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Abstract

A recent paper of Totaro developed a theory of q-ample bundles in characteristic 0.
Specifically, a line bundle L on X is q-ample if for every coherent sheaf F on X, there
exists an integer m0 such that m>m0 implies H i(X, F ⊗O(mL)) = 0 for i > q. We
show that a line bundle L on a complex projective scheme X is q-ample if and only
if the restriction of L to its augmented base locus is q-ample. In particular, when X
is a variety and L is big but fails to be q-ample, then there exists a codimension-one
subscheme D of X such that the restriction of L to D is not q-ample.

1. Introduction

A recent paper of Totaro [Tot10] generalized the notion of an ample line bundle, with the object
of relating cohomological, numerical, and geometric properties of these line bundles. Let q be a
natural number. Totaro called a line bundle L on X q-ample if for every coherent sheaf F on X,
there exists an integer m0 such that m>m0 implies H i(X, F ⊗O(mL)) = 0 for i > q.

Totaro [Tot10] has shown that in characteristic 0, this notion of q-amplitude is equivalent
to others previously studied by Demailly, Peternell, and Schneider in [DPS96]. As a result, the
q-amplitude of a line bundle depends only on its numerical class, and the cone of such bundles
is open. This means that there is some hope of recovering geometric and numerical information
about X and its subvarieties from knowing when a line bundle is q-ample, though at present
such results are known only in limited cases. In general, much is known about the 0-ample cone
(which is the ample cone) and the (n− 1)-ample cone of an n-dimensional variety X is known
to be the negative of the complement of the pseudoeffective cone of X. For values of q between
1 and n− 2, the relation between numerical and cohomological data remains mysterious. The
Kleiman criterion tells us that 0-amplitude is determined by the restriction of L to the irreducible
curves on X, and likewise one gets at least some information about the q-ample cone by looking
at restrictions to (q + 1)-dimensional subvarieties.

However, Totaro [Tot10] has given an example of a smooth toric 3-fold with a line bundle L
which is not in the closure of the 1-ample cone, but the restriction of L to every two-dimensional
subvariety is in the closure of the 1-ample cone of each subvariety. For completeness, we include
this example in § 5. The example shows that the most direct generalization of Kleiman’s criterion
does not hold for even the first open case: the 1-ample cone of a 3-fold.

The goal of this note is to show that one can in fact test q-amplitude on proper subschemes in
the case where L is a big line bundle on a projective variety X. In particular, we show that if L
is a big line bundle which is not q-ample, and D is the locus of vanishing of a negative twist of L,
then the restriction of L to D is not q-ample either. In a recent paper [Kür10], Küronya proved
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a sort of Fujita vanishing theorem for line bundles whose augmented base locus has dimension
at most q. As a consequence, he showed that if the augmented base locus of L has dimension q,
then L is q-ample. We prove the following result.

Theorem 1.1. Let X be a complex projective scheme and let L be a line bundle on X. Let Y
be the scheme given by the augmented base locus of L with the unique scheme structure as a
reduced closed subscheme of X. Then L is q-ample on X if and only if the restriction of L to Y
is q-ample.

Matsumura has shown in [Mat11] that a line bundle admits a Hermitian metric whose
curvature form has all but q eigenvalues positive at every point if and only if it admits such
a metric when restricted to the augmented base locus. A line bundle with such a metric is
q-ample, but it is unknown in general whether every q-ample line bundle admits such a metric.

We also prove a Kleiman-type criterion for (n− 2)-amplitude for big divisors when X is
smooth.

Corollary 1.2. Let X be a non-singular projective variety. A big line bundle L on X is (n− 2)-
ample if and only if the restriction of −L to every irreducible codimension-one subvariety is not
pseudoeffective.

When X is a 3-fold, a big line bundle L is 1-ample if and only if its dual is not in the
pseudoeffective cone when restricted to any surface contained in X. Since a big line bundle on a
3-fold is always 2-ample, our results give a complete description of the intersection of the q-ample
cones with the big cone of a 3-fold in terms of restriction to subvarieties.

In the final section, we examine possible geometric criteria for an effective line bundle to be
q-ample. In particular, on an n-dimensional Cohen–Macaulay variety, any line bundle which
admits a disconnected section must fail to be (n− 2)-ample. This fact in particular helps to
explain some features of Totaro’s example, and may lead to more general criteria for q-amplitude.

2. The restriction theorem

In this section, we prove that a line bundle L which fails to be q-ample is still not q-ample when
restricted to any section of L−H, where H is any ample line bundle.

