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ON THE IDEAL OF VERONESEAN SURFACES

A GIMIGLIANO AND A LORENZINI

ABSTRACT ~ We consider the blowing up of P2 at s sufficiently general distinct points
and 1ts projective embedding by the linear system of the curves of a given degree
through the points We study the 1deal of the resulting (Veronesean) surface and find
that 1t can be described by two matrices of linear forms in the sense that 1t 1s generated
by the entries of the product matrix and the minors of complementary orders of the two
matrices

By cutting the surface twice with general hyperplanes we also obtain some infor
mation about the generation (or even the resolution) of certain classes of points i pro
Jjective space

Introduction. Let Z = {P;, ,P;} be aset of s distinct points in P> = P; (where
f 1s an algebraically closed field) and let J = py N Np, C S = {{W,, W,, W3] be the
defining 1deal of Z Let P?(Z) be the surface obtained from P? by blowing up the points
of Z

The aim of this paper 1s to study the defining 1deal of a projective embedding of P?(Z)
given by the linear system of curves associated to the vector space J,, which 1s the de
gree a part of J The surface obtained 1n this way 1s called a Veronesean surface, as 1t
can be obtained as a projection of a Veronese surface from points on the surface itself,
equivalently, because the embedding which defines it 1s obtained by using the subsystem
J, of the complete hinear system S, on P?

We want to determine the elements of a mimimal generating set for the 1deal of this
type of surface, and to do this by relating these generators to the 1deal J of the points in
PZ

These kinds of questions have been considered by many authors, we mention the
classical work by Castelnuovo ([C]), and the more recent work by Mumford ([(M]), Green
and Lazarsfeld ([Gr]), ([GL]), which more generally, relates properties of the 1deal of a
projective scheme with those of the linear system which embeds 1t

Our work 1s very much 1n the line of [G] and [GG], where the authors have given cr1-
teria to check when the embedded surface V 1s arithmetically Cohen-Macaulay (a C M,
for short) or when the defining 1deal of V, Iy, 1s generated by quadrics In particular (see
81 for definmtions), they have shown that Visa C M when a > o(J) and Iy 1s generated
by quadrics if a > o(J) + 1

In the present paper we study the case of s sufficiently general points in P2, when we
embed P?(Z) with the linear system defined by J,(;, From [G] and [GG] 1t 1s known that

n the case s = (dgl) the surface V (a “Room surface”) 1s defined by quadrics (the 2 x 2
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ON THE IDEAL OF VERONESEAN SURFACES 759
minors of a 3 X (d + 1) matrix of linear forms), while in the case s = (‘3’2) the surface
V (a “White surface”) is defined by cubics (the 3 X 3 minors of a 3 X (d + 1) matrix of
linear forms), so we need only consider s such that (d; 1) <s< (dgz).

The aim of this paper is to generalize the construction of the two cases above: namely,
we will show that if s = (d;l) +k, withO < k < d+ 1, then Iy is generated in degrees
2 and 3, and it is not determinantal, but almost, in the sense that it can be viewed as
given via two matrices of linear forms X and ‘B, in the following way (see also [P]): the
generators of Iy are the entries of B - X, the 2 X 2 minors of X and the 3 x 3 minors of
‘B, where X'isa 3 X (d — k + 1) matrix and B a k X 3 matrix:

B B B Xn o Xidas
B=|: : S, X=X o Xy ] .
By Bw B X3 0 Xagore

For instance, in Example 3.1 below, we work out the case of a set of 13 points in P2,
We consider the map to P7 described by the linear system of plane quintics through the
13 points. The image of this map is a surface V of degree 12 in P7, whose defining ideal
Iy can be described as follows:

Iy = (minors of order 2 of X, entries of ‘B - X, det ‘B), where

0 2Y1 +X|2 — 5X22 -4Y24X31 + 5X32 X]] X12
B = |4Xp» -1 —X3, , X=|Xu X
X1 —X2 —X31 + X32 X311 X3

Note that in the cases k = 0, d + 1, we get again the Room and the White surfaces,
respectively; while in the cases k = 1 or k = 2, ‘B has no minors of order 3, and so V is
generated by quadrics only.

Another way to look at this presentation of Iy, is the following: if V C PV, denote by
R the coordinate ring of PV and consider the sequence

B
—

Ri-—ke1 X p3 .
then we can view V as the locus where the above sequence is an exact complex.

The layout of the paper is the following: after a section of preliminaries, in §2 we
study the ideal, Iy, of the surface V; in §3 we define an ideal I constructed as above, and
finally prove the main result (I = Iy) in §4. In §5 we apply this result to the case of points,
after cutting V twice with general hyperplanes.

Most of the computations were done with the help of the symbolic computation system
“CoCoA” by A. Giovini and G. Niesi, in the MS/DOS version due to E. Armando.

1. Generalities. It is known that, if A is the (homogeneous) coordinate ring of an
a.C. M. variety of projective dimension p — 1 (with defining ideal I), then its Hilbert
function is non-decreasing, and the p-th difference of its Hilbert function, A’ Hy(m), is
eventually O (see, for instance, [L1, end of §1]). Define:

a(l) = min{m | I, # (0)} and o(I) = min{m | A’Hs(m) = 0}.
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760 A. GIMIGLIANO AND A. LORENZINI

Let Z = {Pi,...,P,} be aset of s distinct points of P> and let J C S = {[W,, W1, W3]
be their ideal.

Let d be the least integer such that s < (‘“2

N ) so that we can write

d+1 d+2
s:< ) )+k:< ) )—(d—k+l),

with O < k < d + 1. This also means that a(J) < d.

For general points, we know that a(J) = dand d < o(J) < d+ |, withd = o(J) only
when k = 0.

