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ON THE IDEAL OF VERONESEAN SURFACES 

A. GIMIGLIANO AND A. LORENZINI 

ABSTRACT. We consider the blowing up of P2 at s sufficiently general distinct points 
and its projective embedding by the linear system of the curves of a given degree 
through the points. We study the ideal of the resulting (Véronesean) surface and find 
that it can be described by two matrices of linear forms, in the sense that it is generated 
by the entries of the product matrix and the minors of complementary orders of the two 
matrices. 

By cutting the surface twice with general hyperplanes, we also obtain some infor­
mation about the generation (or even the resolution) of certain classes of points in pro­
jective space. 

Introduction. Let Z = {Pi , . . . , Ps} be a set of s distinct points in P2 = P2 (where 
f is an algebraically closed field) and let J = p\ D • • • n ps C S = f [W\, W2, W3] be the 
defining ideal of Z. Let P2(Z) be the surface obtained from P2 by blowing up the points 
ofZ. 

The aim of this paper is to study the defining ideal of a projective embedding of P2(Z) 
given by the linear system of curves associated to the vector space Ja, which is the de­
gree a part of J. The surface obtained in this way is called a Veronesean surface, as it 
can be obtained as a projection of a Veronese surface from points on the surface itself; 
equivalently, because the embedding which defines it is obtained by using the subsystem 
Ja of the complete linear system Sa on P2. 

We want to determine the elements of a minimal generating set for the ideal of this 
type of surface, and to do this by relating these generators to the ideal J of the points in 
P2. 

These kinds of questions have been considered by many authors; we mention the 
classical work by Castelnuovo ([C]), and the more recent work by Mumford ([M]), Green 
and Lazarsfeld ([Gr]), ([GL]), which more generally, relates properties of the ideal of a 
projective scheme with those of the linear system which embeds it. 

Our work is very much in the line of [G] and [GG], where the authors have given cri­
teria to check when the embedded surface V is arithmetically Cohen-Macaulay (a. C. M., 
for short) or when the defining ideal of V, Iv, is generated by quadrics. In particular (see 
§1 for definitions), they have shown that V is a. C. M. when a > o(J) and Iy is generated 
by quadrics if a > a(J) + 1. 

In the present paper we study the case of s sufficiently general points in P2, when we 
embed P2(Z) with the linear system defined by Ja(j). From [G] and [GG] it is known that 
in the case s = (rf*1) t n e surface V (a "Room surface") is defined by quadrics (the 2 x 2 

Received by the editors July 19, 1991. 
AMS subject classification: 14J26,14M05. 
© Canadian Mathematical Society 1993. 

758 

https://doi.org/10.4153/CJM-1993-043-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1993-043-2


ON THE IDEAL OF VERONESEAN SURFACES 759 

minors of a 3 x (d + 1) matrix of linear forms), while in the case s — ( £ ) the surface 

V (a "White surface") is defined by cubics (the 3 x 3 minors of a 3 x (d + 1) matrix of 

linear forms), so we need only consider s such that f ^ ) ^ 5 ^ ^ ) -

The aim of this paper is to generalize the construction of the two cases above: namely, 

we will show that if 5" = ( ^ O + k> w i m 0 < k < d+l9 then ly is generated in degrees 

2 and 3, and it is not determinantal, but almost, in the sense that it can be viewed as 

given via two matrices of linear forms X and $ , in the following way (see also [P]): the 

generators of ly are the entries of îB • X, the 2 x 2 minors of X and the 3 x 3 minors of 

*B, where X is a 3 x (d — £ + 1 ) matrix and *JBa k x 3 matrix: 

<B = 

Bu B 12 By 

VBk Bt ki Bt k3 

x = 
rXn • 

X2l • 

>x3l • 

• • ^l,rf-*+l 

' • ^2,rf-*+l 

• - ^ 3 ,<*-*+! 

0 : 

For instance, in Example 3.1 below, we work out the case of a set of 13 points in P2. 