Theorem 2.1. Let X be a reduced projective scheme over C. Suppose L is a line bundle on
X which is not q-ample on X, and let L′ be a line bundle with a non-zero section such that
O(αL− βL′) is ample for some positive integers α, β. Let D be the subscheme of X given by
the vanishing of some non-zero section of L′. Then L|D is not q-ample on D.

Before proving Theorem 2.1, we will need a lemma.

Lemma 2.2. Let X be a projective scheme over C. Fix an ample line bundle H on X. Suppose
L is a q-ample line bundle on X for some q > 0. Then for every coherent sheaf F on X there
exist integers a0 and b0 such that given a, b> 0, H i(X, F ⊗O(aL+ bH)) = 0 for i > q whenever
a> a0 or b> b0.

Proof. Every coherent sheaf has a possibly infinite resolution by bundles of the form
⊕
O(−dH).

By [Laz04a, Appendix B], it thus suffices to check for finitely many sheaves of the form O(−dH).
The proof follows by induction on the dimension of X. In the base case, dimension zero, the
lemma follows because for every coherent sheaf the groups H i vanish for i > 0.
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Since every ample line bundle has some multiple which is very ample, it suffices to prove
the lemma when H is very ample. It is also enough to find the constants a0 and b0 such
that the cohomology vanishes for a fixed i > q. Assume H is very ample, and fix an i > q. Now
suppose X has dimension n and the lemma is true for projective schemes of dimension n− 1.

Because L is q-ample, we know there exists a1 such that H i(X,O(aL− dH)) = 0 whenever
a> a1. Let D be a hyperplane section under the embedding given by H. By the inductive
hypothesis, there exists a2 such that H i(D,O(aL+ (b− d)H)) = 0 whenever a> a2 and b> 0.
By abuse of notation, we use L to refer to both the line bundle on X and its pull back to D. The
projection formula [Har77, II, Example 5.1] along with the preservation of cohomology under
push forward by a closed immersion shows that this will not change the cohomology. Thus, we
have an exact sequence in cohomology:

· · · →H i(X,O(aL+ (b− d)H))→ H i(X,O(aL+ (b+ 1− d)H))
→ H i(D,O(aL+ (b+ 1− d)H)|D)→ · · · .

Set a0 = max{a1, a2}. Then for a> a0, we know that H i(D,O((aL+ (b+ 1− d)H))|D) = 0, so
by induction on b we know that H i(X,O(aL+ (b− d)H)) vanishes for all b > 0. To find b0, we
know that for each a < a0, there exists b′ such that the cohomology vanishes for b > b′ since H
is ample. Take b0 as the maximum of all the b′. 2

Proof of Theorem 2.1. L is q-ample if and only if αL is, so we may assume α= 1. Likewise,
Totaro [Tot10, Corollary 7.2] showed that L is q-ample on a scheme X if and only if its restriction
to the reduced scheme is q-ample, so we may assume β = 1. At this point we are assuming that
H = L− L′ is ample.

We recall another result of Totaro [Tot10, Theorem 7.1]: given H ample there exists a global
constant C such that L is q-ample if and only if there exists N such that H i(X,O(NL− jH)) = 0
for all i > q, 1 6 j 6 C. Let us assume L is (q + 1)-ample but not q-ample. Since L is not q-ample,
for all N one of the above groups is non-zero. Since L is (q + 1)-ample, that group must have
i= q + 1 for large enough N . Now H is ample, so, for sufficiently large e, H i(X,O((e− j)H)) = 0
for i > q, 1 6 j 6 C.

Likewise, for all sufficiently large e> 1, we know that Hq+1(X,O((e− j)H)) = 0, and
that for some 1 6 j 6 C, Hq+1(X,O(eL− jH)) 6= 0. Since O(L′) =O(L−H), there exist j
and k such that 1 6 j 6 C, and 1 6 k 6 e such that Hq+1(X,O((e− j)H + (k − 1)L′)) = 0
and Hq+1(X,O((e− j)H + kL′)) 6= 0. To simplify notation, we set l = e− j.

Consider the exact sequence

0→F →OX(−L′)→OX →OD→ 0.

The section defining D may be given by a section which is not regular when X is reducible and
so the sheaf F may be non-zero. Now write G = coker(F →OX(−L′)) = ker(OX →OD). After
twisting by O(lH + kL′), we have two resulting long exact sequences in cohomology. The first is

· · · →Hq+1(X,O(lH + (k − 1)L′))→ Hq+1(X, G ⊗ O(lH + kL′))
→ Hq+2(X, F ⊗O(lH + kL′)) · · · .