Also, the ideal generation conjecture states that, for general points of P2, J should be
minimally generated by d — k + 1 forms of degree d and & forms of degree d + 1, where
h is either O or 2k — d, according to whether d > 2k or not.

Because in P? the ideal generation conjecture holds (see, for instance, [GGR] or
[GM]), and is equivalent to the minimal resolution conjecture, we say that we choose

Py, ..., P to have “generic resolution”.
In other words, if we denote by F), ..., Fy_;; the generators of J of degree d and by
G\,...,Gy g those of degree d + 1, then the W,F;’s are all linearly independent over f,

when d < 2k; while if d > 2k, then there are no G,’s, and the W,F, need not be linearly
independent (certainly not, as soon as d > 2k).

Furthermore, because of the Hilbert-Burch Theorem (see, for instance, [CGO]), we
can view the F,’s and the G,’s as the p + 1 minors of order p of a p X (p + 1) matrix A4,

where
k ifd <2k

P= d—k ifd>2k
In the case when d < 2k, the matrix 4 is given by
Ly -+ Ligka Qi1 - Qra—ks
A= : : : :
Liv - Ligk—a Q1 0 Qkd—kel

where the L,’s are linear forms and the Q,,’s are forms of degree 2. Then, for all j =
l,...,d — k + 1, F, is the minor obtained by deleting column 2k — d + j, and for all
l=1,...,2k —d, G, is the minor obtained by deleting column /.

In the other case (d > 2k), the matrix 4 is given by

011 O Qld—i+
q-| Oz Qkd—kel
Li, Lip -+ Ligan |’
Laokt Laok2 -+ Li-okd—ket

and, forallj = 1,...,d — k + 1, F, is the minor obtained by deleting column j.
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Now let E1, . .., E, be the divisor classes on P>(Z) which contain the exceptional lines
corresponding to the blow-ups of the points P, ..., Py, respectively. If Ej is the divisor
class on P?(Z) which contains the proper transform of a line in P> which misses all the
points of Z, then it is well-known that Pic(P*(2)) = 7**! = (Eo, E\, ... E).

If C is a curve in P? of degree a which has a singularity at P, with multiplicity m,,
then it is also well-known that the proper transform of C on P?(Z) is an effective divisor
in the class aEy — X} m,E,. In fact, it is possible to show that if J = p’,’" MN---MNpes
and if we let J denote the ideal sheaf in Op. corresponding to J’, then:

dimy J; = K(P, 9(@) = (P(2).ak — Y miE):
=1
i} w — H(S/ L) = 1 (P, J(@) = b (P(2).aEo — > miE,).
= =1

It is well-known (and easy to see) that:

(a) aky — ¥2)_, E, is base-point free for a > o;
(b) aEy — ¥;_| E, is very ample fora > o + 1.
Moreover:

THEOREM A ([DG, THEOREM (3.1)]). The following are equivalent:
i) oEy — 35_| E, is very ample on P2(2);
ii) no o elements of Z lie on a line of P.

If ii) holds, then, for all @ > o, each divisor class aEy — >_;_, E, defines a morphism
@,z P(2) — P,

where N = h%(aE) — Y%, E,) — 1. These morphisms embed P*(Z) into P and we shall
denote the image of @, 7 by V, 7.
Since a > o, it is easy to see that:

2
(a;— )As]—l, degVaZ:az—s;

N =

and that the general hyperplane section of V, 7 is a curve of genus

_(@a—@a—2)
= 5 .

Let us go back to ideal J C § = {{W,;, W,, W3] of the points Py, ..., P, and notice
that, from our hypotheses on the points it follows, in particular, that they have maximal
Hilbert function (or, generic postulation), and so o(J) = d + 1.

If we add the hypothesis that no d + 1 of the points lie on a line, then, by Theorem A,
the linear system

Jo = (WE.G |i=123j=1,....d—k+1;1=1,...,2k—d)
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(where (x) denotes the span of *) induces an embedding of P%(Z) i PV, where N =
dlIIl[JdH —1=2d—k+2

For simplicity, we call V = V,, 7 the image of this embedding, Iy the defining 1deal
of V, and Ay its (homogeneous) coordinate ring

Then, clearly, V 1s an rreducible surface, of degree t = (d + 1) — s = (d;2> —k

Furthermore, the following 1s proved 1n [G], though not stated precisely 1n this form

THEOREM B (SEE [G, PROPOSITION 2 1)]  Let Z satisfy ut) of Theorem A Then V, z
isa CM foreverya>o

Hence, by Theorem B, our surface Visa C M
More detailed information about the defining 1deal of the surfaces V, z can be found
in [GG] For instance

THEOREM C ([GG, THEOREM 2 1]) Leta > o+ 1 and let Iy be the 1deal of V, 7 in
PN Then Iy 1s generated by quadrics

Our aim 1s to describe the 1deal Iy 1n an almost determinantal way, and 1n relation with
the 1deal J

As the case k = 0 has been dealt with 1n [GG], we are actually interested in the range
1<k<d

2 The ideal of the surface V. A tool we shall need 1n what follows 1s the knowl-
edge of the Hilbert function of V. Hy(\) = dimy(Ay),, VA € N
Let Oy be the structure sheaf of V Since Visa C M, we have

(Av)) = H(Ov(Y))
REMARK21 H'(Oy())) =0,VA €N

PROOF SinceVisa C M we have that hz(lv()\)) = Oforall A Since H2<Iv()\)) =
H 1(OV()\)) 1n any case, we are done

| |
PROPOSITION 22 For every A € N, the Hilbert function of Ay is given by
N[ (d+2 A
Hy(\) = 7[( 5 ) ﬁk} - Z(d2~5d+2k—6)+1
PROOF It follows easily from Serre’s duality that Hz(Ov()\)) = 0, while

H 1(Ov(/\)) = 0 by Remark 2 1, therefore we can compute the dimension hO(OV(/\))
by using the Riemann-Roch Theorem on V

h(ov) = %((AH)z —MH Ky)+1

{5 - 5peo (1) 4

N[fd+2 DY
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COROLLARY 2.3.  The ideal Iy can always be generated by forms of degree less than
orequal to 3.