We consider the map to P7 described by the linear system of plane quintics through the 

13 points. The image of this map is a surface V of degree 12 in P7, whose defining ideal 

ly can be described as follows: 

ly = (minors of order 2 of X, entries of *B • X, det $ ) , where 

0 

4X12 

I Xn 

Note that in the cases k = 0, d + 1, we get again the Room and the White surfaces, 

respectively; while in the cases k = 1 or k = 2, (B has no minors of order 3, and so V is 

generated by quadrics only. 

Another way to look at this presentation of ly is the following: if V C PN , denote by 

R the coordinate ring of P^ and consider the sequence 

1 +-^12 — ' 

-Y\ 
—X-22 

)X22 --4y 24X3i+5X 32] 

- * 3 2 
—X3I +X32 

, x = 
\Xn 

Xu 

1*1 

X\2 ' 

X22 

Xn . 

R« -k+l R> **; 

then we can view V as the locus where the above sequence is an exact complex. 

The layout of the paper is the following: after a section of preliminaries, in §2 we 

study the ideal, ly, of the surface V\ in §3 we define an ideal / constructed as above, and 

finally prove the main result (/ = ly) in §4. In §5 we apply this result to the case of points, 

after cutting V twice with general hyperplanes. 

Most of the computations were done with the help of the symbolic computation system 

"C0C0A" by A. Giovini and G. Niesi, in the MS/DOS version due to E. Armando. 

1. Generalities. It is known that, if A is the (homogeneous) coordinate ring of an 

a. C. M. variety of projective dimension p — 1 (with defining ideal / ) , then its Hilbert 

function is non-decreasing, and the/7-th difference of its Hilbert function, A^/Z^ra), is 

eventually 0 (see, for instance, [LI, end of §1]). Define: 

a(J) = min{m | Im ^ (0)} and a(I) = min{m \ ApHA(m) = 0}. 
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760 A. GIMIGLIANO AND A. LORENZINI 

Let Z = {Pi , . . . , Ps} be a set of s distinct points of P2 and let / C S = f [W\, W2, W3] 
be their ideal. 

Let d be the least integer such that s < f^2)» s o m a t w e c a n write 

d+\ 
+ k 

d + 2 
(d-k+\), 

with 0 < k < d + 1. This also means that a(J) < d. 
For general points, we know that a(f) = d and d < a(J) <d+l, with d = a(J) only 

when & = 0. 
Also, the ideal generation conjecture states that, for general points of P2, J should be 

minimally generated by d — k + 1 forms of degree d and h forms of degree d + 1, where 
/z is either 0 or 2k — d, according to whether d>2kor not. 

Because in P2 the ideal generation conjecture holds (see, for instance, [GGR] or 
[GM]), and is equivalent to the minimal resolution conjecture, we say that we choose 
P\,...,Psto have "generic resolution". 

In other words, if we denote by F\,..., F^_^+i m e generators of J of degree d and by 
G\,..., G2k-d those of degree d + 1, then the WiF/s are all linearly independent over f, 
when d < 2k\ while if d > 2k, then there are no G/'s, and the W(Fj need not be linearly 
independent (certainly not, as soon as d > 2k). 

Furthermore, because of the Hilbert-Burch Theorem (see, for instance, [CGO]), we 
can view the F/s and the G/'s as the p + 1 minors of order p of a p x (p + 1) matrix .#, 
where 

k ifd<2k 
d-k ifd>2k' 

In the case when d < 2k, the matrix !A is given by 

"^1,1 ' • ' L\£k-d 01,1 * 

J3 
01. «d-fc+l 

-*,1 ^k,2k-d QK\ Qk4- k+\ J 

where the LMJ's are linear forms and the Qu/s are forms of degree 2. Then, for ally = 
1, . . . , d — k + 1, Fj; is the minor obtained by deleting column 2k — d +j, and for all 
/ = 1, . . . , 2k — d, G/ is the minor obtained by deleting column /. 

