows the existence and uniqueness of a Harder—Narasimhan
filtration for any object of the category in question. As an application of his work, the usual slope
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stability extends to the whole category Cohg of coherent sheaves on E. In particular, any non-zero
coherent sheaf has a Harder—Narasimhan filtration and any non-zero coherent torsion sheaf on the
curve F is semi-stable.

Inspired by work of Douglas on II-stability for D-branes (see for example [Dou02]), it was shown
by Bridgeland [Bri02] how to extend the concept of stability and Harder—Narasimhan filtration
to the derived category of coherent sheaves, or more generally to a triangulated category. These
new ideas were merged with the ideas from [Rud97] in the paper [GKRO04]. We shall follow here
the approach of Bridgeland [Bri02]. In §5 we give a description of Bridgeland’s moduli space of
stability conditions on the derived category of irreducible singular curves of arithmetic genus one.
However, throughout the present chapter we stick to the classical notion of stability on the category
of coherent sheaves and the stability structure it induces on the triangulated category.

In order to generalise the concept of a Harder—Narasimhan filtration to the category Dtc’oh (E),

Bridgeland [Bri02] extends the definition of the phase of a sheaf to shifts of coherent sheaves by
p(Fln]) = (F) +n,

where F # 0 is a coherent sheaf on E and n € Z. A complex which is non-zero at position m
only has, according to this definition, phase in the interval (—m, —m + 1]. If F and F’ are non-zero
coherent sheaves and a, b are integers, we have the implication

o(Fl—a]) > p(F'[-b]) = a < b.

For any ¢ € R we denote by P(y) the Abelian category of shifted semi-stable sheaves with phase
@. Of course, 0 € P(yp) for all ¢. If ¢ € (0, 1], this is a full Abelian subcategory of Cohg. For any
¢ € R we have P(¢ + n) = P(¢)[n]. A non-zero object of D° , (E) will be called semi-stable if it is
an element of one of the categories P(p), ¢ € R.

Bridgeland’s stability conditions [Bri02] involve so-called central charges. In order to define the
central charge of the standard stability condition, we need a definition of degree and rank for
arbitrary objects in D° , (E).

Let K = Og,, be the field of rational functions on the irreducible curve E with generic point
n € E. The base change 1 : Spec(K) — FE is flat, so that n*(F), taken in the non-derived sense, is
correctly defined for any F' € D° |, (E). We define rk(F') := x(n*(F)), which is the alternating sum
of the dimensions of the cohomology spaces of the complex n*(F") which are vector spaces over K.

In order to define the degree, we use the functor

RHom(Og, -) : D°, (E) — D2, (k),

coh

and set deg(F) := x(RHom(Og, F')). Here, we denoted by D?, (k) the bounded derived category
of finite-dimensional vector spaces over k. For coherent sheaves, these definitions coincide with the
usual definitions of rank and degree. In particular, a torsion sheaf of length m which is supported
at a single point of E has rank 0 and degree m.

These definitions imply that rank and degree are additive on distinguished triangles in Dtc’oh (E).
Hence, they induce homomorphisms on the Grothendieck group K(D®  (E)) of the triangulated
category Dtc’oh (E), which is by definition the quotient of the free Abelian group generated by the ob-
jects of DP_, (E) modulo expressions coming from distinguished triangles. Recall that Ko(Coh(E))
K(DP

oon(E)); see [Gro77]. We denote this group by K(E).

LEMMA 3.1. If E is an irreducible singular curve of arithmetic genus one, we have K(E) = Z? with
generators [k(z)] and [Og].

Proof. Recall that the Grothendieck—Riemann—Roch theorem (see [BFM75] or [Ful89]) provides a

homomorphism

7 : K(E) — A(E)®Q,
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which depends functorially on E with respect to proper direct images. Moreover, (7g)g : K(E)®Q —
A, (FE)® Q is an isomorphism (see [Ful89, Corollary 18.3.2]).

If FE is an irreducible singular projective curve of arithmetic genus one, we easily see that the
Chow group A,(E) is isomorphic to Z2. The two generators are [z] € Ag(E) with € E and
[E] € Ai(E). Note that [z] = [y] € Ap(E) for any two closed points z,y € E, because the
normalisation of E is P!. Using [Ful89, Theorem 18.3 (5)], we obtain 7g(k(z)) = [z] € Ao(E) for
any « € E. On the other hand, from [Ful89, Example 18.3.4 (a)], we obtain 7g(Og) = [E] € A1 (E).
Therefore, the classes of k(z) and O define a basis of K(E)®Q. However, these two classes generate
the group K(E), so that it must be a free Abelian group. O

b

The central charge of the standard stability structure on D2,

Abelian groups

(E) is the homomorphism of

Z:KE)—Z®iZ CC,
which is given by
Z(F) = —deg(F) +irk(F).

If F'is a non-zero coherent sheaf, Z(F') is a point on the ray from the origin through exp(mwip(F'))
in C. Its distance from the origin was called the mass of F.

Although the phase ¢(F) is defined for sheaves and their shifts only, we are able to define the
slope p(F') for any object in Dtc’oh(E) which is not equal to zero in the Grothendieck group. Namely,
the usual definition p(F') := deg(F')/rk(F) gives us now a mapping

p: K(E)\ {0} — QU {oo},

which extends the usual definition of the slope of a sheaf. Because Z(Og) = ¢ and Z(k(x)) = —1,
Lemma 3.1 implies that Z is injective. Therefore, p is defined for any non-zero element of the
Grothendieck group.

For arbitrary objects X € D°, (E) we have Z(X[1]) = —Z(X), hence u(X[1]) = u(X) when
defined. In the case of shifted sheaves, in contrast to the slope u, the phase ¢ keeps track of the
position of this sheaf in the complex. As an illustration, we include an example of an indecomposable

object in D (E) which has a zero image in the Grothendieck group.

coh

Ezample 3.2. Let s € E be the singular point and denote, as usual, by k(s) the torsion sheaf of
length one which is supported at s. This sheaf does not have finite homological dimension. To see
this, we observe first that Ext®(k(s), k(s)) = HO(Ext*(k(s),k(s))). Moreover, as an O -module,
k(s) has an infinite periodic locally free resolution of the form

4 O%,s b O%,s 4 O%,s OE s k(s) 07

)

where AB = BA = f -1 is a reduced matrix factorisation of an equation f of E C P2. For example,
if s is a node, so that E is locally given by the polynomial f = y? — 23 — 22 € k[z,y], we can choose

2 _p2
A:<y a:+a:> and B:<y X :1:>
x Y - Y

considered modulo f. More generally, any singular Weierstrafl cubic f can be written as y-y— R- S
with y, R, S all vanishing at the singular point. The off-diagonal elements of A and B are then
formed by £R, £S. Therefore, all entries of the matrices A and B are elements of the maximal
ideal of the local ring O . Hence, the application of Hom( -, k(s)) produces a complex with zero
differential, which implies that Ext®(k(s),k(s)) is two-dimensional for all k& > 1. In particular,
Ext?(k(s), k(s)) = k2, and we can pick a non-zero element w € Hom(k(s), k(s)[2]). There exists a
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complex X € D° |, (E) which sits in a distinguished triangle
X — k(s) % k(s)[2] = .

Because the shift by one corresponds to multiplication by —1 in the Grothendieck group, this object
X is equal to zero in K(E). On the other hand, X is indecomposable. Indeed, if X would split, it
must be X = k(s) @ k(s)[1], because the only non-zero cohomology of X is H *(X) = k(s) and
HY(X) = k(s). However, because Hom(k(s)[1],k(s)) = 0, Lemma 3.11, applied to the distinguished
triangle

+
w

k(s)[1] X k(s)
with X 2 k(s) @ k(s)[1], implies w = 0.

DEFINITION 3.3 [Bri02]. A Harder-Narasimhan filtration (HNF) of an object X € DP  (E) is a
finite collection of distinguished triangles

an—> —>F1X—>FOX X

/NS N/

with A; € P(p;) and A; # 0 for all j, such that ¢, > @1 > -+ > ¢p.

If all ingredients of an HNF are shifted by one, we obtain an HNF of X[1]. The shifted sheaves
A; are called the semi-stable HN-factors of X and we define ¢ (X) := ¢, and p_(X) := ¢g. Later,
Theorem 3.10, we show that the HNF of an object X is unique up to isomorphism. This justifies
this notation. For the moment, we keep in mind that ¢ (X) and ¢_(X) might depend on the HNF
and not only on the object X.

Before we proceed, we include a few remarks about the notation we use. Distinguished triangles
in a triangulated category are displayed as either

X —>Y 2725 o X—>YV
A/
A

where the arrow which is marked with + is in fact a morphism Z — X[1].
We shall use the octahedron axiom, the axiom (TR4) in Verdier’s list, in the following convenient

form: If two morphisms X 1, Y -4 Z are given, for any three distinguished triangles with bases
f,g and go f there exists a fourth distinguished triangle which is indicated below by dashed arrows,
such that we obtain the following commutative diagram.
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The remainder of this section is devoted to the proofs of the crucial properties of Harder—

Narasimhan filtrations in triangulated categories. These properties can be found in [Bri02, GKR04],
where most of them appear to be either implicit or without a detailed proof.

LEMMA 3.4. Let
f 7+
U—X and A—V —V —
A/
Vv
be distinguished triangles. Then there exist a factorisation U — W 7, X of f and the following

two distinguished triangles.