PROOF. Observe that, from Proposition 2.2 we get that a(Iy) = 2, as dimy(/), =
(24~/;+2+,\) — Hy(\) = 0, for A < 2. Since the Hilbert function of Ay is a polynomial of
degree 2 in A for every A (i.e. it equals the Hilbert polynomial from degree O on), a simple
computation shows that the third difference of the Hilbert function of Ay (equivalently,
the Hilbert function of an Artinian reduction of Ay) becomes O from degree 3 on, i.e. that
o(ly) = 3. Thus, as Iy is perfect, we get (see e.g. [L1, Theorem 2.2]) that Iy is generated

(at most) in degrees 2 and 3. [

REMARK. In the proof above we noticed that the Hilbert function of Ay coincides
with the Hilbert polynomial in each degree, i.e. Iy is what in [A] is called a Hilbertian
ideal.

Now, in order to describe Iy we first give a slightly different description of V, and
hence of Iy.

We set N' = 2d — 2k + p + 2 (where p is as defined in §1), and define ¢: P? — PV by
putting, for every (a, b, c) € P? \ Z,

$(a,b,¢) = (aFi(@,b,0)...,cFy_4n1(a,b,0),Gi(a,b,c), ..., Goa(a, b, )).

LetR =1[X,,Y]1(=1,23;j=1,...,.d—k+1;1=1,...,2k —d) and let S’ be the
(graded) subring of § = {[W;, W, W3] defined by S’ = @, S, where S}, = Siws1)-

Now define :R — §' C S byX, — W,F, and ¥; — G;. Then 0 is a graded ring
homomorphism, whose kernel is a homogeneous ideal which will be related to V.

In fact, when d < 2k, we have that N/ = 2d—k+2 = N and thatthe set {W,F}, G, | i =
1,2,3;j=1,...,d—k+1;1=1,...,2k—d} isa basis of J,,,. Therefore V = Im ¢ C PV
(where “ ” denotes the closure in the Zariski topology), and hence Iy = Ker 6.

When d > 2k, we have that N = 3d—3k+2 and, except for d = 2k, that the W, F,’s are
not linearly independent (there are no G;’s in this case). However, consider the (square)
matrix we obtain by repeating the /-th row of 4:

O Oz - Ord—k+
Ok O Ora—ksl
A
A = = | L Lip -+ Ligi
Liy - Lig g ] ) .
Lokt La-aky -+ La—ogd—k+
L, L, - Ligg )

and write L;; = Zf:, 65“ W, forevery [ = 1,...,d — 2k. Then, by using cofactor expan-
sion along the last row of 4;, we obtain

d—k+1 d—k+1 , 3

O=detA =3 L,F =3 (LoW)F
J=1

J=1 =1

d—k+1 d—k+1 3 ’
J
Z(Sl XU)
1=1

S (315?9()(,,)) - 9( )

=1 M= =1
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In other words, ker § contains the d — 2k linear forms,
Aokl 3
H, = Z 61"X,] (U=1,...,d —2k).
J=1 =1
LEMMA 2.4. The linear forms described above,
dksl 3
H, = Z 6,"X,, (U=1,...,d—2k),
J=1 =1

are linearly independent.

PROOF. We view the H,’s as a system of linear equations, and, after giving the X,’s
the lexicographic order,

Xt X1 X010 Xogokats oo X310, X3 g ksl

write the matrix of its coefficients:

L 1,d—k+1 L 1,d—k+1 L 1d—k+l
o b & b b3 b3

5(1142/@1 5([172k,d7k+l 6‘5*2"" 5;42/(,(17/@1 6‘3172"" 5172k,d~k+l

Then it sufficies to prove that tk A = d — 2k.
To this end, we may assume none of the P,’s is the point (0, 0, 1), and that F; does not
vanish at (0, 0, 1). Recall that

Oip - Qra—k
_ Oy OQkd—ial
F] = det
Lo -+ Liga
Loy - Li2ka—ke1 )

and write Q,,; = Zih:, B, W,W,, foreveryu = 1,... ,kandeveryj =2,....,d —k+1.
Then, if we put:

1,3,2 1,3,d—k+1
,83 . /83 1
k32 . k3d—k+l
M= 3 B3
T o2 L gldka |0
3 3
6?72&2 . 6?72k‘d—k+l )

we have detM = F(0,0,1) # 0.
Now, if all the minors of order d — 2k of M involving the §’s were 0, then the last
d — 2k rows of M would be linearly dependent, contradicting the fact that detM # 0.
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Therefore there must be a minor of order d — 2k, involving only the §’s, which is different
from 0. But such a minor sits inside the matrix A defined above, and so rk A = d — 2k,
as we wanted. n

AsN' —(d—2k) = 2d—k+2 = N, Lemma 2.4 enables us to say that Im ¢ is actually

. . N . . - Kerf

contained in PV, hence that we can identify Iy, with m

3. The ideal /. In this section we construct an ideal I, which we show is almost
determinantally presented and which will turn out to be equal to the ideal of V.