In the other case (d > 2k), the matrix !A is given by 

J ^ -

Q\ 

Qk,x 

^1,2 

£l,2 

Gu- jt+i 

Qk,d-k+\ 

L\,d-k+\ 

• Ld~2k,\ Ld_2k,2 ' ' ' ^-2k,d-k+\ 

and, for all j = \,...,d —k+\, Fj is the minor obtained by deleting column j . 
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Now let E\,..., Es be the divisor classes on P2(Z) which contain the exceptional lines 
corresponding to the blow-ups of the points P\,...,PS, respectively. If E0 is the divisor 
class on ^(Z) which contains the proper transform of a line in P2 which misses all the 
points of Z, then it is well-known that Pic(P2(Z)) ^ ls+l ^ (£0, E\, • • •, Es). 

If C is a curve in P2 of degree a which has a singularity at P, with multiplicity m,, 
then it is also well-known that the proper transform of C on P2(Z) is an effective divisor 
in the class aEo — T,si=l rriiEi. In fact, it is possible to show that if J' = p™1 Pi • • • D p™s 

and if we let J denote the ideal sheaf in (\i corresponding to J', then: 

dimf fa = /z°(P2, J (a)) = h°(p2(Z),aE0 - ^ m ^ ) ; 

t mi{mi
2
+l) - H(S/J,a) = ^(P2,3(a)) - h[ (p2(Z),aE0 -fm^). 

It is well-known (and easy to see) that: 
(a) aEo — EJ=i Et is base-point free for a > a; 
(b) aEo — E/=i Et is very ample for a > a + 1. 
Moreover: 

THEOREM A ([DG, THEOREM (3.1 )]). The following are equivalent: 
i) aEo — Z)/=i Ei is very ample on P2(Z); 

ii) no a elements ofZ lie on a line ofV2. 

If ii) holds, then, for all a > a, each divisor class aEo — £/=i £/ defines a morphism 

0. , z :P2(Z)—,P^, 

where Â  = h°(aEo — EJ=1 £"/) — 1. These morphisms embed P2(Z) into P^ and we shall 
denote the image of ®a,z by Va,z-

Since a > a, it is easy to see that: 

N: 
a + 2 

1, degVaz = a2-s; 

and that the general hyperplane section of Va,z is a curve of genus 

( a - l ) ( £ i - 2 ) 
g= 2 * 

Let us go back to ideal J C 5 = f [W\, W2, W3] of the points P\,...,PS, and notice 
that, from our hypotheses on the points it follows, in particular, that they have maximal 
Hilbert function (or, generic postulation), and so cr(J) = d + 1. 

If we add the hypothesis that no d + 1 of the points lie on a line, then, by Theorem A, 
the linear system 

Jd+i = {WiFj,Gi I i= 1,2,3; j= !,...,<* - * + ! ; / = 1, . . . , 2it - J) 
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(where (*} denotes the span of *) induces an embedding of P2(Z) in P^, where N = 

dimf Jj+i — \ — 2d — k + 2. 

For simplicity, we call V = Vd+\,z the image of this embedding, Iy the defining ideal 

of V, and Ay its (homogeneous) coordinate ring. 

Then, clearly, V is an irreducible surface, of degree t = (d+ I)2 — s = (^ 2 ) — £• 

Furthermore, the following is proved in [G], though not stated precisely in this form: 

THEOREM B (SEE [G, PROPOSITION 2.1)]. Let Z satisfy ii) of Theorem A Then Va,z 

is a. C. M.for every a>a. 

Hence, by Theorem B, our surface V is a. C. M. 

More detailed information about the defining ideal of the surfaces Va,z can be found 

in [GG]. For instance: 

THEOREM C ([GG, THEOREM 2.1]). Let a > a + 1 and let Iy be the ideal of Va,z in 

VN. Then Iy is generated by quadrics. 

Our aim is to describe the ideal Iy in an almost determinantal way, and in relation with 

the ideal J. 

