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Abstract
Light stimulation can realise the remote control of the deformation of the specific position of 4D printing
structure. Shape-memory polymer–carbon nanotube (CNT) composite materials, with outstanding near-infrared
photothermal conversion rate and shape-memory ability, is one type of the most popular light responsive
smart materials. However, current studies focused on the photothermal effect and shape-memory applications
of light-responsive shape-memory polymer composite (SMPC) sheet structures, and there is no research on
the photothermal effect in the depth direction of light-responsive SMPC three-dimensional structures. Here, we
prepared a UV curable, mechanically robust, and highly deformable shape-memory polymer (IBBA) as the matrix
of light responsive SMPC. CNTs were added as photothermal conversion materials. We explore the photothermal
effect of near-infrared laser on the surface and depth of IBBA–CNT composites cube. Shape-memory experiments
show that different folded shapes can be obtained by selective near-infrared laser programming. Selective near-
infrared laser programming three-dimensional movable type plate shows a programming application in depth
direction of three-dimensional light-responsive intelligent structure. This research extends the application of near-
infrared laser in 4D printing to the depth direction of intelligent structures, which will bring more complex and
interesting 4D printing structures in the future.

Introduction

Shape-memory materials are intelligent materials that can transition from a temporary state to a prim-
itive state under external stimuli. Compared with shape-memory materials such as hydrogels, liquid
crystal elastomers, shape-memory alloys, and shape-memory ceramics, shape-memory polymers and
their composites (SMPs/SMPCs) have the advantages of mechanical robustness, large deformability,
low cost, easy preparation, and multiple stimulus actuation (Xiao Kuang et al., 2018). Stimulations
such as light (Lendlein et al., 2005; Cortés et al., 2021; Liang et al., 2021), heat (Ge et al. 2013,
2014, 2016), electricity (Zarek et al., 2016; Zhang et al., 2021a, 2021b; Wang et al., 2023; Zhang
et al., 2023), magnetism (Kim et al., 2018; Ma et al., 2020; Ze et al., 2020; Hu et al., 2021), pH
(Han et al., 2012), and humidity (Sessini et al., 2018) can all be used to drive SMPs/SMPCs. The
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controllability of external stimulus such as heat/magnetic field/PH and humidity are poor, making it
difficult to achieve quantitative driving deformation at specific locations. Dielectric elastomers cannot
achieve specific position-driven deformation (Wang et al., 2023). Embedded conductors in the SMP
structure can achieve electric heating at specific positions, but the driving position cannot be changed
(Zarek et al., 2016; Zhang et al., 2021a; Zhang et al., 2023). Light stimulation can realise the remote
control of the deformation of light-responsive SMPC structure at a specific position (Liang et al., 2021).

According to the deformation mechanism, light-responsive SMPC can be divided into photochemi-
cal type and photothermal type. Photochemical SMPC usually uses UV light or visible light to activate
photochemical groups to form new chemical crosslinks, which leads to macro deformation of materials
(Jin et al., 2018; Peng et al., 2021). This process is very slow (usually takes more than 1 hour), and
the temporary deformation is unstable. Photothermal SMPC usually converts the energy of infrared
light or sunlight into heat to drive the shape change (Leng et al., 2011; Wang et al., 2016; Wang et al.,
2022). Photothermal SMPC usually has excellent shape fixation rate, shape recovery rate, and shape
recovery speed, so it has been widely used in aerospace (Li et al., 2019b), medical devices (Xie et al.,
2018; Chu et al., 2020; Yang et al., 2021), soft robots (Ji et al., 2014; Zhang et al., 2014; Ding et al.,
2017; Toncheva et al., 2018; Xu et al., 2019; Wang et al., 2021; Shan et al., 2022), and self-healing SM
structures (Li et al., 2019a; Du et al., 2020; Yan et al., 2020).