U—>W—>X

A/ A/

Proof. If we apply the octahedron axiom to the composition A — V' — U][1] we obtain the commu-
tative diagram

N
N
/ ‘O
7
— Wiy

V .
/ Ul AL
1
N
+ N
which gives the claim. U

LEMMA 3.5. Let

WV RV — = FV=V

/NS N/

be an HNF of V € Dcoh( ) and F,V — V — V' *,a distinguished triangle with 1 <
k < n. Then, F,V has an HNF with HN-factors A, A,_1,...,A; and V' one with HN-factors
Ak’—lyAk—27 v 7A0'

Proof. The first statement is clear, because we can cut off the HNF of V at Fi.V to obtain an HNF

of F,V. Let us define objects F;V' by exact triangles F,V — F,V — E;V’ L, where the first
arrow is the composition of the morphisms in the HNF of V. Using the octahedron axiom, we obtain
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for any ¢ < k the commutative diagram

v

F; V’
/ *
=
FV \ i—lV/
/ RV
/ \
N
{
Vv A;_
+ h N
&
which implies the second claim. O

Remark 3.6. The statement of Lemma 3.5 is true with identical proof if we relax the assumption of
being an HNF by allowing p(Ay) = ¢(Ak_1) for the chosen value of k.

LEMMA 3.7. If
FroaX— — X ——FX=X

NSNS

is an HNF of X € ch’oh(E) such that Ag|k] is a sheaf, then H*(X) # 0. In particular, the following
implication is true:

X eDS"=Vi>0:A4, e DS™.

Proof. The assumption Ag[k] € Cohg means H¥(Ag) = Ag[k] # 0 and ¢(Ag) € (—k,—k + 1].
Because for all i > 0 we have ¢(A;) > ¢(Ap), we obtain ¢(A4;) > —k. This implies HkH(A )=20

for all ¢ > 0. The cohomology sequences of the distinguished triangles F; 1 — F; — A; =,

imply H**1(F;X) = 0 for all 4 > 0 and an exact sequence H*(X) — H¥(Ag) — H*1(F1X), hence
H*(X) # 0. The statement about the other HN-factors A; follows now from ¢(4;) > p(Ay). O

PROPOSITION 3.8. Any non-zero object X € D® (E) has an HNF.

coh

Proof. The existence of an HNF for objects of Cohg is classically known; see [HN75, Rud97]. There-
fore, we can proceed by induction on the number of non-zero cohomology sheaves of X € Dcoh( ).
If n is the largest integer with H™(X) # 0, we have a distinguished triangle

TIX — X — H™(X)[-n] . (1)

By inductive hypothesis, there exists an HNF of 7S" 1 X. From Lemma 3.7 we conclude that all
HN-factors of 7S""1X are in DS""! and so ¢_ (7S"71X) > —n + 1.
Because H"(X) is a sheaf, we have ¢, (H"(X)[-n|) € (—n,—n + 1], hence p_(7S"1X) >
o+ (H"(X)[=n]).
We prove now for any distinguished triangle
U—X—V-—5 (2)

in which V[n] is a coherent sheaf that the existence of an HNF for U with ¢_(U) > ¢4 (V) implies
the existence of an HNF' of X.
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Because V[n] is a sheaf, V' has an HNF and we proceed by induction on the number of HN-factors
of V. Let A be the leftmost object in an HNF of V', i.e. A € P(¢4+(V)). By Lemma 3.4 applied to
the distinguished triangles (2) and A — V — V’/ L, there exist two distinguished triangles in
which V'[n] is a coherent sheaf with a smaller number of HN-factors as V:

VAV

Because ¢_(U) > ¢(A) = ¢4(V), the left triangle can be concatenated to the given HNF of U
in order to provide an HNF for W. The start of the induction is covered as well: it is the case
V' =0. U

LeEMMA 3.9. If X, Y € D°_(E) with ¢_(X) > ¢, (Y), then

coh

Hom(X,Y) = 0.

Proof. If X,Y are semi-stable sheaves, this is well known and follows easily from the definition
of semi-stability. Because Hom(X,Y[k]) = 0, if X,Y are sheaves and k < 0, the claim follows if
X € P(p) and Y € P(¢) with ¢ > 1. Let now X € P(¢) and Y € D°  (E) with ¢ > ¢, (Y). Let

coh

0 F,Y Fh1Y — - —FRY ——LRKY=Y
R\;/ }\ +\\/
Bm Bm—l BO

be an HNF of Y. We have ¢(B;) < ¢(Bm) = ¢+(Y), hence p(X) > ¢(B;) and Hom(X, B;) = 0 for

all j. If we apply the functor Hom(X, -) to the distinguished triangles Fj ;1Y — F}Y — B; L,
we obtain surjections Hom(X, F; 1Y) — Hom(X, F}Y). From Hom(X, F},,Y) = Hom(X, B,;,) = 0,
we obtain Hom(X,Y) = Hom(X, FyY) = 0.

Let now X,Y be arbitrary non-zero objects of DP | (E) which satisfy ¢_(X) > ¢ (Y). If

0 F, X FpiX— —>FBX —>FX=X
+\ 7 1\ / \ /
An An—l AO

is an HNF of X, we have p(4;) > ¢(Ag) = p_(X) > ¢4 (Y). We know already that Hom(A;,Y) =0
for all ¢ > 0. If we apply the functor Hom(-,Y") to the distinguished triangles F;;1 X — ;X —
A; =5, we obtain injections Hom(F;X,Y) — Hom(F;11X,Y). Again, this implies Hom(X,Y) =
0. U

THEOREM 3.10 [Bri02, GKR04]. The HNF of any non-zero object X € ch’oh(E) is unique up to
unique isomorphism.

Proof. 1f

0 F.X FiiX— —>FRX—>FRX=X
+\ 7 \ / \ /
An An—l AO
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and
0

G X Gn1X— - —-GX——=Gy X=X
Bm Bm—l BO

are HNF's of X, we have to show that there exist unique isomorphisms of distinguished triangles for
any k > 0

FpX —= FX — A, ——
lfk+l lfk lgk
Grin X ——= GpX — = By

with fo = Idx. This is obtained by induction on k£ > 0 from the following claim: If an isomorphism
f: F — G and two distinguished triangles ' — F — A 5 and G — G — B -5 are given
such that A € P(¢), B € P(¢) and F',G" have HNFs with ¢_(F’) > ¢ and ¢_(G’) > 1, then
there exist unique isomorphisms f’: F' — G’ and g : A — B such that (f’, f,¢) is a morphism of
triangles. In particular, ¢ = 1.

Without loss of generality, we may assume ¢ > . This implies p_(F'[1]) > ¢@_(F'") > 1.
Lemma 3.9 implies therefore that Hom(F’,B) = Hom(F'[1],B) = 0. From [BBD82, Proposi-
tion 1.1.9], we obtain the existence and uniqueness of the morphisms f’, g. It remains to show that
they are isomorphisms. If g were zero, the second morphism in the triangle G' — G SNy B
would be zero. Hence, B would be a direct summand of G’[1] which implies Hom(G'[1], B) # 0.
This contradicts Lemma 3.9, because ¢_(G'[1]) > ¢(G’) > ¢ = ¢(B). Hence, g # 0 and Lemma 3.9
implies p(A) < p(B), i.e. ¢ = 1. So, the same reasoning as before gives a unique morphism of dis-
tinguished triangles in the other direction. The composition of both are the respective identities of

Fl'—F-—ASadG& —G—B-5 respectively, which follows again from the uniqueness
part of [BBD82, Proposition 1.1.9]. This proves the claim. O

We need the following useful lemma.

LEMMA 3.11 [PX97, Lemma 2.5]. Let D be a triangulated category and let

+
F——G——=H; ® H; o
be a distinguished triangle in D. Then G = Hy & G’ splits and the given triangle is isomorphic to
the following:
() (o )
0
F—g>HlEBG/—f>H1@H2(O——:U)> .
Dually, if
() s
F— Gl P G2 — H ——
is a distinguished triangle then H = Gy @ H' and the given triangle is isomorphic to the following:
10
() (o)

F—>G1@G2—>G1@Hl(0——;)> .

The results in this section are true for more general triangulated categories than Dtc’oh (E). With-
out changes, the proofs apply if we replace D®  (E) by the bounded derived category of an Abelian

coh
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category which is equipped with the notion of stability in the sense of [Rud97]. In particular, these
results hold for polynomial stability on the triangulated categories Dtc’oh (X) where X is a projective
variety over k.

4. The structure of the bounded derived category of coherent sheaves
on a singular Weierstraf3 curve

In this section, we prove the main results on which our understanding of Dtc’oh (E) is based. Again, E
denotes a Weierstrafl curve. Our main focus is on the singular case, but all the results remain true in
the smooth case as well. A speciality of this category is the non-vanishing result, Proposition 4.12.
Unlike the smooth case, there exist indecomposable objects in Dgoh(E), which are not semi-stable.
Their Harder—Narasimhan factors are characterised in Proposition 4.6. We propose to visualise
indecomposable objects by their ‘shadows’. As an application of our results, we give a complete
characterisation of all spherical objects in Dth(E). As a consequence, we show that the group of
exact auto-equivalences acts transitively on the set of spherical objects. This answers a question

which was posed by Polishchuk [Pol02].

Let us set up some notation. For any ¢ € (0, 1] we denote by P(¢)® C P(¢) the full sub-category of
stable sheaves with phase ¢. We extend this definition to all ¢ € R by requiring P(¢+n)® = P(¢)*[n]
for all n € Z and all p € R.