As the case k = 0 has been dealt with in [GG], we are actually interested in the range 

1 < k < d. 

2. The ideal of the surface V. A tool we shall need in what follows is the knowl­

edge of the Hilbert function of V: HV(X) = dim{(Av)A, VA G N. 

Let Oy be the structure sheaf of V. Since V is a. C. M., we have 

(AV)A = « ° ( C V ( A ) ) . 

REMARK 2.1. Hx ( CV(A)) = 0, VA e N. 

PROOF. Since V is a. C. M. we have that h2(Iv(A)) = 0 for all A. Since # 2 ( / v ( A ) ) ^ 

Hx(Oy(X)) in any case, we are done. • 

PROPOSITION 2.2. For every A G N, the Hilbert function of Ay is given by: 

Hy(X) 
d + 2 A 

-{d2- 5rf + 2 f c - 6 ) + l . 

PROOF. It follows easily from Serre's duality that //2(Cfy(A)) = 0, while 

Hx(Oy(\)) — 0 by Remark 2.1; therefore we can compute the dimension /i°(CV(A)) 

by using the Riemann-Roch Theorem on V: 

h°(Ov(\j) = i((AH)2 - AH • Ky) + 1 
2 

Â  
2 

A_2r 

2 

d + 2 

2 

d + 2 

3d+3 
d+\ 

+ 1 

-k -j(d2-5d + 2k 6 ) + l . 
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COROLLARY 2.3. The ideal Iy can always be generated by forms of degree less than 
or equal to 3. 

PROOF. Observe that, from Proposition 2.2 we get that a(Iv) = 2, as dirrif(/)A = 
(26^+2+A) - HV(X) = 0, for A < 2. Since the Hilbert function of Ay is a polynomial of 
degree 2 in À for every À (i.e. it equals the Hilbert polynomial from degree 0 on), a simple 
computation shows that the third difference of the Hilbert function of Ay (equivalently, 
the Hilbert function of an Artinian reduction ofAv) becomes 0 from degree 3 on, i.e. that 
o(Iy) = 3. Thus, as Iy is perfect, we get (see e.g. [LI, Theorem 2.2]) that Iy is generated 
(at most) in degrees 2 and 3. • 

REMARK. In the proof above we noticed that the Hilbert function of Ay coincides 
with the Hilbert polynomial in each degree, i.e. Iy is what in [A] is called a Hilbertian 
ideal. 

Now, in order to describe Iy we first give a slightly different description of V, and 
hence of Iy. 

We set Nf = 2d - 2k + p + 2 (where p is as defined in §1), and define <j>: P2 -»-• P^' by 
putting, for every (a, b, c) G P2 \ Z, 

(f)(a, b, c) = (aF\ (a, b, c),..., cFd_k+l (a, b, c), G\ (a, b, c),..., Glk_d(a, b, c)). 

Let R = t[XiJ9Yi](i= 1,2,3;./= 1, . . . , d-k+ 1; / = 1,... ,2k- d) and let Sf be the 
(graded) subring of S = t[W\, W2, W3] defined by S' = ®k S

f
k, where S'k = Sk(d+l). 

Now define 9:R —> Sf C S byX/y t-+ W;Fj and Yt v-+ G/. Then 9 is a graded ring 
homomorphism, whose kernel is a homogeneous ideal which will be related to V. 

In fact, when d < 2k, we have thatW = 2d-k+2 = N and that the set {WiFj, Gt\i = 
1,2,3;j = 1,.. .,d-k+l; I = 1, . . . , 2£-d} is abasis of Jd+l. Therefore V = ïîïî^ C P^ 
(where " " denotes the closure in the Zariski topology), and hence Iy — Ker 6. 