Common photothermal conversion materials include metal nanoparticles (Toncheva et al., 2018;
Liang et al., 2021; Yang et al., 2021), carbon-based materials (Ji et al., 2014; Zhang et al., 2014;
Ding et al., 2017; Li et al., 2019b; Wang et al., 2021), dyes (Fang et al., 2016), rare earths (Shan
et al., 2022), and so forth. Carbon-based nanomaterials, that is, graphene (Ji et al., 2014)/carbon
nanotubes (CNTs; Zhang et al., 2014; Ding et al., 2017)/carbon black (Wang et al., 2021, are the first
choice of photothermal conversion materials due to their excellent photothermal conversion efficiency
and good dispersion. CNTs are attractive for light-responsive SMPCs due to their excellent infrared
light absorption and thermal conductivity (1,000–6,000 W/mK) (Kim et al., 2001; Liao et al., 2015;
Han et al., 2018). Numerous studies have mixed CNT with shape-memory polymer matrix, such as
thermoplastics (Zhang et al., 2014; Xu et al., 2019), PDMS elastomer (Li et al., 2018), and epoxy-
based SMP, to prepare near-infrared activated SMPCs. However, the manufacturing methods of most
matrix materials are injection moulding (Li et al., 2018), hot press moulding (Xu et al., 2019; Li et al.,
2019a; Du et al., 2020), and vacuum filtration (Ding et al., 2017; Zhang et al., 2014), resulting in light-
responsive SMPC structures being thin sheets. The combination of shape-memory polymer precursor
solutions containing acrylic functional groups and 3D printing technology can produce structurally
complex and functionally diverse light-responsive intelligent structures.

Here, we prepared a UV curable infrared responsive SMP–CNT composite material. Two monomers
(IBoA, BA) and one crosslinker (aliphatic urethane diacrylate [AUD]) with acrylic functional groups
form the UV curable SMP matrix (IBBA). This novel light-responsive SMPC (IBBA–CNT) was
prepared by fully mixing IBBA with CNT. The thermal mechanical performance experiment, shape-
memory effect experiment, and photothermal conversion experiment show that IBBA–CNT has good
mechanical properties, shape-memory performance, and photothermal response performance. Selective
near-infrared laser activation of specific regions of IBBA–CNT sheets can result in different folding
structures. We explored the photothermal driving behaviour of near-infrared laser in the depth direction
of light-responsive SMPC using 3D-printed IBBA–CNT cube. Based on the photothermal driving effect
in the depth direction, we demonstrated the advantages of selective near-infrared light-driven three-
dimensional SMP structures through a 3D-printed multi-material movable type.

Results and discussion

Figure 1a presents the chemical structures used to prepare the IBBA precursor solution which consists
of 50 wt.% isobornyl acrylate (IBoA) and 30 wt.% benzyl acrylate (BA) as linear chain builder, 20 wt.%
AUD as crosslinker. After the mixture of monomers and crosslinker is stirred and mixed evenly, add
2 wt.% diphenyl(2,4,6-trimethylbenzoly) phosphine oxide (TPO) as a photoinitiator. Light-responsive
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Figure 1. The thermal mechanical properties and precursor rheological properties of IBBA–CNT.
(a) Chemical composition and UV curing products of shape-memory polymer precursors. (b) The rhe-
ological properties of the precursors. (c) Photorheological properties of the precursors. (d,e) Dynamic
thermodynamic performance test results. (f) Quasi-static tensile test results at room temperature.
(g) Quasi-static tensile test results at programmed temperature.

SMPC was prepared by adding 0.05 wt.% CNTs into IBBA solution and mixing them through
ultrasound. After 30 min of ultrasonic mixing, the CNTs in IBBA–CNTs were uniformly dispersed
and remained stationary for 12 h without significant precipitation. The addition of 0.05 wt.% CNTs
has no significant effect on the rheological properties of IBBA precursor solution, and the viscosities
are lower than 0.4 Pa·s before and after the addition of CNTs (Figure 1b, Supplementary Figure S1).
The reduction of CNTs reduces the UV curing efficiency of IBBA precursor solution. The curing time
of a 100-μm-thick IBBA–CNT layer is 11.6 s (UV light with an energy density of 8 mW/cm2 and a
wavelength of 385 nm, curing time: tc = tgel − ts), which is much longer than the time required to cure
an IBBA layer of the same thickness (Figure 1c).