We already know the structure of P(1)*. Because P(1) is the category of coherent torsion sheaves
on E, the objects of P(1)® are precisely the structure sheaves k(z) of closed points x € E. In order
to understand the structure of all the other categories P(¢)*, we use Fourier-Mukai transforms. Our
main technical tool will be the transform F which was studied in [BK05]. It depends on the choice
of a regular point py € E. Let us briefly recall its definition and main properties. It was defined with
the aid of Seidel-Thomas twists [ST01], which are functors T : D2, (E) — DE,, (E) depending on
a spherical object E € DEOh(E). On objects, these functors are characterised by the existence of a
distinguished triangle

RHom(E,F)® E — F — T(F) = .

If pp € E is a smooth point, the functor Ty, is isomorphic to the tensor product with the locally
free sheaf Og(po); see [STO1, 3.11]. We defined

F:= Tk(Po)TOTk(Po)’

In [STO1] it was shown that twist functors can be described as integral transforms and that F is
isomorphic to the functor FM”, which is given by

Pry._ Lo
FM7(-) := Rmo.(P @ 71 (+)),

where P = Za @ 71O(po) @ m50O(po)[1]. This is a shift of a coherent sheaf on E x E, on which we
denote the ideal of the diagonal by Za C Og« g and the two projections by 71, mo.

In order to understand the effect of F on rank and degree, we look at the distinguished triangle
RHom(O,F)® 0 — F — Tp(F) = .

The additivity of rank and degree implies rk(To(F)) = rk(F') — deg(F') and deg(Tn(F)) = deg(F).
On the other hand, it is well known that deg (T () (F)) = deg(F)+rk(F) and rk(Tj () (F)) = rk(F).
So, if we use [Og|, —[k(po)] as a basis of K(E), which means that we use coordinates (rk, —deg),
then the action of T, T,y and F on K(E) is given respectively by the matrices

11 1 0 4 (01
0 1) \=1 1) ~1 0)°
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In particular, for any object F' € D2, (E) which has a slope, we have p(The(po) (F)) = pu(F) + 1 and

coh

w(F(F)) = —1/u(F) using the usual conventions in dealing with oo.

If F is a sheaf or a twist thereof, we defined the phase ¢(F"). In order to understand the effect of
F on phases, it is not sufficient to know its effect on the slope. This is because the slope determines
the phase modulo 2Z only. However, if F is a coherent sheaf, the description of F as FM? shows
that F(F') can have non-vanishing cohomology in degrees —1 and 0 only. If, in addition, F(F) is a
shifted sheaf, this implies that (F(F")) € (0,2]. From the formula for the slope it is now clear that
@(F(F)) = ¢(F) + 5 for any shifted coherent sheaf F'.

The following result was first shown in [BBHMO02]. We give an independent proof here, which
was inspired by [BBHMO02, Lemma 3.1].

THEOREM 4.1. The functor F sends semi-stable sheaves to semi-stable sheaves.

Proof. Note that, by definition, a semi-stable sheaf of positive rank is automatically torsion free.
The only sheaf with degree and rank equal to zero is the zero sheaf. Throughout this proof, we let
F be a semi-stable sheaf on E. If deg(F) = 0 this sheaf is torsion free and the claim was shown in
[BK05, Theorem 2.21]; see also [FMO03]. For the sake of clarity we would like to stress here the fact
that [BK05, §2] deals with nodal as well as cuspidal Weierstraf§ curves.

Next, suppose that deg(F) > 0. If rk(F) = 0, F is a coherent torsion sheaf. Again, the claim
follows from [BKO05, Theorems 2.21 and 2.18], where it was shown that FoF = i*[1], for any Weier-
strafl curve. Here, ¢ : E — FE is the involution which fixes the singularity and which corresponds
to taking the inverse on the smooth part of E with its group structure in which pg is the neutral
element.

Therefore, we may suppose F is torsion free. As observed before, the complex F(F) € D (E)

coh
can have non-vanishing cohomology in degrees —1 and 0 only. We are going to show that F(F)[—1] is

a sheaf, which is equivalent to the vanishing of the cohomology object H’(F(F)) € Cohg. Recall from
[BKO05, Lemma 2.13], that for any smooth point « € E the sheaf of degree zero O(z — py) satisfies
F(O(z — po)) = To(O(x)) = k(z). Moreover, if s € E denotes the singular point, n : P* — E the

normalisation and O := n,(Op1), then F(O(—pp)) = To(O) = k(s). The sheaf O(—pg) has degree
zero on E. Because [F is an equivalence, we obtain isomorphisms

Hom(F(F), k(z)) = Hom(F,O(x — po))
and
Hom(F(F), k(s)) = Hom(F, O(—po)),

where z € E is an arbitrary smooth point. These vector spaces vanish as F was assumed to be
semi-stable and of positive degree.

Because cohomology of the complex F(F) vanishes in positive degree, there is a canonical mor-
phism F(F) — HO(F(F)) in D2, (E), which induces an injection of functors Hom(H%(F(F)), -) —

coh

Hom(F(F), - ). Therefore, the vanishing which was obtained above shows that
Hom (H"(F(F)), k(y)) = 0

for any point y € E. This implies the vanishing of the sheaf H°(F(F)). Hence, F= F(F)[-1] is a
coherent sheaf and the definition of F implies that there is an exact sequence of coherent sheaves

0 — F(—po) — H°(F(po)) ® O — F(py) — 0.

This sequence implies, in particular, that F is torsion free.

Before we proceed to show that Fis semi-stable, we apply duality to prove that F(F) is a
sheaf if deg(F) < 0. Let us denote the dualising functor by D := R Hom(-,Og). This functor
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satisfies DD = 1. In [BK04, Corollary 3.4], we have shown that there exists an isomorphism
DF[—1] & *FD.

Using Do [1] = [—1] o D, this implies that
F =~ Di*[—1]FD.

Because F is a torsion free sheaf on a curve, it is Cohen—-Macaulay and, since FE is Gorenstein, this
implies Ext!(F,0) = 0 for any i > 0. Therefore, we have D(F) = F" and this is a semi-stable
coherent sheaf of positive degree. Thus, [—1]oF sends F" to a torsion free sheaf, on which D is just
the usual dual. Now, we see that F(F) is a torsion free sheaf if 7 was semi-stable and of negative
degree.

It remains to prove that F preserves semi-stability. If deg(F) = 0 or F is a torsion sheaf, this
was shown for any Weierstrafl curve in [BKO05]. If deg(F) # 0 the proof is based upon FF[—1] = i*;
see [BK05, Theorem 2.18]. Suppose deg(F) > 0, then IF(]?) = ¢*(F) and this is a coherent sheaf. If
F were not semi-stable, there would exist a semi-stable sheaf G with x(F) > u(G) and a non-zero
morphism F — G. Because u(]? ) = —1/u(F) < 0, F(G) is a coherent sheaf and application of [F
produces a non-zero morphism i*(F) = F(F) — F(G). However, pu(i*(F)) = u(F) > —1/u(G) =
u(F(G)) contradicts semi-stability of *(F). Hence, F is semi-stable. The proof in the case deg(F) <
0 starts with a non-zero morphism U« — F(F) and proceeds similarly. O

It was shown in [BKO05] that we obtain an action of the group SL(2,Z) on Db (E) by sending
generators of this group to To, Ti(p,) and the translation functor [1] respectively. Let us denote

Q := {p € R| P(¢) contains a non-zero object}.

The action of a group G on Q is called monotone if ¢ < 1 implies g < g - for every g € G and
e, Q.

ProposITION 4.2. The §I:(2, Z)-action on ch’oh(E) induces a monotone and transitive action on the

set Q. All isotropy groups of this action are isomorphic to Z.

Proof. As seen above, for any 1 € Q and 0 # A € P(¢), we have p(F(A)) = ¢(A) + & and
(T(py)(A)) = pu(A) + 1. Therefore, by Theorem 4.1 it is clear that we obtain an induced monotone

action of éT_(2,Z) on Q. The group SL(2,Z) acts transitively on the set of all pairs of co-prime
integers which we interpret as primitive vectors of the lattice Z @ iZ C C. Hence, the action of
SL(2,Z) on Q is transitive as well. So, all isotropy groups are isomorphic. Finally, it is easy to see
that the isotropy group of 1 € Q is generated by Tg,)- O

As an important consequence we obtain the following clear structure result for the slices P(y).

COROLLARY 4.3. The category P(y) of semi-stable objects of phase ¢ € Q is equivalent to the
category P(1) of torsion sheaves. Any such equivalence restricts to an equivalence between P(p)*
and P(1)*. Under such an equivalence, stable vector bundles correspond to structure sheaves of
smooth points. Moreover, if ¢ € (0,1) N Q, P(yp)® contains a unique torsion free sheaf, which is not
locally free. It corresponds to the structure sheaf k(s) € P(1)® of the singular point.

Recall that an object F € Dth(E) is called perfect if it is isomorphic in the derived category
to a bounded complex of locally free sheaves of finite rank. Thus, a sheaf or shift thereof is called
perfect if it is perfect as an object in Dth(E). If E is smooth, any object in Dth(E) is perfect.
However, if s € E is a singular point, the torsion sheaf k(s) is not perfect.

If E is singular with one singularity s € E, the category P(1)® contains precisely one object

which is not perfect, the object k(s). Hence, by Proposition 4.2, for any ¢ € Q there is precisely
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one element in P(¢)® which is not perfect. We shall refer to it as the extreme stable element with

phase . So, the sheaf k(s) is the extreme stable element with phase 1. The extreme stable element
is never locally free. A stable object is either perfect or extreme.

We shall need the following version of Serre duality, which can be deduced easily from standard
versions.