First of all, notice that, forevery b,k = 1,2,3 withh # kandevery m=1,...,d —
k+ 1, with [ # m, we have that

O X Xim ~ Xt Xnm) = Wy y Wiy, — Wi /Wy = 0,

i.e. that the differences X Xy, — XuXnn € Ker . We view these differences, which are
(2) (d k”) forms of degree 2, as the 2 X 2 minors of the matrix

X o Xig—ie
X=1Xa - Xogn
X310 X3gop

THE CASEd < 2k. Inthis case, forevery u = 1,...,k, consider the matrix obtained
by repeating the u-th row of 4:

g |
Lyt - Ligk—a Qui - Qud—isl

Expanding det 4, by cofactors of the last row we obtain:

|

2k—d d—k+1

0=det(4,) = ) L,G+ ) QuF
=1 J=1

Keeping the notation already introduced in §2, we put L, ; = 213:1 61‘"W, and Q,, =
Z}h | B, W, W, with the 6 s and the 3,"’s in the ground field f. Thus,

2k—d , 3 d—k+l , 3

0=det(Z)= 35 (Zﬁ:"lW,)Gl+ S (}: BZ”"W,,W,)F]

=1 “i=1 =1 “ph=1
and so, after multiplying by F, (foreveryv =1,...,d —k+ 1),

3 ,2k—d d—k+1 3

Oszdet(ﬂ!,,)—z(Z 511Gy WF, +Z( Z Zﬂ"’”W,,F) F,

2k—d 3 d—k+1

S5 svta0r ok + 22 2 B0, ) 00X,)

=1"I=1

I

= 0(3% XuBu );

1=1
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where
2k—d

d—k+l 3
Bi= 3 6+ 3 3 BMX,.
=1 =1 h=1

This tells us that the M, = ¥ | X,By, u = 1,...;kandv = 1,....d —k+ 1),
describe k(d — k + 1) forms of degree 2 in Ker 6.

We view the M, ,’s as the entries of the product matrix B - X, where X is the 3 X
(d — k + 1) matrix defined above and ‘B is the k X 3 matrix of linear forms given by
B= (Bu,z)u.t-

Notice that all these quadratic forms in Ker 8 (if different) number 3(‘1‘2"”) +k(d —
k+1)= M:gﬂi‘*—kz, which is exactly the dimension of (/y),, by Proposition 2.2.

Now we look for forms of degree 3 in Ker . To this end, let us call C the image under
6 of B = (By)uy; i.e. C = (Cyp)u,, where C,, = 6(B,,). Also, for every u = 1,...,k
and every i = 1,2, 3, put

Dy, = [ A
u,l 6?,1 . .6:4,2kfd 22:1 ,Bil’h’l Wh . 22:1 ﬁ?,h,d4k+l Wh

Then:
2k—d d—k+1

3
det(D) = 364G+ 3. <Z By W,,)F, = 0(B,,) = C
=1 =1 “h=1

CalM,(p=1,..., (';)) the minors of order 3 of B. Then the 8(M),)’s are the minors
of order 3 of C. Now observe that, V(a; : a; : a3) € P2, we have

3 3
0= det(ﬂu(al,az,ag)) => a,det D, (ai,a2,a3) = Y a,Cy(ay,ar,a3)
=1 =1

thus the rank of C(ay, as, a3) is less than 3, for every (a; : a» : a3) € P2, whence so is
the rank of C. Therefore the M,’s all belong to Ker 8 (and they all have degree 3).

Define / as the ideal generated by the 2 X 2 minors of X = (X,,),, the entries of the
product matrix ‘B - X, and the 3 x 3 minors of B. Thus we have I C Ker6.

THE CASE d > 2k. As in the previous case, for each u = 1,...,k, consider the
matrix obtained by repeating the u-th row of 4,
_ A ]
Au = Oui Qua—ie1 )’

so that det 4, = 0, and put Q,,, = Zih:l B, Wy W,. Then, for every u = 1,...,k and
everyv=1,...,d — k + 1, we have, after multiplying det 4, by F,:
d—k+1 d—k+1

3 3
0=FdetA=F 3 QuF,=Fo Y (55 57w )5
J=1

J= =1 h=1

3 d—k+l 3 o 3
=33 S AMNEIK) = 6(3 XuBuy),
=1 j=1 h=1

1=1
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where
d—k+1 3 B
U,
Buo= % 28Xy
=1 h=1

Therefore, by setting M,,, = Z?:] X, By, we obtain k(d — k+ 1) quadratic forms M, ,
which belong to Ker 6.

Let B be the k x 3 matrix of linear forms: B = (B,,,),,. Consider the quadratic forms
given by the 2 X 2 minors of X and by the entries of the product matrix B - X, and the
cubic forms given by the 3 x 3 minors of B. Let I be the ideal generated by the residue
classes of all those forms in G——. .

er

As before, we need to prove that I = Iy, after identifying Iy with oA

EXAMPLE 3.1. Lets = 13 (hered = 4 and k = 3) and let Py,..., P13 be 13 points
in P2 with generic resolution,

0 — S(—6) — S(—4)* & S(—5) — J — 0,

like, for instance, the 13 points in the configuration below:

P
Py 1;3 Py
P Ps P1 P P
Py Pn Pn
Pi3

We may assume the 13 point have the following coordinates:

Py =1(1,0,2), P, =(1,—1,1), Ps =(1,0,1), Py = (1,1, 1),
Ps =(1,-2,0), Po = (1,—1,0), P; = (1,0,0), Ps = (1,1,0), Py = (1,2,0),
Pl() = (lvﬁl»*l)’ P” = (1707‘1)7 P|2 = (1’ 19~1)7 P13 = (170’-2)'

Then the ideal of these points is generated by the maximal minors of the matrix:

2W, —4W; W2 —4W: —5Wi+5W3
W, 0 0 4WE — W2 ]
0 0 Wi-w: —Wi+W;

Inthiscase N = 2d —k+2 = 7and R = f[X,, Y], withi = 1,2,3,j = 1,2 and

=

[ =1,2. Thus:
X, X2
X=1|Xu Xn
X351 X3

Moreover, from A4 we compute the ¢’s and the 5’s and obtain:

0 2Y1 +X12 — 5X22 —4Y2 - 4X31 + 5X32
B = 44X, -Y —X3
X1 —X2» —X31 + X532
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Therefore

I = (minors of order 2 of X, entries of B - X, det B)
= (X12X21 — X1 X2, X12X31 — X11X32, X22X31 — X201 X32,
X12X01 — 5X01 X2 — 4X§1 +5X31X30 +2X21Y) —4X3, Y5,
X12X2) — 5X3, — 4X31 X3 + 5X3, + 2X0 Y| — 4X3 Y5,
4X11X12 — X31 X320 — X2 Y1,4X%2 _ ng — XpY),
Xt — XX — X3, + X3 Xs2, X1 X2 — X5, — X351 Xa0 + X3,).