We printed IBBA dog-bone samples and IBBA–CNT dog-bone samples to explore the effect of
CNTs on the mechanical properties of IBBA (Supplementary Figure S1). DMA Q850 was used to
measure their thermal mechanical properties (Figure 1d,e). The addition of 0.05 wt.% CNT reduced
the glass modulus (storage modulus at room temperature) of IBBA and increased the rubbery modulus
(storage modulus above the glass transition temperature) of IBBA. The addition of CNT also reduced
the glass transition temperature (Tg) of the material (62◦ C to 58◦ C). During the DMA testing process,
the temperature rises uniformly, and IBBA–CNT with higher thermal conductivity absorbs heat faster,
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Figure 2. Shape-memory programming of IBBA–CNT through near-infrared photothermal effects.
(a) Shape-memory cycle experiment of IBBA–CNT. (b) Near-infrared photothermal effect testing
equipment. (c) Infrared camera window. (d) Experimental results of near-infrared photothermal effect.
(e) Selective near-infrared laser programming for IBBA–CNT sheet.

resulting in a lower measured glass transition temperature. The quasi-static tensile tests shown that the
addition of CNT reduces the modulus of the material at room temperature (388 to 293 MPa; Figure 1f)
and increases its modulus at programming temperature (Tg + 25◦ C) (0.20 to 0.26 MPa; Figure 1g), but
has no significant effect on the elongation at break of the materials (450.1% to 413.6%; Figure 1g). The
test results of thermal mechanical properties show that the addition of CNT has a significant effect on
the strength of the material, but the material still has a high modulus at room temperature and maintains
a large deformation capacity at programming temperature.

The shape-memory experiment and near-infrared laser thermal effect experiment demonstrate that
IBBA–CNT is an excellent light-responsive SMPC. Figure 2a shows two shape-memory cycles of
IBBA–CNT. The shape fixation rates in two shape-memory cycles are all 99.9%. The shape recovery
rate of the first cycle is 89.8%, and after training in the first cycle, the shape recovery rate of the
second cycle is 99.8%. The testing device for the surface photothermal effect of IBBA–CNT is shown
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Figure 3. Near-infrared laser programming for IBBA–CNT three-dimensional pillar. (a) Experimental
schematic diagram of the effective thermal response depth of near-infrared laser on IBBA–CNT.
(b) Design drawing of a three-dimensional multi-material pillar. (c) Compression experiments of three-
dimensional multi-material pillars with different heights at programming temperature. (d) Snapshots of
50% compressive strain of three-dimensional multi-material pillars. (e) Near-infrared laser program-
ming for 3D multi-material pillar.

in Figure 2b. The infrared camera records the temperature changes of IBBA–CNT sheet irradiated
by near-infrared laser. Figure 2c shows the screen of an infrared camera, which can only record
the temperature changes of the IBBA–CNT sheet without recording the surrounding environment by
adjusting the temperature measurement range (white rectangular box in the centre of the screen). The
surface temperature variation curve of IBBA–CNT sheet (Figure 2d) was plotted based on the infrared
camera video during the experimental process. Due to the excellent photothermal effect of CNT, near-
infrared laser can rapidly heat IBBA–CNT, reaching the programming temperature (88◦ C) in just 5 s
and 150◦ C in just 29 s. After reaching 150◦ C, turn off the laser, and the IBBA–CNT sheet rapidly
cools to the programming temperature (6 s), and then slowly cools to room temperature. To achieve
programming of IBBA–CNT sheets, it is necessary to irradiate at a specific position for more than 5 s
and quickly complete the programming operation within 6 s after turning off the laser.

We demonstrated the selective region activation and programming of the IBBA–CNT sheet
by near-infrared laser, as well as the selective region activation and recovery (Figure 2e). After
selectively irradiating the centre of the sheet, both bending and twisting deformations can be completed
(Figure 2e(i,ii)). After selectively irradiating multiple areas, bending deformation can be achieved
at multiple locations in the sheet to form an ‘M’ shape (Figure 2e(iii)), and controllable sequential
recovery can be achieved through selective near-infrared laser irradiation (in Supplementary Video S1,
the left bend of the ‘M’-shaped sheet is first unfolded, then the right bend is unfolded, and finally the
middle bend is unfolded).