IfE.F e ch’oh(E) and at least one of them is perfect, then there is a bi-functorial isomorphism
Hom(E, F') = Hom(F, E[1])*. (3)

If neither of the objects is perfect, this is no longer true. For example, Hom(k(s), k(s)) = k, but
Hom(k(s), k(s)[1]) = Ext!(k(s), k(s)) = k2.
Any object X in the Abelian category P(p) has a Jordan—Hoélder filtration (JHF)

OCEF,XC---CHXCFkFX=X

with stable JH-factors J; = F;X/F;11X € P(¢)®. The graded object @] J; is determined by X.
Observe that for any two objects J 2 J € P(¢)® we can apply Serre duality because at most one
of them is non-perfect.

COROLLARY 4.4.
(i) If o, € Q with p —1 < 1) < ¢ there exists € §|:(2,Z) such that ®(¢) = 1 and ®(¢) € (0, 1].
) If A, B € P(p)®, then A~ B <= Hom(A, B) # 0.
) If0 # X € P(p) and 0 #Y € P(¢) with ¢ < ¥ < ¢ + 1, then Hom(X,Y") # 0.
(iv) If J € P(p)® is not a JH-factor of X € P(y), for all i € Z we have Hom(J, X[i]) = 0.
) If X € P(p) is indecomposable, all its JH-factors are isomorphic to each other.
)

If X,Y € P(p) are non-zero indecomposable objects, both with the same JH-factor, then
Hom(X,Y') # 0.

Proof. (i) This follows from Proposition 4.2 because the shift functor corresponds to an element in
the centre of SL(2,Z) and therefore ®(P(¢)) = P(1) implies ®(P(¢ — 1)) = P(0).
(ii) The statement is clear in the case ¢ = 1 and follows from (i) in the general case.

(iii) Using (i) we can assume ¢ = 1, which means that Y is a coherent torsion sheaf. By
Proposition 4.2 this implies ¢ € (0,1) and X is a torsion free coherent sheaf. If Y € P(1)® the
statement is clear, because any torsion free sheaf has a non-zero morphism to any Y = k(z), z € E.
If Y € P(1) is arbitrary, there exists a point € E and a non-zero morphism k(z) — Y. The claim
follows now from left-exactness of the functor Hom(X, -).

(iv) If J" € P(p)® is a JH-factor of X, we have J 2 J'. From (ii) and Serre duality together with
Lemma 3.9 we obtain Hom(J, J'[i]) = 0 for any i € Z. Using the JHF of X, the claim now follows.

(v) Tt is easy to prove by induction that any X € P(p) can be split as a finite direct sum
X = @ X, where each X}, has all JH-factors isomorphic to a single element J, € P(¢)®. This
implies the claim.

(vi) By (i) we may assume ¢(X) = ¢(Y') = 1. This means that both objects are indecomposable
torsion sheaves with support at the same point x € E. Such sheaves always have an epimorphism
to and a monomorphism from the object k(z), hence the claim. O

It is interesting and important to note that an indecomposable semi-stable object can be perfect
even though all its JH-factors are extreme. This is made explicit in [BKO05, §4], in the case of the
category P(1) of coherent torsion sheaves. If E is nodal, there are two kinds of indecomposable
torsion sheaves with support at the node s € E: the so-called bands and strings. The bands are
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FIGURE 1. Slices.

perfect, whereas the strings are not perfect. Using the action of §[(2, Z) this carries over to all other
categories P(p) with ¢ € Q.

An object X € P(p) will be called extreme if it does not have a direct summand which is
perfect. This implies that, but is not equivalent to, the property that all its JH-factors are extreme.
An example can be found below (see Example 4.9). From the above we deduce that any X € P(yp)
can be split as a direct sum X = X¢ @ XP with X€¢ extreme and X? perfect. All direct summands
of the extreme part have the unique extreme stable element with phase ¢ as its JH-factors. On the
other hand, all the direct summands of X? are perfect and they can have any object of P(¢)* as
JH-factor.

COROLLARY 4.5. Any coherent sheaf F with End(F) = k is stable.

Proof. The assumption implies that F is indecomposable. If F were not even semi-stable, it would
have at least two HN-factors. Using Corollary 4.4, we may assume that ¢, (F) = 1. Thus, F
is a coherent sheaf which is neither torsion nor torsion free. This implies that there is a non-
invertible endomorphism F — k(z) — tors(F) — F, in contradiction to the assumption. Hence,
F € P(p) is semi-stable. Let J € P(p) be its JH-factor. From Corollary 4.4(vi) we obtain a non-zero
endomorphism F — J — F, which can only be an isomorphism if 7 = 7, so F is indeed stable. [

The following method can be used to visualise the structure of the category Dtc’oh (E): the vertical
slices in Figure 1 are thought to correspond to the categories P(¢)® of stable objects. They are non-
empty if and only if ¢ € Q, i.e. Rexp(wit) N Z% # {(0,0)}. A point on such a slice represents a
stable object. The extreme stable objects are those which lie on the dashed upper horizontal line.
The labelling below the picture reflects the phases of the slices. We have chosen to let it decrease
from left to right in order to have objects with cohomology in negative degrees on the left and with
positive degrees on the right.

By Proposition 4.2, the group §[(2, Z) acts on the set of all stable objects, hence it acts on such
pictures. This action sends slices to slices and acts transitively on the set of slices with phase t € Q.
The dashed line of extreme stable objects is invariant under this action.

Any indecomposable object 0 # X € D (E) has a shadow in such a picture: it is the set of all

coh
stable objects which occur as JH-factors in the HN-factors of X. If this set consists of more than

one point, the shadow is obtained by connecting these points by line segments.

The following proposition shows that the shadow of an indecomposable object which consists of
more than one point is completely contained in the extreme line.

Figure 2 shows the shadows of five different indecomposable objects:

(a) X3 € Cohg an indecomposable torsion sheaf;

(b) X3 € Cohg[—1] the shift of an indecomposable semi-stable locally free sheaf;
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COhE[l] COhE COhE[— 1]
® X
2 1 0 -1

FIGURE 2. Shadows.

(¢c) X3 a genuine complex with three extreme HN-factors, one in Cohg[2] and the other two in
Coh E [1] N
(d) X4 an indecomposable torsion free sheaf which is not semi-stable;
(e) X5 € Cohg an indecomposable and semi-stable torsion free sheaf which could be perfect or not
(a band or a string in the language of representation theory).
The shadow of an indecomposable object is a single point if and only if this object is semi-stable.

PROPOSITION 4.6. Let X € D2

all HN-factors of X are extreme.

(E) be an indecomposable object which is not semi-stable. Then

Proof. Let

0 F,X FoAyX— —FX—FX=X
ATL An—l AO

be an HNF of X. If the HN-factor A; were not extreme, it could be split into a direct sum A; =
Al @ A with 0 # A} perfect and A, AY € P(p;). Because ¢_(F;11X) > ¢; = ¢(A]), Lemma 3.9
and Serre duality imply

Hom(A;, FH_lX[l]) = Hom(FiHX, A;)* = 0.
Hence, we can apply Lemma 3.11 to the distinguished triangle
FinX — FX — A

and obtain a decomposition F;X = F/X & Al. We proceed by descending induction on j < i to
show that there exist decompositions F;X = F;X @ A}. This is obtained from Lemma 3.11 applied
to the distinguished triangle

F}/X @A; I F}'_lX I Aj—l L

and using Lemma 3.9, Serre duality and p(A}) > p(A4;_1) to get
Hom(Aj_l,Ag[l]) = Hom(Ag, Aj—l)* =0.

We obtain a decomposition X = FyX = F/X & A} in which we have A, # 0. Because X was
assumed to be indecomposable, we should have X = A/, but this was excluded by assumption. This
contradiction shows that all HN-factors A; are necessarily extreme. U

COROLLARY 4.7. There exist four types of indecomposable objects in the category Cohg:

(i) semi-stable with perfect JH-factor;

(ii) semi-stable, perfect but its JH-factor extreme;
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(iii) semi-stable and extreme;

(iv) not semi-stable, with all its HN-factors extreme.

A similar statement is true for D®, (E). In this case, the objects of types (i), (ii) and (iii) are
shifts of coherent sheaves, whereas genuine complexes are possible for objects of type (iv). Types

(ii), (iii) and (iv) were not available in the smooth case.

Examples of type (i) are simple vector bundles and structure sheaves k(z) of smooth points
x € E. All indecomposable objects with a shadow not on the extreme line fall into type (i). Under
the equivalences of Corollary 4.3, indecomposable semi-stable locally free sheaves with extreme JH-
factor correspond, in the nodal case, precisely to those torsion sheaves with support at the node s,
which are called bands (see [BK05]). Examples of type (iii) are the stable coherent sheaves which
are not locally free and the structure sheaf k(s) of the singular point s € E. Moreover, in the nodal
case, the torsion sheaves with support at s, which are called strings in [BKO05], are of type (iii) as
well. Examples of objects of type (iv) are given below.

Ezample 4.8. We shall construct torsion free sheaves on nodal E with an arbitrary finite number
of HN-factors. This implies that the number of points in a shadow of an indecomposable object in
DP_, (E) is not bounded.

coh
Recall from [DGO1] that any indecomposable torsion free sheaf which is not locally free is

isomorphic to a sheaf S(d) = pn.L(d). We use here the notation of [BKO05, § 3.5], so that p,, : I, —» E
denotes a certain morphism from the chain I, of n smooth rational curves to the nodal curve E.
If d = (dy,...,d,) € Z", we denote by L(d) the line bundle on I,, which has degree d,, on the vth
component of I,. We know rk(S(d)) = n and deg(S(d)) = 1+ > d,. We obtain, in particular, that
for any ¢ € QN (0,1) there exist n € Z and d(p) € Z™ such that S(d(p)) is the unique extreme
element in P(¢)*. On the other hand, if d’ € Z",d” € Z"" and d = (d/,,d") € Z" "', where d/, is
obtained from d’ by adding 1 to the last component, we have an exact sequence

0— S(d)— S(d) — S(d") — 0
(see for example [Moz04]). Hence, if we start with a sequence 0 < g < ¢1 < -+ < @, < 1 where
v, € Q and define
d™ =d(¢,) and dY¥) = (dSFVH), d(yy,)) form>v >0,

we obtain an indecomposable torsion free sheaf S(d(?)) whose HN-factors are the extreme stable
sheaves S(d(¢,)) € P(¢y), 0 < v < m. The HNF of this sheaf is given by

S(d™) csdm™ V) c-..cSdY).
The sheaf S(d(?)) is of type (iv) and not perfect.