Since k 6 l + j and O(H + L′) =O(L), for sufficiently large e, Hq+2(X, F ⊗O(lH + kL′)) =
Hq+2(X, F ⊗O((l − k)H + kL)) = 0, by Lemma 2.2. Thus, Hq+1(X,O(lH + (k − 1)L′)) = 0
implies Hq+1(X, G ⊗ O(lH + kL′)) = 0.
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The second long exact sequence is given by

· · · →H i(X, G ⊗O(lH + kL′))→H i(X,O(lH + kL′))→H i(D,O(lH + kL′)|D)→ · · · .
The group Hq+1(X, G ⊗O(lH + kL′)) = 0, and Hq+1(X,O(lH + kL′)) 6= 0, so we see that
Hq+1(D,O(lH + kL′)|D) 6= 0. O(lH + kD) =O((l − k)H + kL), which has the form O(aL+
(b− d)H), where d= C, a, b> 0, and a+ b> e. Since we could choose e arbitrarily large, by
Lemma 2.2 L is not q-ample when restricted to D. 2

In the case where X is irreducible, every non-zero section of a line bundle is regular, and we
get the following corollary.

Corollary 2.3. If X is a complex projective variety (irreducible and reduced) and L is a big
line bundle which is not q-ample, there exists a codimension-one subscheme of X on which L is
not q-ample.

Proof. The cone of big line bundles on a projective variety is open, so we may pick L′ also big, so
some large multiple of L′ has a non-zero section whose vanishing is an effective Cartier divisor. 2

One subtlety of the Kleiman criterion for ample divisors is that it is possible to have a divisor
class which is positive on every irreducible curve but is not ample. One such example is due
to Mumford and can be found in [Laz04a, Example 1.5.2]. In particular, this shows that in
Corollary 2.3 the hypothesis ‘big’ cannot be replaced by ‘pseudoeffective’, already when q = 0.

3. Augmented base loci

Let L be a Cartier divisor on a variety X. Write Bs(|L|) for the base locus of the full linear series
of L. It is also helpful to have a notion of the base locus for large multiples of L, as well as for
small perturbations by the inverse of an ample line bundle.

Definition 3.1 [Laz04a, Definition 2.1.20]. The stable base locus of L is the algebraic set

B(L) =
⋂

m>1

Bs(|mL|).

There exists an integer m0 such that B(L) = Bs(|km0L|) for k� 0 [Laz04a,
Proposition 2.1.20].

Definition 3.2 [Laz04b, Definition 10.3.2]. The augmented base locus of L, denoted by B+(L),
is the closed algebraic set given by B(L− εH) for any ample H and sufficiently small ε > 0.

It is a theorem of Nakamaye [Nak00] that the augmented base locus is well defined. Note
that stable and augmented base loci are defined as algebraic sets, not as schemes.

Geometric properties of B+(L) reveal information about how much L fails to be ample.
For example, B+(L) is empty if and only if L is ample. More generally, Küronya has proved
in [Kür10] a Fujita-vanishing type result for the cohomology groups H i, where i > dim B+(L).

Theorem 3.3 [Kür10, Theorem C]. Let X be a projective scheme, L a Cartier divisor, and F a
coherent sheaf onX. Then there existsm0 such thatm>m0 impliesH i(X, F ⊗O(mL+D)) = 0
for all i > dim B+(L) and any nef divisor D.

In particular, Küronya’s theorem implies that L is q-ample for all q at least as big as the
dimension of B+(L). We show that in fact L is q-ample if and only if the restriction of L to
B+(L) is q-ample.
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Proof of Theorem 1.1. Certainly if L is q-ample on X it must be q-ample on Y . For the converse,
we apply Theorem 2.1 inductively. Suppose L is not q-ample. We may assume all schemes are
reduced by [Tot10, Corollary 7.2]. Choose an ample divisor H, and choose a and b such that
L′ = aL− bH satisfies Bs(|L′|) = B+(L).

Suppose there is a point x ∈X which is not contained in Y . Then since Y is the base locus of
L′, there is a section of L′ which does not vanish at x, and let X ′ be the vanishing of this section.
Then, by Theorem 2.1, L is not q-ample on X ′. The process only terminates when X ′ = Y , and
it must terminate because X was a noetherian topological space. 2

4. Towards a numerical criterion for q-ample line bundles

The cone of ample line bundles in N1(X) has a nice description in terms of the geometry of
curves in X due to a theorem of Kleiman. (See for example [Laz04a, 1.4.23].)

Theorem 4.1 (Kleiman’s criterion). Let Nef(X) be the cone of nef divisors. Nef(X) is a closed
cone, and the cone of ample divisors is the interior of Nef(X).

One would like similar criteria to test the q-amplitude of L. A duality argument gives a
criterion for the (n− 1)-ample cone.