Further, 0.05 wt.% CNT not only endows IBBA shape-memory polymers with the ability to respond
to near-infrared laser, but also enables near-infrared laser transmission to a certain depth in the material.
This will endow the material with near-infrared laser response capability in the depth direction, which
has not been addressed in previous work. We tested the near-infrared photothermal depth influence
range of IBBA–CNT (0.05 wt.% CNT) using the method shown in Figure 3a. As shown in Figure 3a,
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Figure 4. Selective near-infrared laser programming for IBBA–CNT shape-memory movable type
plate 4D printing. (a) Schematic diagram of selective infrared laser programming movable type plate.
(b) Digital model of multi-material movable type plate. (c) DLP 3D-printed model of multi-material
movable type plate. (d) Movable type plate in compressed state. (e) Movable type ‘E’ obtained by
selective near-infrared laser programming.

a near-infrared laser is irradiated on the edge of the right side of the 3D-printed IBBA–CNT cube, and
the infrared camera records the temperature changes on the front face of the cube. When the maximum
temperature reaches 150◦ C, turn off the near-infrared laser and record the infrared camera image at
this moment. Based on the temperature scale and the size of the cube, we measured the size of the area
where the temperature on the front face of the cube exceeded 88◦ C. This area is called an effectively
programmable heat affected zone, with a length of approximately 8 mm and a width exceeding 8 mm.
This provides design parameters for the design of three-dimensional IBBA–CNT structures.

As shown in Figure 3b, we design three-dimensional multi-material pillars with 3D-printed transpar-
ent photocurable resin material at both ends (cubes with a side length of 4 mm) and 3D-printed IBBA–
CNT cylinder in the middle (diameter: d = 3 mm, heights: h = 4, 5, 6, 7, or 8 mm). Figure 3c depicts the
force displacement curve of compressing three-dimensional multi-material pillars with different heights
to 50% strain at a strain rate of 0.01 s−1 at programming temperature. Under 50% compressive strain, the
4- and 5-mm-high IBBA–CNT cylinders showed significant barrelling deformation and creasing, and
the 7- and 8-mm-high cylinders showed significant buckling and creasing. However, the 6-mm column
has barrelling deformation and small creases under 50% compressive strain (Figure 3d). Therefore, a
diameter of 3 mm and a height of 6 mm are ideal designs for IBBA–CNT cylinders. Figure 3e illustrates
the shape-memory experiment of IBBA–CNT cylinder with h = 6 mm. Under the photothermal effect
of near-infrared laser, the IBBA–CNT cylinder is compressed and programmed. After turning off the
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laser, the material quickly cools and the compressed shape is fixed. The IBBA–CNT cylinder freely
recovers to its initial height by turning on the near-infrared laser again.

Multiple multi-material 3D pillars are combined to form a movable type plate, and different printing
movable types can be obtained through selective infrared laser programming. The schematic diagram
of the selective infrared laser programming movable type board is shown in Figure 4a. The side
view of the multi-material 3D-printed movable type plate is shown in Figure 4a(i). After heating to
the programming temperature, the height of the IBBA–CNT cylinders decreases after external force
compression (Figure 4a(ii)). Maintain the compressed state and cool to room temperature, and the
movable type plate is locked in a flat shape (Figure 4a(iii)). Near-infrared laser can penetrate the
transparent resin at both ends of the pillars and directly irradiate the IBBA–CNT cylinders. The IBBA–
CNT cylinders activated by photothermal activation can be freely restored to their original height
(Figure 4a(iv)). Figure 4b,c shows the digital model and 3D printing model of movable type plate
composed of five rows and five columns of multi-material pillars, respectively. Figure 4d shows a
movable type plate programmed to a compressed flat state. Selective near-infrared laser irradiation
of the pillars can decode the flat-shaped movable type plate to form the required upward protruding
movable type (Figure 4e and Supplementary Video S2).