Ezample 4.9. Suppose E is nodal and let 7 : C'o, — E be an étale morphism of degree two, where
C5 denotes a reducible curve which has two components, both isomorphic to P! and which intersect
transversally at two distinct points. By i, : P! — E, v = 1,2, we denote the morphisms which are
induced by the embeddings of the two components of Cy. There is a k*-family of line bundles on
Cy whose restriction to one component is Op1(—2) and to the other is Op1(2). The element in k*
corresponds to a gluing parameter over one of the two singularities of C. If £ denotes one such line
bundle, £ := m, L is an indecomposable vector bundle of rank two and degree zero on E. Let us fix
notation so that i€ = Op1(—2) and i5€ = Op1(2). There is an exact sequence of coherent sheaves
on E:

0 — iQ*Opl e 5 I il*Opl(—2) —_— 0 (4)

Because the torsion free sheaves i2.Op1 and i1,Op1(—2) have rank one and F is irreducible, they
are stable. Because ¢(i2.Op1) = 3/4 and ¢(i1.Op1(—2)) = 1/4, Theorem 3.10 implies that the HNF
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of £ is given by the exact sequence (4). The HN-factors are the two torsion free sheaves of rank
one, i2,Op1 and i1, Op1(—2), which are not locally free. These are the extreme stable elements with
phases 3/4 and 1/4 respectively. Therefore, the indecomposable vector bundle £ is a perfect object
of type (iv) which satisfies ¢_(£) = 1/4 and ¢4 () = 3/4.

Remark 4.10. This example shows that the full sub-category of perfect complexes in the category
Dtc’Oh (F) is not closed under taking Harder-Narasimhan factors. We interpret this to be an indication
that the derived category of perfect complexes is not an appropriate object for homological mirror

symmetry on singular Calabi—Yau varieties.

Remark 4.11. It seems plausible that methods similar to those of this section could be applied to
study the derived category of representations of certain derived tame associative algebras. Such
may include gentle algebras, skew-gentle algebras and degenerated tubular algebras. The study of
Harder—Narasimhan filtrations in conjunction with the action of the group of exact auto-equivalences
of the derived category may provide new insight into the combinatorics of indecomposable objects
in these derived categories.

b
coh

(i) If o_(X) < p1(Y) < 9o_(X) + 1, then Hom(X,Y") # 0.

(ii) If X and Y are indecomposable objects which are not of type (i) in Corollary 4.7 and which
satisty ¢_(X) = ¢4 (Y), then Hom(X,Y") # 0.

PROPOSITION 4.12. Suppose X,Y € D2, (E) are non-zero.

Proof. If X and Y are semi-stable objects, the claim (i) was proved in Corollary 4.4(iii). Similarly,
claim (ii) for two semi-stable objects follows from Corollary 4.4(vi), because there is only one non-
perfect object in P(p)*.

For the rest of the proof we treat both cases, (i) and (ii), simultaneously. For the proof of (ii) we
keep in mind that Proposition 4.6 implies that no HN-factor has a perfect summand if the object
is indecomposable but not semi-stable. If X € P(¢p) is semi-stable but Y € D2 (E) is arbitrary, we
let

0 F,Y Fph1Y— - —FRY ——LRKY=Y
+\ 7 \ \ /
B, B, By

be an HNF of Y. As ¢(B,) = ¢4(Y) we know already that Hom(X, B,,) # 0. By assumption, we
have o(B;[—1]) = ¢(B;) =1 < ¢4+ (Y) — 1 < p(X). Hence, by Lemma 3.9, Hom(X, B;[—1]) = 0 and
the cohomology sequence of the distinguished triangle F; 1Y — ;Y — B; % provides an inclusion
Hom(X, F;11Y) C Hom(X, F;Y'). This implies 0 # Hom(X, B,,,) C Hom(X,Y").

Finally, in the general case, we let

0 X FroaX— - — X ——FRX=X
ATL An—l AO
be an HNF of X. As ¢(Ap) = ¢_(X) we have Hom(Ap,Y") # 0. Because

o (X)) =p_(NX)+1=p(41)+1>¢ (X)+1> ¢, (Y),

Lemma 3.9 implies that Hom(F; X[1],Y) = 0. The distinguished triangle F1 X — X — Ay 5 gives
us now an inclusion 0 # Hom(A4p,Y) € Hom(X,Y') and so the claim. O
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In [Pol02], Polishchuk asked for the classification of all spherical objects in the bounded derived
category of a singular projective curve of arithmetic genus one. Below, we shall solve this problem
for irreducible curves.

Let E be an irreducible projective curve of arithmetic genus one over our base field k. Recall
that in this case an object X € D® (E) is spherical if

coh
k ifie{0,1},

X is perfect and Hom(X, X[i]) & o
0 ifsi¢{0,1}.

ProroOSITION 4.13. Let E be an irreducible projective curve of arithmetic genus one and X €
DP  (E). Then the following are equivalent:

coh

(i) X is spherical;

(ii) Hom(X, X[i]) = {

(iii) X is perfect and stable;

k ifi=0,
0 ifi=2ori<O0;

(iv) there exists n € Z such that X[n] is isomorphic to a simple vector bundle or to a torsion sheaf
of length one which is supported at a smooth point of E.

b
coh

In particular, the group of exact auto-equivalences of D2, (E) acts transitively on the set of all

spherical objects.

Proof. The implication (i)=-(ii) is obvious.

Let us prove (ii)=-(iii). First, we observe that Hom(X, X) = k implies that X is indecomposable.
Suppose, X is not semi-stable. This is equivalent to ¢ (X) > ¢_(X). By Proposition 4.6 we know
that all HN-factors of X are extreme. Let M > 0 be the unique integer with M < ¢ (X)—¢_(X) <
M+ 1.

If M < pi(X)—¢_(X)<M+1, Proposition 4.12(i) implies that Hom(X, X[—M]) # 0. Under
the assumption (ii), this is possible only if M = 0. On the other hand, if M = ¢, (X) — p_(X), we
obtain from Proposition 4.12(ii) that Hom(X, X[—-M]) # 0. Again, this implies M = 0. So, we have
0 <pp(X) —p-(X) <1

If we apply the functor Hom( -, X) to F1 X L X — A L, the rightmost distinguished triangle
of the HNF of X, we obtain the exact sequence

Hom(F; X[1], X) — Hom(Ap, X) — Hom(X, X) — Hom(F; X, X),

in which the leftmost term Hom(F; X[1], X) = 0 by Lemma 3.9, because ¢p_(F1 X[1]) > p_(X)+1 >
¢4 (X). The third morphism in this sequence is not the zero map, as it sends Idx to u # 0. Because
Hom (X, X) is one-dimensional, this is only possible if Hom(Ag, X) = 0. But Proposition 4.12(i) and
©(Ag) < p+(X) < o(Ap) + 1 imply that Hom(Ag, X) # 0. This contradiction shows that X must
be semi-stable.

We observed earlier that all the JH-factors of an indecomposable semi-stable object are isomor-
phic to each other. Therefore, any indecomposable semi-stable object which is not stable has a space
of endomorphisms of dimension at least two. So, we conclude that X € P(¢)® for some ¢ € R.

Because Hom(k(s), k(s)[2]) = Ext?(k(s), k(s)) # 0, the transitivity of the action of §|:(2,Z) on
the set Q implies that none of the extreme stable objects satisfies the condition (ii). Hence, X is
perfect and stable.

To prove (iii)=-(i), we observe that the group of automorphisms of the curve E acts transitively
on the regular locus E \ {s}. Hence, by Proposition 4.2, the group of auto-equivalences of D° , (E)
acts transitively on the set of all perfect stable objects. Because, for example, the structure sheaf Og
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is spherical, it is now clear that all perfect stable objects are indeed spherical and that the group

of exact auto-equivalences of DP | (E) acts transitively on the set of all spherical objects.

To show the equivalence with (iv), it remains to recall that any perfect coherent torsion free
sheaf on F is locally free. This follows easily from the Auslander—-Buchsbaum formula because we
are working in dimension one. U

5. Description of t-structures in the case of a singular Weierstrafl curve

The main result of this section is a description of all ¢-structures on the derived category of a
singular Weierstra§ curve E. This generalises results of [GKRO04] and [Pol04], where the smooth
case was studied. As an application, we obtain a description of the group Aut(Dth(E)) of all exact
auto-equivalences of Dtc’Oh (E). A second application is a description of Bridgeland’s space of stability

conditions on E.