The computation for this example was done partially by hand, partially with the help
of “CoCoA” by Giovini-Niesi (in the MS/DOS version by Armando).

4. Iis the ideal of V. We shall prove the equality we are after by showing that the
set of zeros of 1, W = Z(I), coincides with V and that / is prime.

The main tool used to prove that / is prime is a theorem by Huneke (see [H, Theo-
rem 60]), which we rephrase as follows:

THEOREM 4.1 (HUNEKE). Let X = (X,)) be an r X s matrix of indeterminates and
Y = (Yy) an s X t matrix of indeterminates. Let f be a field and J be the ideal in f[x,, y ]
generated by the entries of the product matrix X -Y, all (a+ 1) X (a+ 1) minors of X and
all(b+1) x (b+ 1)minors of Y. If a+ b < s, then J is prime and perfect.

THEOREM 4.2.  For a generic choice of the points Py, . .., Ps inP?, the ideal I is prime
(and perfect).

PROOF. Let us consider the case d < 2k first. In this case the ideal I is not given by
matrices made of indeterminates, but we can consider the ring R’ = tXy,, Y1, Z,u] (Where
hi=1231=1,...2k—-d;j=1,...,d—k+1landu = 1,...,k) and the ideal
I' C R', defined as in Huneke’s theorem, with the matrix B’ = (Z,,) as X, the matrix X
as'Y,and witha = 2, b = 1, and s = 3. Then 7’ is prime and perfect, and we can easily
see that we can view I as the quotient ideal of I’ in the ring {[X,,, Y}, Z,,1/ (H.,), where:

2k—d ; d—k+1 3
U,l
Hu=Zu— 3 6%~y 34X,
=1 =1 h=1

By Huneke’s theorem the scheme W’ defined by I’ is a. C. M.

Moreover, W’ is an integral (i.e. a reduced, irreducible) scheme in PM where M =
2d + 2k + 2, and the ideal I defines the section W obtained by cutting W’ with the 3k
hyperplanes H,,’s.

Observe also that, since W D V, we have 2 < dimW < dim W'.

Now, itis well known that if we cut an integral projective scheme of dimension greater
than 1 with a generic hyperplane, we obtain an integral scheme. So we have to check that
the H,,’s are “generic enough”. This will also imply that every H,, is not a zero divisor
modulo ', hence that the ideal (I, H,,), which is the homogeneous ideal associated to
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W'NZ(H,,), is again a perfect ideal, i.e. that W NZ(H,,) is a. C. M. By iteration, we shall
get that (I, Hyy, ..., Hy3) is perfect and that W is a. C. M.

In other words, we have to show that a generic choice of A4 (hence a generic choice of
Pi,..., Py) corresponds to a generic choice of the 3k hyperplanes H,,, hence to a generic
3k-codimensional linear space T14 in P™ and to a generic section W = TT4 N W’. Thus,
by Bertini’s Theorem (see, for instance, [J, Theorem 6.3]), W will be integral, i.e. 1 will
be prime.

More precisely: consider any p X (p + 1) matrix with entries given by linear and
quadratic forms of S = f[W}, W,, W3] (i.e. of the same type as the matrix A4 described in
§1 and §3). The coefficients of its entries will be of type (5;"1,ﬂ:“"h), with h,i = 1,2,3;
u=1,...,ki=1,....2k—d;j=1,...,d —k+1.

For any choice of u (hence of a row in the given matrix) and any choice of i = 1,2, 3,
the coefficients §“/, 3" will determine a hyperplane H,, in P. Hence we have a map
v which associates to the given matrix a 3k-tuple of hyperplanes in P¥. For a generic
matrix the 3k hyperplanes will be independent, so we can see the image of the map y as
a 3k-codimensional subspace of P™.

We have to check that the image of this map covers an open set of Gr(M — 3k, M), the
grassmannian which parameterizes the linear spaces of codimension 3k in P¥.

In the space [(PY)"]3, which parameterizes the 3k-tuples of hyperplanes in P¥, con-
sider the open set U which consists of 3k-tuples of independent hyperplanes. There is
an obvious map, \: U — & = Gr(M — 3k, M), which associates to each a € U the 3k-
codimensional space which is the intersection of the 3k hyperplanes corresponding to a.
Such a map X is obviously surjective.

For any a € U, we can consider the matrix, M, of the coefficients of the 3k equations
defining the hyperplanes (up to multiplication of every row by a constant). In other words,
ifa= (H], e ,H3k), with

2k—d d—k+1 3

AT AT > B X =0},
=1 J=1 h=1

lu=1

Mw

|

Il

!

foreverym = 1,..., 3k, then

M= ((am G (Br)] =

1 1 P B! 1. sl 'l 1 1. ol
o O O3 A3 ' 6 b 02ka ' By Bay B3y B3k
3% 3k 3k 3k 0 3k £3k .. 3k 3k @3k @3k ... a3k
al oy ey e ot 6 b—a ' B11 By By B3d—ks1

Let A, be the 3k x 3k matrix (a),) and B, the 3k x (2d — k + 3) matrix (07", B’,j’J), SO
that M, = (A4, B,).