When d > 2k, we have that N' = 3d—3k+2 and, except for d — 2k, that the W/F/s are 
not linearly independent (there are no G/'s in this case). However, consider the (square) 
matrix we obtain by repeating the /-th row of A: 

01,1 01,2 ' ' ' Ql,d-k+l 1 

Qk,\ Qk,2 ' ' ' Qk,d-k+l 

L\,i L\2 • • • L\,d-k+\ 

Ld-2k,l Ld-2k,2 ' ' ' Ld-2k,d-k+l 

U,\ 1-1,2 ' ' ' U,d-k+\ i 

and write Ltj = £?=1 S
lfWi, for every / = \,...,d — 2k. Then, by using cofactor expan­

sion along the last row of Jfy, we obtain 
d-k+l d-k+l ,3 x 

0 = det^ = £ UjFj^ £ [E^WAFj 
7=1 j=\ V^=l J 

d—k+l , 3 x ,d—k+\ 3 x 

= £ ( £ ^ < T O ) = 0 ( £ £ T O -
,= 1 \=1 y V y = l 1=1 ' 

Xt = 
[ .a 
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In other words, ker 6 contains the d — 2k linear forms, 

d-k+\ 3 

Hi= E E < ^ V=h.--,d-21c). 
7 = 1 i = l 

LEMMA 2.4. The linear forms described above, 

d-k+\ 3 

f*i= E E*!%- a= i , . . . ,< / -2*) , 
7 = 1 » = 1 

are linearly independent. 

PROOF. We view the ///'s as a system of linear equations, and, after giving the X//s 
the lexicographic order, 

X\ i , . . . , Xi^-&+ i ,X21, . . . ,X2,rf_ik+i , . . . , X 3 1 , . . . , X 3 j ^ k + \ , 

write the matrix of its coefficients: 

r « 1,1 

*/ -2* , l 

cl,d-it+l cl,l 

°\ °2 

cd-2k,d-k+\ cd-2k,\ 

c\,d-k+\ V 

ft d-2k,d-k+\ cd-2k,\ 

z\,d-k+\ 

cd-2k,d-k+\ 
°3 J\ u\ "2 u2 u3 

Then it sufficies to prove that rk A = d — 2k. 
To this end, we may assume none of the / y s is the point (0,0,1 ), and that F\ does not 

vanish at (0,0,1). Recall that 

f Gi,2 

det 

Q\4- -fc+1 

Qk,2 • 

Ll ,2 ' 

<d-2k,2 ' 

Qk,d-k+[ 

L\,d-k+\ 

' ' Ld^2k,d-k+\ • 

and write Quj = Y?ih=\ fiu
h
,lJ W/,W;, for every u— 1 , . . . , k and every j = 2, 

Then, if we put: 
ol,3,2 > e m R\,3,d-k+\ 

,d-k+\. 

M-- *1,2 

U Î d-2k,2 

W 

ok,3,d-k+\ 

c\,d-k+\ 

cd-2k,d-k+\ 
J3 ^3 

we have det M = F} (0,0,1) ^ 0. 
Now, if all the minors of order d — 2k of M involving the <5's were 0, then the last 

d — 2k rows of M would be linearly dependent, contradicting the fact that det M ^ 0. 
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Therefore there must be a minor of order d—2k, involving only the <5's, which is different 
from 0. But such a minor sits inside the matrix A defined above, and so rk A = d — 2k, 
as we wanted. • 

AsN' — (d — 2k) = 2d — k + 2 = N, Lemma 2.4 enables us to say that Im <j> is actually 
Kerfl 

(H\,...,Hd-2k)' 
contained in PN, hence that we can identify Iv with — ^ ^ 

3. The ideal L In this section we construct an ideal /, which we show is almost 
determinantally presented and which will turn out to be equal to the ideal of V. 