Recall that a t-structure on a triangulated category D is a pair of full subcategories (DS?, D7)
such that, with the notation D?" := D?°[—n] and DS" := DS[—n] for any n € Z, the following
hold:

(i) DS? ¢ DSt and D= c DZY;
(i) Hom(DSY,D=!) = 0;
(iii) for any object X € D there exists a distinguished triangle

A—X_-—B-*H
with A € DS? and B € D>,

If (DS, D?9) is a t-structure then A = DS? N D>Y has a structure of an Abelian category. It is
called the heart of the t-structure. In this way, t-structures on the derived category D , (E) lead to

coh
interesting Abelian categories embedded into it. The natural ¢-structure on Dth(E) has DS™ equal
to the full subcategory formed by all complexes with non-zero cohomology in degree less than or
equal to n only. Similarly, the full subcategory D=" consists of all complexes X with H’(X) = 0 for

all i < n. The heart of the natural ¢-structure is the Abelian category Cohg.

In addition to the natural ¢-structure we also have many interesting t-structures on DEOh(E). In
order to describe them, we introduce the following notation. We continue to work with the notion of
stability and the notation introduced in the previous section. If P C P(#)* is a subset, we denote by
D[P, c0) the full subcategory of D2, (E) which is defined as follows: X € D? (E) is in D[P, 00) if and
only if X = 0 or all its HN-factors, which have at least one JH-factor which is not in P, have phase
¢ > 6. Similarly, D(—o0, P| denotes the category which is generated by P and all P(p) with ¢ < 6.
If P = P(#)® we may abbreviate D[, 00) = D[P, c0) and D(—o0, ] = D(—o0, P]. Similarly, if P = ()
we use the abbreviations D(6, 00) and D(—o0, ). For any open, closed or half-closed interval I C R
we define the full subcategories DI precisely in the same way. Thus, an object 0 # X € D (E) is

coh
in DI if and only if ¢_(X) € I and ¢4 (X) € I.
PROPOSITION 5.1. Let 6 € R and P(0)~ C P(0)® be arbitrary. Denote by P(0)" = P(0)\ P(0)~ the
complement of P(0)~. Then,
DSY:= D[P(#)~, o0)

defines a t-structure on D2, (E) with

D! := D(—o0,P(#)].
The heart A(6,P(0)™) of it is the category D[P(0)~,P(6)"|
Db (E) whose HN-factors either have phase ¢ € (0,60 + 1

coh

PO)[1].

]
1]], which consists of those objects X €
) or have all its JH-factors in P(6)~ or
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Proof. The only non-trivial property which deserves a proof is (iii) in the definition of t-structure.
Given X € D (E), we have to show that there exists a distinguished triangle A — X — B %

coh

with A € DS? and B € DZ!. In order to construct it, let

0 F.X FiiX— —>FRX—>FX=X
+\ 7 \ / \ /
An An—l AO

be the HNF of X. Because ¢(A; 1) > p(A;) for all i, there exists an integer k, 0 < k < n+ 1, such
that ©(Ag) = 0 > p(Ar_1). If p(A) > 0, this implies that A; € DSV if 4 > k and A; € D=1 if
i < k. In particular, F, X € DSC. In this case, we define A := F, X and let A = F;, X — X be the
composition of the morphisms in the HNF. If, however, p(Ay) = 0, there is a splitting A, = A, EBA}C|r
such that all JH-factors of A, (respectively A)) are in P(6)~ (respectively P(6)T). Now, we apply

Lemma 3.4 to the distinguished triangles Fj 1 X N F.X — A . and A — Ay — A,‘I L,
given by the splitting of Ay, to obtain a factorisation Fj,1X — A — F; X of f and the following
two distinguished triangles:

Fpi X A F.X
N NVA
AT AT

Part of the given HNF of X together with the left one of these two triangles form an HNF of A,
whence A € DS, Again, we let A — X be obtained by composition with the morphisms in the

HNF of X. In any case, we choose a distinguished triangle A — X — B i>, where A — X is
the morphism chosen before. From Lemma 3.5 or Remark 3.6 we obtain B € DZ!. This proves the
proposition. O

We shall also need the following standard result.

LEMMA 5.2. Let (DS, D?%) be a t-structure on a triangulated category. If X @Y € DS° then
X € DSY and Y € DS, The corresponding statement holds for DZ0.

Proof. Let A Jox 2B Tbea distinguished triangle with A € DS? and B € D!, which exists
due to the definition of a t-structure. If X ¢ DS, we necessarily have g # 0 and B # 0. Because
Hom(D<% DZ1) = 0, the composition XY L2, X -2, B, in which p denotes the natural projection,
must be zero. If i : X — X @ Y denotes the canonical morphism, we obtain ¢ = gopoi =0, a
contradiction. In the same way it follows that Y € DO, O

Recall that an Abelian category is called Noetherian if any sequence of epimorphisms stabilises.
This means that for any sequence of epimorphisms fi : Ap — Ap.1 there exists an integer kg such
that fi is an isomorphism for all k > k.

LEMMA 5.3. The heart A(68,P(0)~) of the t-structure, which was described in Proposition 5.1, is
Noetherian if and only if P(0) # {0} and P(8)~ = (). In this case, A(0,0) = D(6,6 + 1].

Proof. 1f P() = {0} then A(0,P(#)~) = D(#,0 + 1). This category is not Noetherian. To prove
this, we follow the proof of Polishchuk in the smooth case [Pol04, Proposition 3.1]. We are going
to show, for any non-zero locally free shifted sheaf E € D(,0 + 1), the existence of a locally free
shifted sheaf F' and an epimorphism F — F in D(6,6 + 1), which is not an isomorphism. This will
be sufficient to show that D(6,60 + 1) is not Noetherian.

1253

https://doi.org/10.1112/50010437X06002090 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X06002090

I. BURBAN AND B. KREUBLER

—deg

0+1
FI1GURE 3. Proof of Lemma 5.3.

By applying an appropriate shift, we may assume 0 < 6 < 1. Under this assumption, for every
stable coherent sheaf G we have

GeD0,0+1) < 0<¢(G) <1,
G[1] e D0,0+1) < 0< ¢(G) < 0.
For any two objects X,Y € D® (E) we define the Euler form to be

coh

(X,Y) =rk(X)deg(Y) — deg(X) rk(Y),

which is the imaginary part of Z(X)Z(Y). If X and Y are coherent sheaves and one of them is
perfect, we have

(X,Y) = x(X,Y) := dim Hom(X,Y) — dim Ext! (X, Y).
This remains true if we apply arbitrary shifts to the sheaves X,Y, where we understand y(X,Y) =
>, (=1)”dim Hom(X, Y [v]).

Let E € D(6,6 + 1) be an arbitrary non-zero locally free shifted sheaf. We look at the strip in
the plane between the lines L(0) := Rexp(inf) and L(E) := L(0) + Z(E); see Figure 3. This strip
must contain lattice points in its interior. Therefore, there exists a lattice point Zp in this strip
which enjoys the following properties:

(i) the only lattice points on the closed triangle whose vertices are 0, Z(E), Z, are its vertices;
(il) ¢r > @(E).
By ¢r we denote here the unique number which satisfies § < pp < 0 + 1 and Zr € Rexp(impr).
Because SL(2,7Z) acts transitively on Q, there exists a stable non-zero locally free shifted sheaf
FeD(0,0+1) with Z(F) = Zr and ¢(F) = ¢p. The assumption P(6) = {0} implies Rexp(imf) N
7Z? = {0}; hence Z(E) is the only lattice point on the line L(E). This implies that Z(F) is not on
the boundary of the strip between L(0) and L(E). In particular, Z(F) — Z(F') is contained in the
same half-plane of L(0) as Z(F) and Z(F'); see Figure 3. Condition (i) implies (E, F') = 1. Because
E is locally free, condition (ii) implies
Ext'(E, F) = Hom(F, E) = 0.
Hence, Hom(E, F') = k. The evaluation map gives, therefore, a distinguished triangle
Hom(E,F) ® E — F — Tg(F) —
with Tg(F) € D2, (E). If C := Tg(F)[—1] we obtain a distinguished triangle

coh

Cc-E—-F-*% (5)
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with Z(C) = Z(FE) — Z(F). Because E is a stable non-zero shifted locally free sheaf, it is spherical
by Proposition 4.13 and so T is an equivalence. This implies that Tr(F') is spherical and, by
Proposition 4.13 again, C' is a stable non-zero shifted locally free sheaf. All morphisms in the
distinguished triangle (5) are non-zero because C, E, F' are indecomposable; see Lemma 3.11. Using
Lemma 3.9, this implies that § — 1 < ¢(C) < 6 + 1. However, we have seen in which half-plane
Z(C) is contained, so that we must have 0 < ¢(C) < 6 + 1, which implies that C € D(6,0 + 1).
The distinguished triangle (5) and the definition of the structure of Abelian category on the heart
D(0,6+ 1) imply now that the morphism E — F in (5) is an epimorphism in D(6, 0+ 1). This gives
an infinite chain of epimorphisms which are not isomorphisms, so that the category D(6,6 + 1) is
indeed not Noetherian.