Now consider the subet U’ of U given by those a’s such that A, has maximal rank.
Then Ay is no longer surjective, but A\(U’) is a (Zariski) open subset of &, since G\\(U")
is given by those 3k-codimensional suspaces of PM contained in some hyperplane.
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Now, let a € U’, and consider the matrix M. Because kA, = 3k, we can find an
invertible 3k x 3k matrix E,, such that E, - M, = (I, E, - B,), where I is the 3k x 3k
identity matrix.

Note that Va € U’, 3v € U’ such that M, = E, - M, = (I, E, - B,) and A(v) = A(a);
hence if U" is the subset of U’ of the v’s such that ‘M, = (1, B,), then A\(U") = \(U").

Now consider ¢ = M(S;k, k + 1), the space parameterizing the matrices of size
k x (k + 1) with entries in S, for the first 2k — d columns and in S, for the remaining
ones. Also recall the map p: ¢ — U”, which we have considered above, defined by
w(M) = (H,,,...,Hs). Then we get that

I - 0 a1 <12 12k—d | al11 L1 1.1,d—k+1

o --- 061 o e by h 2 e B
My = | - S : : : : :

: ekl k2 ck2k—d | k3.1 k3,0 pk3d—k+l

0 1 0 & &3 1 2 3

The map p is surjective and A(U") is dense in &, so A o p: M — © has an open
(dense) image too. It is not hard to check that both A and p are continuous (with respect
to the Zariski topology). Now let I be the open subset A o u(3) C G corresponding to
3k-codimensional spaces “generic enough” to intersect W’ (scheme-theoretically) in an
integral scheme.

Finally, let U be the open subset of Wt parameterizing those matrices which corre-
spond to ideals of distinct points Py,..., P in P? with generic resolution. Then the set
o)~ N ()N U C M will give us a (non-empty) open set where we can choose our
matrix A (hence our points) in such a way that the ideal / will be prime. This completes
the proof in the case d < 2k.

When d > 2k, we have to consider the ring R' = f[X,,Z,], with h, i = 1,2,3;
j=1,....,d—k+1;u=1,...,k and we define an ideal I (and the associated variety
W'), defined as above. Then we have to cut W/, with the hyperplanes

d—k+1 3 d—k+1 3

Ho=Zy— Y S B"X,andH = 3 S 6V,
=1 h=1 ==l

(see §2).
We can do this in two steps. First we cut with the H,,’s, and we work as in the previous
case. Namely: we set
M =M(S;d—k,d—k+1)

to be the space parameterizing matrices of size (d — k) X (d — k + 1) with entries in S,
for the first k rows, and in S| for the last d — 2k rows (as the matrix A4). In this case we
will have a map p which associates the given matrix M € Y% a 3k-tuple of hyperplanes
w(M) = (Hy,,...,Hys), whose coefficients are given by the first k rows of M. If \ is
as before, we will get

1 0 -+ 0 Jl1 pLLL | alld—k+l

01 .. o & |
M= | . . Sl : :

Co Clgeal o gkAl L gk3dkel

o o0 .- 1 1 2 3

https://doi.org/10.4153/CJM-1993-043-2 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1993-043-2

ON THE IDEAL OF VERONESEAN SURFACES 771

Working as in the previous case we get, for a generic choice of 4, a (perfect) prime
ideal I” in
R' = tX,,Zu)/(Hy 1, ... Hy3).

We can view I as the quotient of I” by the ideal (H, ..., H;_»;), where H; is the image
of H;in R”. Finally, by using again the genericity of 4 to check that the H,’s are “generic
enough” to preserve primeness, we conclude the argument. =

Recall that we denoted by W the scheme associated to the ideal I defined in §3.

LEMMA 4.3. Ifd < 2k, then the points P = (x,,y;) € W (wherei = 1,2,3; j =
l,...,d—k+1;1=1,...,2k—d) such that x, = O, for all i and j, form a closed subset
of W of dimension less than or equal to 1.

PROOF.  First assume k > 3 and consider the subspace P?*~4~! of PV, defined by the
equations {X,, = 0,Vi,j} and its coordinate ring S’ = f[Y,..., Y2_4]. Consider also
the matrix B = (B.,), where B/, = Y% §*!y,. Its maximal minors define an ideal
Y C §’ which is the image of / in the quotient ring S’ = S/(X,)). The zero set Z(Y) can be
viewed as W N P%*~4-1 which is exactly the set that we want to determine. If we prove
that dim Z(Y) < 1, we will be done (recall that dim W > 2, since V C W).

Let Y’ be the ideal generated by the 3 X 3 minors of the generic matrix B” = (Z,,),
in f[Z,,, Y;]. We can view Y as the quotient ideal of ¥’ (which is a prime, perfect ideal of
height k — 3 + 1 = k — 2) modulo the linear forms H,, = Z,, — Z;";,d 57’1Y,‘ By using
a “genericity argument”, as in the proof of Theorem 4.2, one gets that either Y is an
irrelevant ideal, or it has the same height as Y, i.e. ht(Y) = k — 2.

In the first case, Z(Y) = (), and we are done; while in the second we have that
dmZ(Y)=2k—d—1—(k—2) =k—d+1,and so (since k < d), dimZ(Y) equals 1
or 0.

Now assume k& < 3. First of all, k = 1, combined with d < 2k, would gived = 1,
while we assume d > 2, to avoid trivial cases. Thus, we may assume k = 2, hence we
have that d is 2 or 3, and so I = 2k — d = 1, 2. Therefore the subspace of PV defined
by the equations {X,, = 0, Vi,;} has already dimension less than or equal to 1, hence, a
fortiori, so does Z(Y). »

PROPOSITION 4.4. Let I be the ideal defined in §3 and V the surface introduced in
81; then W = Z(I) = V, as sets.