Conclusion

We have developed a near-infrared responsive SMPC material, IBBA–CNT, with high mechanical
strength, strong deformation ability, and UV curability. It can be used to produce near-infrared-
driven 4D printing structures through digital light processing. IBBA–CNT containing 0.05 wt.% CNT
has good shape-memory performance and photothermal effect: shape fixation rate is 99.9%, shape
recovery rate is 99.8%, and programming temperature can be reached after 5 s of irradiation with a
250-mW 808-nm near-infrared laser. We demonstrated the selective near-infrared laser programming
of IBBA–CNT sheets into various origami and their recovery process in a controllable sequence.
More importantly, for the first time, we explored the photothermal effect of near-infrared laser in the
depth direction of light-responsive SMP. We printed IBBA–CNT multi-material pillars and conducted
experiments to demonstrate the feasibility of near-infrared laser programming in the depth direction.
Finally, we designed a movable type board to demonstrate the application of selective near-infrared
laser programming in deep direction activation of light-responsive SMPC. It can be predicted that
there will be more research on the design and application of three-dimensional light-responsive SMPC
structure in the future.

Materials and methods

Materials

Isobornyl arcylate (IBoA), Benzyl acrylate (BA), diphenyl(2,4,6-trimethylbenzoly) phosphine oxide
(TPO) were purchased from Sigma-Aldrich (Shanghai, China). CNTs were purchased from XFNANO
(Nanjing, China). Ebecryl 8413 (AUD) was kindly provided by Allnex (Frankfurt am Main, Germany).

Rheological test

The viscosity (𝜂) of IBBA and IBBA–CNT precursors were measured by using a controlled-stress
rheometer (DHR2, TA Instruments, Inc., Elstree, UK) with an aluminium plate geometry (diameter
25 mm, gap 100 μm).

Photorheological test

The storage modulus and loss modulus of materials were measured on a DHR2 machine with an
aluminium plate geometry (diameter 20 mm, gap 100 μm). First, 20 s were detected without light, then
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20 s were exposed in 385-nm UV light with 8-mW/cm2 light intensity, and more 20 s were detected
after the end of exposure. Aluminium plate rotated at a speed of 5 rad s−1 throughout the 60-s detection
process. The intersection of the loss modulus and storage modulus curves is the gel point, and the
corresponding time minus 20 s is the curing time.

Dynamic mechanical analysis experiments

Samples with dimensions of 10 mm × 5 mm × 1 mm were tested at a frequency of 1 Hz and an amplitude
of 10 μm using a DMA analyser (Q850 DMA, TA Instruments). The temperature was first equilibrated
at −20◦ C for 3 min, and then gradually increased to 100◦ C at a heating rate of 3◦ C/min. The glass
transition temperatures (Tg) were assigned as the temperature at which tan𝛿 value was maximum.

Uniaxial tensile experiments

Tension experiments on dog-bone samples with a gauge length of 20 mm and a cross section of
5 mm × 2 mm were conducted using MTS machine at a strain rate of 0.01 s−1.

Shape-memory behaviour tests

Figure 2a presents the result from typical shape-memory cyclic tests for calculating shape fixation ratio
(Rf = 𝜀u/𝜀p) and shape recovery ratio (Rr = (𝜀u − 𝜀r)/𝜀u). First, an IBBA–CNT sample is stretched to
100% at a constant strain rate (0.001 s−1) at Tg + 25◦ C (88◦ C). Second, the sample is cooled to 25◦ C
(−2.5◦ C/min) and held 2 min while it is kept stretched. Third, the external load is suddenly released
at 25◦ C, and the temporary fixed strain 𝜀u can be measured. Last, the sample is heated to Tg + 25◦ C
(2.5◦ C/min) and held at Tg + 25◦ C for 1 h where the recovery strain 𝜀r is measured.

3D printing

A self-assembled multi-materials DLP printer (Cheng et al., 2022) was used to print multi-materials
structures. The slice thickness of IBBA–CNT layers is 100 μm, and the exposure time of each layer is
12 s (exposure intensity 8 mW/cm2).

Supplementary material. The supplementary material for this article can be found at http://doi.org/10.1017/pma.2024.4.
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