In order to show that A(0,P(0)7) is
there exists a stable element k(x) € P(0)~
sequences

not Noetherian for P(0)~ # () we may assume 6 = 0. If
[1] € P(1), where = € E is a smooth point, we have exact

0 — O(mx) — O((m + 1)z) — k(z) — 0 (6)
in Cohg with arbitrary m € Z. Hence the cone of the morphism O(ma) — O((m+1)x) is isomorphic
to k(z)[0]. Because k(z)[0] is an object of DS™!, with regard to the t-structure which is defined by
P(0)~, we obtain 7>q(k(x)[0]) = 0, which is the cokernel of O(mz) — O((m + 1)z) in the Abelian
category A(0,P(0)7); see [BBDS82, §1.3]. Hence, there is an exact sequence

0 — k(z)[-1] — O(mzx) — O((m + 1)z) — 0
in A(0,P(0)7) and we obtain an infinite chain of epimorphisms
O(x) — O(2x) — O(3z) —

in the category A(0,P(0)™), which, therefore, is not Noetherian. If P(0)™[1] contains k(s) only,
where s € E is the singular point, we proceed as follows. First, recall that there exist coherent
torsion modules with support at s which have finite injective dimension; see for example [BK05,
§4]. To describe examples of them, we can choose a line bundle £ on E and a section o € HY(L),
such that the cokernel of o : O — L is a coherent torsion module B of length two with support at
s. If we embed E into P2, such a line bundle £ is obtained as the tensor product of the restriction
of Opz2(1) with Og(—x), where x € E is a smooth point. The section o corresponds to the line in
the plane through x and s. By twisting with £®™ we obtain exact sequences

0— L& — £8m+l) B

in Cohg. Because B is a semi-stable torsion sheaf with support at s, all its JH-factors are isomorphic
to k(s) and we conclude as above. This completes the proof of Lemma 5.3. O

PROPOSITION 5.4. Let (DS?, DY) be a t-structure on DP | (E) and B a semi-stable indecomposable
object in D2, (E). Then either B € DS or B € DZL.

Proof. Let X EN BLY Lbea distinguished triangle with X € DS and Y € DZ!. Suppose
X #0and Y # 0 in D2, (E). We decompose both objects into indecomposables X = @ X; and
Y = @Y. By Lemma 5.2 we have X; € DS? and Y; € D=1 If one of the components of the
morphisms Y[—-1] = X =@ X; or @Y; =Y — X][1] were zero, by Lemma 3.11 we would obtain
a direct summand X; or Y; in B. Because B was assumed to be indecomposable, this implies the
claim of the proposition.

For the rest of the proof we suppose that all components of these two morphisms are non-
zero. This implies that X; and Y are non-perfect for all 4, j. Indeed, if X; were perfect, we could
apply Serre duality (3) to obtain Hom(Y, X;[1]) = Hom(X;,Y)*, which is zero because X; € DS?
and Y € D?!'. The case with perfect Y; can be dealt with similarly. Using Lemma 3.11 again, it
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follows that none of the components of f : @ X; — B or g : B — Y] is zero, because none
of the X; could be a direct summand of Y [—1] and none of the ¥; could be a summand of X[1].
Using Lemma 3.9, this implies ¢_(X;) < ¢(B) < ¢4(Y;) for all 7,5. If there exist ¢,j such that
0 (X;) — ¢4+ (Y;) € Z, there exists an integer k > 0 such that p_ (X;[k]) < ¢4 (Y;) < p_(X;[k]) + 1.
Using Proposition 4.12(i) this implies that Hom(X;[£],Y;) # 0. But, for any integer k£ > 0 we have
X;[k] € DS, and because Y; € DZ!, we should have Hom(X;[k],Y;) = 0. This contradiction implies
that ¢_(X;) —¢1(Y;) € Z for all i, j. But, if k = ¢4 (Y;) —¢_(X;), we still have Hom(X;[k],Y;) # 0,
which follows from Proposition 4.12(ii) because X; and Y; are not perfect. The conclusion is now
that we must have X = 0 or Y = 0, which implies the claim. ]

LeEMMA 5.5. Let (DS, DZ°) be a t-structure on D®_(E). If F € DS and G € D?!, then ¢_(F) >

coh
o+(G).

Proof. Suppose ¢_(F') < ¢4 (G). It is sufficient to derive a contradiction for indecomposable objects
F and G. Because, for any k > 0, F[k] € DSY, we may replace F' by F[k] and can assume that
0 < ¢+(G) — p_(F) < 1. Now, there exists a stable vector bundle B on E and an integer r such
that

p—(F) < @(Blr]) < (G) < - (F) + 1.
By Proposition 5.4, B[r] is in DS? or in DZ!. But, from Proposition 4.12(i) we deduce that

Hom(F, B[r]) # 0 and Hom(B[r],G) # 0. If B[r] € D!, the first inequality contradicts F' € DO,
and if B[r] € DSY, the second one contradicts G € D71 O

THEOREM 5.6. Let (DS?, D) be a t-structure on D®
a subset P(0)~ C P(6)®, such that

DSY =D[P(§)",00) and D' =D(—oc,P(6)"].

(E). Then there exist a number 6 € R and

Proof. From Lemma 5.5 we deduce the existence of 6 € R such that D(6,00) C DS? and D(—o0,6) C
DZ!. If we define P(0)~ = P(0)°*ND<? and P(9)* = P(#)*ND>!, Proposition 5.4 implies that P(#)* =
P(6)~ UP(#)". Hence, D[P()~,c) C DS and D(—oc,P(#)*] c D=!. From Proposition 5.1 we
know that (D[P(6)~, 00),D(—oc0, P(8)"[1]]) defines a t-structure. Now, the statement of the theorem
follows. O

Remark 5.7. In the case of a smooth elliptic curve, Theorem 5.6 was proved in [GKRO04]. If § ¢ Q
the heart D(6,0+1) of the corresponding ¢-structure is a finite-dimensional non-Noetherian Abelian
category of infinite global dimension. In the smooth case, such a heart corresponds to the category
of holomorphic vector bundles on a non-commutative torus in the sense of Polishchuk and Schwarz
[PS03]. It is an interesting problem to find a similar interpretation of these Abelian categories in
the case of a singular Weierstrafl curve E.

To complete this section we give two applications of Theorem 5.6. The first is a description of
the group of exact auto-equivalences of the triangulated category Dgoh(E). The second application
is a description of Bridgeland’s space of all stability structures on DP (E). In both cases, FE is an

coh
irreducible curve of arithmetic genus one over k.

COROLLARY 5.8. There exists an exact sequence of groups
1 — Aut’(D,, (E)) — Aut(D°, (E)) — SL(2,Z) — 1

coh coh

in which AutO(DEOh(E)) is generated by tensor products with line bundles of degree zero, automor-

phisms of the curve and the shift by 2.

Proof. The homomorphism Aut(DP | (E)) — SL(2,Z) is defined by describing the action of an auto-
equivalence on K(E) in terms of the coordinate functions (deg,rk). That this is indeed in SL(2,Z)
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follows, for example, because Aut(D®, (E)) preserves stability and the Euler form
(F,G) = dimHom(F,G) — dim Hom(G, F)
= 1rk(F)deg(G) — deg(F) rk(G)

for stable and perfect sheaves F,G. Clearly, tensor products with line bundles of degree zero,
automorphisms of the curve and the shift by 2 are contained in the kernel of this homomorphism.
In order to show that the kernel coincides with Aut®(D°, (E)), we let G be an arbitrary exact
auto-equivalence of D2 (E). Then, G(Cohg) is still Noetherian and it is the heart of the t-structure
(G(DS?), G(D>?)). From Theorem 5.6 and Lemma 5.3 we know all Noetherian hearts of ¢-structures.
We obtain G(Cohg) = D(0, 6 + 1] with P(6) # {0}. Now, by Corollary 4.4 there exists ® € éT_(Z,Z)
which maps D(6,6 + 1] to D(0,1] = Cohg. This implies that the auto-equivalence ® o G induces
an auto-equivalence of the category Cohg. It is well known that such an auto-equivalence has the
form f*(L ® -), where f : E — E is an isomorphism and £ is a line bundle. Note that f*(£L ® -)
is sent to the identity in SL(2,Z) if and only if £ is of degree zero. The composition of ® o G with
the inverse of f*(L ® -) satisfies the assumptions of [BO97, Proposition A.3], hence is isomorphic
to the identity. Because the kernel of the homomorphism éT_(Q,Z) — SL(2,Z), which is induced
by the action of §|:(2,Z) on D2 (E) and the above homomorphism Aut(D®, (E)) — SL(2,7Z), is

generated by the element of SL(2,Z) which acts as the shift by 2, the claim now follows. O
For our second application, we recall Bridgeland’s definition of stability condition on a triangu-
lated category [Bri02].
Recall that we set K(E) = Ko(Coh(E)) = Ko(D?,,
pair (W,R) a stability condition on D°, (E) if

W :KE)—C

(E)). Following Bridgeland [Bri02], we call a

is a group homomorphism and R is a compatible slicing of Dcoh( ). A slicing R consists of a
collection of full additive sub-categories R(t) C D2, (E), t € R, such that:

(i) vte R, R(t+1)=R()[1];

(ii) if t; > t2 and A, € R(t,), then Hom(A;, As) = 0;

(iii) each non-zero object X € D®  (E) has an HNF

coh

0 ——I,X n-1X — - —= X ——=F{X=X
\ / \ / -\ /
A

in which 0 #£ A, € R(gpy) and @ > @p_1 > > P11 > Q.
Compatibility means, for all non-zero A € R(t),
W(A) € Rygexp(int).
By ¢R we denote the phase function on R-semi-stable objects. Similarly, we denote by goi (X) and

goFf(X ) the largest, respectively smallest, phase of an R-HN-factor of X.

The standard stability condition, which was studied in the previous section, will always be
denoted by (Z,P). This stability condition has a slicing which is locally finite; see [Bri02, Defini-
tion 5.7]. A slicing R is called locally finite if and only if there exists n > 0 such that for any ¢t € R
the quasi-Abelian category DR(t — n,t + 7) is of finite length, i.e. Artinian and Noetherian. This
category consists of those objects X € Dcoh( ) which satisfy t —n < R (X) < goi(X) <t+n.