Theorem 4.2 [Tot10, Theorem 9.1]. On a variety X, the (n− 1)-ample cone is the negative of
the complement of the pseudoeffective cone.

The Kleiman criterion says that L is in the closure of the ample cone if and only if −L is
not big on any curve. Theorem 4.2 says that L is in the closure of the (n− 1)-ample cone if and
only if −L is not big on X, which is the only subvariety of X having dimension n. Thus, in some
sense, both criteria say that to test if a divisor is in the closure of the q-ample cone it suffices to
show that its dual is not in the big cone of any subvarieties of dimension q + 1. While one would
hope that such a criterion holds for all q, we will see in § 5 an example of Totaro which shows
this fails for even the case of 3-folds. However, if we also require the divisor to be big, we may
combine Corollary 2.3 with a modification of the duality argument to yield Corollary 1.2.

Proof of Corollary 1.2. Certainly if L is (n− 2)-ample on X it is (n− 2)-ample on every
subvariety. For the other direction, using Corollary 2.3, if L fails to be (n− 2)-ample we have an
effective Cartier divisor D on which L is not (n− 2)-ample. By [Tot10, Corollary 7.2], we may
assume D is reduced. Since X is non-singular, D is a still a Cartier divisor, and the dualizing
sheaf KD is a line bundle given by KD = (KX ⊗O(D))|D.

Let Di be the components of D and let f :
∐
Di→D be the canonical map. Then the

map OD→ f∗
⊕
ODi is injective, and so yields an injective map H0(D, J)→

⊕
H0(Di, J |Di)

for any line bundle J on D. Suppose −L is not pseudoeffective on any of the Di. Then for
any line bundle J and sufficiently large m depending on J , H0(Di,O(J −mL)|Di) = 0, so
H0(D,O(J −mL)) = 0.

It follows by duality that Hn−1(D,KD ⊗O(mL− J)) = 0 for any line bundle J and
sufficiently large m. But by [Tot10, Theorem 7.1] this means L is (n− 2)-ample on D, a
contradiction. 2
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f3

f2

f5

f4

f1

f6

Figure 1. The dual polytope to Σ.

5. Totaro’s example

In this section, we reproduce Totaro’s example from [Tot10] of a line bundle L on a smooth
toric Fano 3-fold X such that L is not in the closure of the 1-ample cone of X, but L is in the
closure of the 1-ample cone of every proper subvariety of X. Our goal is investigate what sort of
additional obstacles beyond the numerical criterion must be considered to say when an effective
bundle is q-ample.

Definition 5.1. A line bundle L on X is called q-nef if for every dimension-(q + 1) subvariety
V ⊂X, the restriction of −L to V is not big.

The q-nef cone is a closed cone in N1(X). By Theorem 4.2, a q-ample bundle must be q-nef.
Also, when q = 0 or q = n− 1, the q-ample cone is the interior of the q-nef cone. Let X be the
projectivization of the rank-two vector bundle O ⊕O(1,−1) on P1 × P1. Then X is a smooth
toric Fano 3-fold. One can show that the corresponding fan Σ in Z3 ⊗ R has rays

f1 = (0, 0,−1), f2 = (0, 0, 1), f3 = (1, 0, 1),
f4 = (0, 1,−1), f5 = (−1, 0, 0), f6 = (0,−1, 0).

The two-dimensional cones are given by

(13), (14), (15), (16), (23), (24), (25), (26), (34), (36), (45), (46).

The maximal cones are

(134), (136), (145), (146), (234), (236), (245), (246).

Figure 1 shows the dual polytope to the fan Σ.
Line bundles on X are given by piecewise linear functions on Σ which are integral linear

functions on each cone. Let 〈Σ(1)〉 be the R vector space spanned by the rays of Σ. Since X is
simplicial, we have an identification

Pic⊗R∼= 〈Σ(1)〉∗/(Z3 ⊗ R)∗.
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1 1

1 1 1 1

1

0

2 2 2

2 2

2
1

2

Figure 2. Chambers in N1(X). The effective cone is shaded, and each chamber is marked with
the smallest q such that a line bundle in the interior of the chamber is q-ample. The planes are
labeled by the corresponding linear dependence among rays in Σ(1).

Write Fi for the function which sends fi to 1 and fj,j 6=i to 0. Then we can identify
Fi with the divisor which is the closure of the torus orbit corresponding to the ray fi.
Let L= 3F1 + 3F2 − F3 − F4 − F5 − F6. Then L is not in the closure of the 1-ample cone, but
L is 1-nef.