PROOF. We have, by construction, that W D V, so we have to prove the reverse
inclusion.

Assume first that d > 2k and let P € Z(I) C PV C PV, Recall that, in this case,
p =d — k,hence N' = 3d — 3k + 2; and think of P as a point of PV

P = (X11,X20, X311+« X1 g ka1 X2, d— k1> X3 d—k 1)
recalling that
doktl 3
4 HP) = 5 S 6%, =0, VI=1,..d—2k
J=1 =1
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Because P € Z(I), the matrix

X Xid—k+l
X= X1 - Xpgkel
X1 Bd—kel
has rank 1.
Now, the x,’s are obviously not all 0, therefore we can assume there is a j such that
xy # 0.
Then, rk(X) = 1 tells us that the first two rows of X are multiples of the third one,

X1 = NX3;
Xy = Cx3j
n = wi /w3 and { = wy /w3, for suitable wy, wa, w3 € f withw; # 0, and put x3, = ¢,.
Then we can write:

i.e. there are non-zero 7,( € ¥ such that { ,Vi=1,...,d — k+ 1. Now, write

P = (WiC1, WoC1, W3C1, - o s WICh—fr1s W2CH—kt 1> W3Cd—ka1)>

with the ¢;’s not all 0.
We also have:

3 d—k+1 3

@ M, (P) = wa< >y ﬂf"h"xh,) =0,
=1 =1 k=1

forallu=1,...,kandallv=1,...,d —k+1.
Now, from () we get

d—k+1 3 ’ d—k+1
Z] 2?151lecj = 2:] Ll,](wh wa, W3)Cj =0,
=1 1= =

foralll = 1,...,d — 2k; while (I) yields

3 d—k+l 3 N
Zw,cv( DA ”whc]) =0,
1=1 J=1 h=1
forallu=1,...,kand allv =1,...,d —k + 1; with some ¢, # 0. Thus:
d—k+l , 3 . d—k+1
Z (Z B? JWlWh)C} = Z QMJ(WI’W27W3)CJ =0,
=1 ‘=1 J=1

foralu=1,... k.
In other words, Q = (w1, wy, w3) is a point of P? such that
1 0
A(wi, w2, w3) : =|:
Cd—k+1 0
If Q is not one of the initial points Py,...,P; € P2, then A(wy, wa, w3) has maximal

rank (which is p = d — k), and so, by elementary linear algebra, after recalling that the
F;’s are the maximal minors of 4, (cy, ..., c4—k1) must be a multiple of

(Fiwi,wa. wa), ..., Fa_g (w1, w2, w3));
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namely:
¢ = WFJ(W],WQ,W3), Vj =1,...,d—k+1,

for some 7y € f. In this case P = ¢(Q), where ¢ is the map defined in §2.

If Q is one of the initial points Py,..., P, € P2, then P belongs to the image in PV of
one of the exceptional lines of P*(Z), hence to the closure of Im ¢ in PV,

In both cases P belongs to Im ¢, and hence to V (after cutting with the hyperplanes
Hi,...,H; »,), as we wished.

Now assume d < 2k. In this case we work directly in PN, so we let

P = (X1, %21, X315+« X1 gkt 1> X2, d— ket 1» X3, d—kt 1> V1o - -+ s V1)

be a point of Z(1).

In this case, we are not sure that the x,,’s are not all 0. Nevertheless, it is enough to
prove the statement for a point P € U, where U is the open set where the x,,’s are not all
0, which is not empty by Lemma 4.3. In fact, if we prove that U C V, then we also have
U C V. On the other hand, by Theorem 4.2, W is irreducible, hence U = W, and so we
obtain W C V. Thus we can assume the x;,’s are not all 0.

Then, as in the other case, we write

P = (W1C1, WaC1, W3C1, + o o, WICH—ft1» W2Cd—kt1s W3Cd—kt 15 Vs - - » Y2k—d)

with the ¢,’s not all 0.
As P € Z(I), we also have:

3 2k—d | d—k+1 3 h
Mu(P) = Sowies (3 8%+ 30 3 B Mwi ) = 0,
=1 = =1 h=1

forallu=1,...,kandallv=1,...,d —k+ 1. From this, for ¢, # 0, we obtain:

%d 3 dkst, 30

— u, u,nyy N

0="3 (Lerhw)n+ 3 (2 A%wm)g
=1 “i=1 J=1 “h=1
%—d d—k+1

= L, wi,wa,wa)y + ) Quywi, wa,w3)e,
=1 J=1

forall u = 1,...,k. In other words, Q = (w;, wy, w3) is a point of P? such that
Y
v 0]
Awi,wa,w) | = J :
Ci
0
Cd—k+l
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Now, as before, if Q is note one of the initial points Py, ..., Py € P2, then A(wy, wa, w3)
has maximal rank (which is p = k), and so, as the F;’s and the G,’s are the maximal minors
of A, (yi,---+ Y24k Cls---»Cd—ks+1) Must be a multiple of

(GUQ),....Go (@), FQ), ..., Fai11(D)),

Cj :‘W’Fj(Wl,Wz,Wﬁ, ijl,...,d~k+l,
yi = YG(wy,wa,ws), Vi=1,...,2d —k,

for some 7 € f.
This allows us to conclude the argument, as in the previous case. L]
By combining Theorem 4.2 with Proposition 4.4, we obtain the main result:

COROLLARY 4.5. Let I be the ideal defined in §3 and Iy the ideal of the Veronesean
surface V. Then I = Iy.