In order to obtain a good moduli space of stability conditions, Bridgeland [Bri02] requires
the stability conditions to be numerical. This means that the central charge W factors through
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P(62)"[1]

92 +1
FIGURE 4. Intersection of two hearts.

the numerical Grothendieck group. This makes sense if, for any two objects F, F' of the triangu-
lated category in question, the vector spaces @, Hom(E, F'[i]) are finite-dimensional. This condi-
tion is not satisfied for Dth(E) if E is singular. However, in the case of our interest, we do not
need such an extra condition, because the Grothendieck group K(E) is sufficiently small. From
Lemma 3.1 we know that K(E) = Z? with generators [Og| and [k(z)], z € E arbitrary. Because
Z(k(r)) = —1 and Z(Og) = 1, it is now clear that any homomorphism W : K(E) — C can be
written as W (E) = w deg(E) + wq tk(E) with wy,wy € C. Equivalently, if we identify C with R?,
there exists a 2 x 2 matrix A such that W = Ao Z.

DEFINITION 5.9. By Stab E we denote the set of all stability conditions (W, R) on Dth
R is a locally finite slicing.

LEMMA 5.10. For any (W,R) € Stab(E) there exists a matrix A € GL(2,R), such that W = Ao Z.

(E) for which

Proof. As seen above, there exists a not necessarily invertible matrix A such that W = Ao Z. If
A were not invertible, there would exist a number ¢y € R such that W (K(E)) C Rexp(intg). This
implies that there may exist a non-zero object in R(¢) only if t — ty € Z. The assumption that the
slicing R is locally finite implies now that R(#) is of finite length for any ¢t € R. On the other hand,
the heart of the ¢-structure, which is defined by (W, R), is R(%g) up to a shift. However, in Lemma 5.3
we determined all Noetherian hearts of ¢-structures on Dth(E) and none of them is Artinian. This
contradiction shows that A is invertible. O

LEMmMA 5.11. If (W, R) € Stab(E), there exists a unique strictly increasing function f : R — R with
ft+1) = f(t)+1 and R(t) = P(f(t)).

Proof. By definition, W (R(t)) C Rsgexp(int). By Lemma 5.10, there exists a linear isomorphism
A such that W = A~! o Z. This implies that there is a function f : R — R such that Z(R(t)) C
R-pexp(imf(t)). On the other hand, R(¢) is the intersection of two hearts of ¢-structures. By Propo-
sition 5.1 these hearts are of the form D[P(6;)~,P(61)"[1]] and D[P(63)~, P(02)"[1]] with 6; < 6s.
These have non-empty intersection only if #3 < 01 + 1. Their intersection is contained in D[, 61+ 1];
see Figure 4.

Moreover, if 0o < 6; 4+ 1, there exist o, € Q with 0 < aa < 8 < 0y +1 < 6+ 1. In
this case we have two non-trivial sub-categories P(«) C R(t) and P(3) C R(t). However, because
0 < f—a<1and Z(R(t)) C Rygexp(inf(t)), we cannot have Z(P(«)) C Rspexp(ima) and
Z(P(8)) C Rygexp(im3). Hence, 62 = 61 +1 = f(t) and we obtain R(¢) C P(f(¢)). From R(t+m) =
R(t)[m] we easily obtain f(t+m) = f(t) +m. Moreover, f(t2) = f(t1)+m with m € Z implies that
ty — t1 € Z, because the image of W is not contained in a line by Lemma 5.10.

Next, we show that f is strictly increasing. Suppose that t; < to, to — t; € Z and both R(¢;)
contain non-zero objects X;. For any m > 0 we have Hom (X2, X1[—m]) = 0. If f(t2) < f(t1), we
choose m > 0 such that f(t2) < f(t1) —m < f(t2) + 1 and obtain X € P(f(t2)) and Xi[—m] €
P(f(t1) —m). But this implies, by Corollary 4.4(iii), that Hom(X2, X;[—m]) # 0, a contradiction.
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Hence, we have shown that f is strictly increasing with f(t + 1) = f(¢) + 1 and R(¢) C P(f(¢)). In
particular, any R-HNF is a P-HNF as well. Therefore, all P-semi-stable objects are R-semi-stable
and we obtain R(t) = P(f(t)). O

It was shown in [Bri02] that the group a_+(2, R) acts naturally on the moduli space of stability
conditions Stab(E). This group is the universal cover of GL™ (2, R) and has the following description:

GL (2,R) = {(A, f) | A€ GL*(2,R), f : R — R compatible},
where compatibility means that f is strictly increasing, satisfies f(t+ 1) = f(¢) + 1 and induces the
same map on S' =2 R/27Z as A does on S' = R?\ {0}/R*. The action is simply (4, f) - (W,Q) =

(A=YoW, Qo f). So, this action basically is a relabelling of the slices. The following result generalises
[Bri02, Theorem 9.1], to the singular case.

~—+
PROPOSITION 5.12. The action of GL (2,R) on Stab(FE) is simply transitive.

Proof. 1f (W,R) € Stab(E), the two values W (Og) and W (k(po)) determine a linear transformation
A~! € GL(2,R) such that W = A~ 0 Z (see Lemma 5.10). By construction, the function f : R — R
of Lemma 5.11 induces the same mapping on S! = R/2Z as A~! does on S! = R?\ {0}/R*.
Therefore, A € GL™(2,R) and we obtain (A, f) € GL' ( R) which satisfies (W,R) = (A, f) - (Z,P).

Finally, if (A, f) - (Z,P) = (Z,P) for some (4, f) € GL' (2,R), we obtain f(t) =t for all t € R. This
implies easily that A = 1. O

The group Aut(D®

coh

(E)) acts on Stab(E) by the rule
G- (W,R) := (G o W,G(R)).

Here, G € SL(2,7Z) is the image of G € Aut(DE,, (E)) under the homomorphism of Corollary 5.8
and G(R)(t) := G(R(t)). Because automorphisms of E and twists by line bundles act trivially on

Stab(E), we obtain

Stab(E )/Aut(Dcoh( )) = GLT(2,R)/SL(2,7),
which is a C*-bundle over the coarse moduli space of elliptic curves. This result coincides with
Bridgeland’s result in the smooth case. The main reason for this coincidence seems to be the

irreducibility of the curve. Example 5.14 below shows that the situation is significantly more difficult
in the case of reducible degenerations of elliptic curves.

Remark 5.13. Our results show that singular and smooth Weierstrafl curves E share the following
properties.

(i) A coherent sheaf F is stable if and only if End(F) = k.

(ii) Any spherical object is a shift of a stable vector bundle or of a structure sheaf k(x) of a smooth
point x € E.

(iii) The category of semi-stable sheaves of a fixed slope is equivalent to the category of coherent
torsion sheaves. Such an equivalence is induced by an auto-equivalence of D° | (E).

(iv) There is an exact sequence of groups 1 — (Aut(E), Pic’(E), [2]) — Aut(D°_, (E)) — SL(2,Z) —

coh
1.
(v) 6L+(2 R) acts transitively on Stab(E).
(vi) Stab(E)/Aut(D?, (E)) = GLT(2,R)/SL(2,Z).

Ezample 5.14. Let Cy denote a reducible curve which has two components, both isomorphic to P!
and which intersect transversally at two distinct points. This curve has arithmetic genus one and
appears as a degeneration of a smooth elliptic curve. On this curve, there exists a line bundle £
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which fails to be stable with respect to some stability conditions. To construct an explicit example,
denote by 7 : 02 — (9 the normalisation, so that 02 is the disjoint union of two copies of P!.
There is a k*-family of line bundles whose pull-back to C, is Op1 on one component and Op1(2) on
the other. The element in k* corresponds to a gluing parameter over one of the two singularities.
Let £ denote one such line bundle. If i, : P! — Cy, v = 1,2, denote the embeddings of the two
components, we fix notation so that i7£ = Op1 and 5L = Opl( ). There is an exact sequence of
coherent sheaves on Cs,

0 — i2.0p1 — L — i1.0p1 — 0. (7)
Moreover, the only non-trivial quotients of £ are £ — i1,Op1 and £ — i, Op1(2).

For arbitrary positive real numbers a, b we define a centred slope-function W, ; on the category
COhC2 by

Weap(F) := —deg(F) +i(a - rk(i]F) + b - k(i3 F)),
where deg(F) = h°(F) — h'(F). For example,

me(il*OPl (d)) =—-d—1+1a and Wa7b('l'2*O]P>l (d)) = —d—1+41ib.

Using the exact sequence (7), we obtain W, (L) = —2 + i(a + b). Using results of [Rud97], it
is easy to see that W, has the Harder-Narasimhan property in the sense of [Bri02]. Hence, by
[Bri02, Proposition 5.3], W, ;, defines a stability condition on Dtc’oh(C’g). With respect to this stability
condition, the line bundle £ is stable precisely when 2/(a + b) < 1/a, which is equivalent to a < b.
It is semi-stable, but not stable, if b = a. If a > b, £ is not even semi-stable.

This example illustrates an interesting effect, which was not available on an irreducible curve
of arithmetic genus one. It is an interesting problem to describe the subset in Stab(FE) for which a
given line bundle £ is semi-stable. This is a closed subset; see [Bri02]. Physicists call the boundary of
this set the line of marginal stability; see e.g. [AD02]. The example above describes the intersection
of this set with a two-parameter family of stability conditions in Stab(E).

Remark 5.15. In the case of an irreducible curve of arithmetic genus one, we have shown in Propo-
sition 4.13 that Aut(D®, (E)) acts transitively on the set of all spherical objects on E. Polishchuk
[Pol02] conjectured that this is likewise true in the case of reducible curves with trivial dualising
sheaf. However, on the curve C5 there exists a spherical complex which has non-zero cohomology in
two different degrees; see [BB05]. This indicates that the reducible case is more difficult and involves

new features.
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