To see that L is not in the closure of the 1-ample cone, it suffices to show that a positive
twist of L is not 1-ample. For example, take H = F1 + F2 + F3 + F4 + F5 + F6. Then for any
sufficiently small rational λ > 0, a large integral multiple of L+ λH has a non-vanishing H2.
This follows from the formula for cohomology of line bundles given in [Ful93, p. 74], along with
the fact that the rays with negative coefficients form a non-trivial 1-cycle in |Σ|\{0}.

The 1-nef cone of a toric variety consists of divisors whose restriction to each torus invariant
surface is not the negative of a big divisor. It can be shown that L is 1-nef by restricting to each
Fi. As an example, we explicitly work out the restriction of L to F1.

The divisor F1 is a toric variety and its fan is given by ΣF1 = Star(f1)/〈f1〉. Denote the
image of the ray fi in ΣF1 by f ′i . This fan is isomorphic to the fan of P1 × P1. The most
straightforward way of restricting L to F1 is to choose a linearly equivalent representative in
〈Σ(1)〉∗ which vanishes on f1. Take L′ = 6F2 − 4F3 + 2F4 − F5 − F6. Then the resulting piecewise
linear function ψ on ΣF1 has

ψ(f ′3) =−4, ψ(f ′4) = 2, ψ(f ′5) =−1, ψ(f ′6) =−1.

This corresponds to the divisor O(1,−3) on P1 × P1, which is not the negative of a big divisor.
A similar calculation for the other Fi shows that L is actually 1-nef.

Figure 2 shows a slice of N1(X), where the effective cone is shaded. The numbers in each
region are the largest q such that a line bundle in the interior of that region is q-ample.
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6. Further questions

Let X be a variety and L a line bundle on X. When L is not big, B+(L) is all of X, and so
yields no new information about whether L is q-ample. However, when L is effective, we may
hope to see other geometric consequences of q-amplitude reflected in the geometry of a section.
In the example in § 5, the divisor F1 + F2 is not 1-ample, and this cannot be seen via any sort of
restriction to proper subvarieties of X. However, F1 + F2 cannot be 1-ample because it admits
a section with disconnected zero set.

Proposition 6.1. Let X be a normal irreducible Cohen–Macaulay variety of dimension n. If
L is a line bundle on X which admits a global section with disconnected zero set, then L is not
(n− 2)-ample.

Proof. Let D be the vanishing of a section of L, which is disconnected. Then we can take the
infinitesimal thickening mD as the vanishing of a section of O(mL). Consider the restriction
exact sequence

0→O(−mL)→OX →OmD→ 0.

Since X is connected H0(X,OX) is one dimensional, but mD is not connected so H0(mD,OmD)
is at least two dimensional. Thus, the associated map H0(X,OX)→H0(mD,OmD) is not
surjective and so taking the associated long exact sequence we see that H1(X,O(−mL)) is
non-zero. Let KX be the dualizing sheaf on X. By Serre duality, Hn−1(X,KX ⊗O(mL)) is
non-vanishing for all m and so L is not (n− 2)-ample. 2

Question 6.2. Given a smooth variety X with an effective line bundle L which is (n− 2)-nef
and such that there is a neighborhood U in N1(X) so that no line bundle in U admits a section
with disconnected vanishing set, must L be (n− 2)-ample?

One possible way to interpret Proposition 6.1 is as a sort of Lefschetz hyperplane theorem for
(n− 2)-ample divisors. Bott has proved the following generalization of the Lefschetz hyperplane
theorem.

Theorem 6.3 [Bot59, Theorem III]. Let X be a smooth variety of dimension n, and L a line
bundle which admits a Hermitian metric whose curvature form has at least n− q positive
eigenvalues (counted with multiplicity) at every point. Suppose also that Y is the vanishing
set of a section of L. Then X is obtained from Y as a topological space by attaching cells of
dimension at least n− q.

A line bundle is called q-positive if it admits such a Hermitian metric. If Y has ‘too much’
homology in dimension n− q − 2, it cannot be a section of a q-positive line bundle. It is a well-
known theorem of Andreotti and Grauert [AG62] that a q-positive line bundle is q-ample. The
problem of determining when the converse holds was posed by [DPS96], but little progress had
been made until recently. Ottem [Ott11] has given examples of line bundles which are q-ample
but not q-positive when 1

2 dimX − 1< q < dimX − 2. These examples are effective, and the
analogue of the Lefschetz hyperplane theorem holds over Q but not Z. Matsumura has shown
in [Mat11] that if X is a compact n-dimensional complex manifold with a Kähler form ω, and L
is a line bundle such that the intersection ωn−1 · L > 0, then L is 1-positive.
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