REMARK 4.6.  While proving Proposition 4.4, we did not make use of the cubics of
I, in the case d > 2k. In other words, in that range, V is set-theoretically generated by
quadrics. However, this is not true ideal-theoretically, i.e. the cubics are not redundant in
a minimal set of generators of I = Iy. This follows from the fact that they are obviously
needed to generate the ideal I’ defined in the proof of Theorem 4.2, and that / is obtained
from I’ by cutting with general hyperplanes.

5. Applications. By cutting the surface V twice with general hyperplanes, we ob-
taint = degV = (dzz) — k points in P", wheren =N — 2 = 2d — k > d.

Clearly, n+1 <t < (";2): infact,t =(n+ 1)+ (‘21)

The Hilbert function of the ¢ points so obtained, is the second difference of the Hilbert
function of V, A>?Hy, which is inductively defined by:

A*Hy(m) = AHy(m) — AHy(m — 1),

where
AHy(m) = Hy(m) — Hy(m — 1).

Therefore,
A’Hy = Hy(m) — 2Hy(m — 1) + Hy(m — 2);

and so, by using Proposition 2.2, we obtain:
A’Hy(0) = Hy(0) = 1, A’Hy(1) =Hy(1)—2=2d —k+1=n+1,

and
d+?2

Mmmb<2

)—k:t, form > 2.

In other words, the 7 points have maximal (or, generic) Hilbert function.
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Since our points also satisfy the Uniform Position Property in the sense of Harris (all
subsets of the same cardinality have the same Hilbert function—see [Ha] and [DiG]),
every subset still has generic Hilbert function (i.e. the points are in uniform position—
see [DiG, Lemma 15]).

The genericity of the Hilbert function implies, in particular, that the ideal of our points,
like that of V, can be generated in degrees 2 and 3 (see also [GO, Corollary 1.6]) and needs
the same number of generators as Iy in each degree.

Obviously, one needs all the quadrics through the points, which are (";2) -t =
dim¢(ly),.

The ideal generation conjecture, first stated in [GO], predicts that, for a “general” set
of ¢ points (with generic Hilbert function) the minimum number of cubics needed should
depend only on 7 and should equal

min{O,nt— 2(”;2>

As for the ideal of our points, we know there are no cubics when k = 1 or k = 2; and
so the corresponding ¢ points do satisfy the ideal generation conjecture. Note that, since
n = 2d — k, n and k have the same parity, and d = "T”‘ so that k = 1 forces n odd while
k = 2 forces n even.

With this in mind, start from any integer n and put

”——“52 for n even (df) +2 forneven
d= | , and s = del
=L for n odd (41 +2 fornodd

Now, let Z be a set of s points in P? with generic resolution and let V = Vas1z be
the surface of P"*? constructed as in §1. Finally, cut V twice with generic hyperplanes to
obtain ¢ points in P, where

{ ﬂﬂ%ﬂi) for n odd
=

2 )
%0’”8 for n even

which satisfy the ideal generation conjecture.

Because generation in the lowest degree can be extended to general subsets (see, for
instance, Proposition 3.1 of [L3]), we can say that some—hence every, by Theorem 11
of [DiG]—subset of the ¢ points satisfies the ideal generation conjecture. We just proved:

COROLLARY 5.1.  Let n be any integer and let

(n+1)(n+7)
= { T forn odd
n +10n+8
8

;
for n even

then any set of p points inP", withn+1 < p <'t, cuton V by general hyperplane sections,
satisfies the ideal generation conjecture.

It was known (Corollary 2.2 of [MV]) that ¢ < 2n points in uniform position satisfy
the ideal generation conjecture; thus we obtain new cases as soon as n > 7, when n is
odd, and n > 4, for n even.
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The ideal generation conjecture can be extended to predict what a graded minimal free
resolution of ¢ “general” points should look like (see [L3]): linear almost everywhere,
except in one place where two degrees (or, at best, a jump in degree) will show up:

0— - T(—(i+4)™ — T(=+2)) " o T(~(+3))" — T(~@+1D))™ ' — - —0

(with 3, possibly 0), where T denotes the coordinate ring of P".

Where the double shift is expected, depends only on ¢ (see [L3, Theorem 2.1]): for
example, it is expected at the beginning (i.e. for i = 0), if and only 1f r > %(";2)

Furthermore, if 3, has the expected value, then, from the double shift on, the rest of the
resolution also is forced to be the expected one (see §3 of [L2]): in particular, the whole
resolution is the expected one if the double shift occurs at i = 0 and 3y = nt — 2(";2).

In the case of our points, a direct computation shows that, when k = d (whence also
n = d), the number of cubics in the ideal of 1 = (";2) — n points equals the expected
value of 3y, and so the whole resolution is the expected one. In other words:

COROLLARY 5.2. (";2) — n points in P" cut on V by general hyperplane sections,

satisfy the minimal resolution conjecture.

For this number of points the result was known under the hypothesis that the points
be in “transversal uniform position” (see Definition 4.3 of [GM] and §3 of [L2]).

Note that, as t = (n+ 1) + (‘21), with "ZL' < d < n, the number of points above
(for k = d = n), is the maximum we can possibly obtain, with respect to n. But also
t= (‘1;2) —k, with 1 <k < d; and so that is also the minimum number of points we can
obtain, with respect to d.

Unfortunately we cannot push this technique any further: we have already argued
(Remark 4.6) that all the cubics are always needed, and this remains true also in the
range where the ideal generation conjecture predicts generation by quadrics only, i.e.
< %(";2) (see also Example 3.1, which is the lowest case in which the ideal generation
conjecture fails). Even in the remaining range, t > %(";2), the number of cubics 1s not
the expected one (except, obviously, for the case covered by Corollary 5.2). The lowest
case in this range 1n which the ideal generation conjecture fails is t = 30 (1.e. d = 7,
k = 6): in this case no cubic is expected, while I = [y requires (g) = 20 cubics.
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