First of all, notice that, for every h,k = 1,2,3 with h ^ k and every /, m — 1,..., d — 
k+1, with / 7̂  m, we have that 

0(XhlXkm - XklXhm) = WnFWkFn - WkFlWhFm = 0, 

i.e. that the differences XMXkm — XklXhm G Ker#. We view these differences, which are 
(2) (d~2+l) f ° r m s of degree 2, as the 2 x 2 minors of the matrix 

X 

THE CASE d < 2k. In this case, for every u— 1, . . . , k, consider the matrix obtained 
by repeating the w-th row of J?: 

rXn • 

X2l • 

^X3i • 

• • ^w-*+i ' 
" É Xu-k+l 
' • ^3,rf-/t+l -

Au = 
{ LUt\ • • • LUf2k-d Qu,\ ' ' • Qu,d-k+l J 

Expanding det !Au by cofactors of the last row we obtain: 

2k-d d-k+1 

0 = det(J^) = £ L^d + J2 QujFj. 

Keeping the notation already introduced in §2, we put Luj = ]C?=1 b
uf Wt and QUJ = 

Xh=x fi^WhWi, with the Sf's and the ffl 

2k-d , 3 . d-k+\ , 3 

E E^,-)G1+ E E 

and so, after multiplying by Fv (for every v = l,...,d — k+1), 

3 ,2k-d x 3 ,d-k+\ 3 

Y?Lh=l (3
u

h
,iJWhWi, with the ^ ' s and the /Ç / J ,s in the ground field f. Thus, 

2k-d f 3 A d-k+\ , 3 . 

0 = det(^) = £ (E^ , W,)G ; + Z E / ^ W A W . - W 

0 = FFdet(^) = E( E èfGAWfv + £ ( £ E ^ ^ ^ V ^ V 
*=1 V /=1 7 /=1 V 7=1 6=1 7 

3 ,2*-*/ x 3 ,</-*+1 3 x 

= E[i: qJo(Yi))o(xiv) + Y,( E E # ' " % ) ^ ) 
/ = 1 V /=1 y *=1 V 7=1 h=\ J 

— ®\LjXiVBUj\', 
v /=i 
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where 
Ik-d d-k+\ 3 

Bu,i= E r t + E £#•*%• 

This tells us that the Mw,v = £?=1 ^ A , / (" = 1,... ,ifc and v = 1,... ,d - k + 1), 
describe k(d — k + 1) forms of degree 2 in Ker 0. 

We view the MM>v's as the entries of the product matrix $ • X, where X is the 3 x 
(d — k + 1) matrix defined above and # is the k x 3 matrix of linear forms given by 

® = (*„,,•)«.«• 

Notice that all these quadratic forms in Ker# (if different) number 3^^) + k(d — 

k + 1) = 3d +3d~^kd-k+k , which is exactly the dimension of (7y)2, by Proposition 2.2. 
Now we look for forms of degree 3 in Ker 9. To this end, let us call C the image under 

9 of # = (BUJ)UJ\ i.e. C — (CUj)Uj, where CM,/ = 9(Bui). Also, for every w = 1,... ,/c 
and every / = 1,2,3, put 

<Dui = 
A 

u,i - [ 6u,l . . m6u,2*-d E 3 = i puAlWh . . . E 3 = i flM-k+lWh 

Then: 
2it-d d-fc+1 , 3 . 

det(2U = E SfGt + E ( E # ^ ) F ; = 0(SttfI-) = CUJ. 
i=\ j=\ Kh=\ / 

Call Mp (p = 1, . . . , (3)) the minors of order 3 of (B. Then the 9(MP)\ are the minors 
of order 3 of C. Now observe that, V(0i : «2 • «3) £ P2, we have 

3 3 

E ^ d e t £^(01,02,03) = E 
1=1 Ï = I 

0 = det(J3Uai, 02,03)) = £0idet©u,,-(ai,a2,03) = Ea<c^'(fli>a2,tf3) 

thus the rank of £(01,02,03) is less than 3, for every (a\ : 02 • 03) £ P2, whence so is 
the rank of C- Therefore the Mp's, all belong to Ker 9 (and they all have degree 3). 

Define / as the ideal generated by the 2 x 2 minors of X — (Xiv)iv, the entries of the 
product matrix (B • X, and the 3 x 3 minors of rB. Thus we have / C Ker 9. 

THE CASE d > 2k. As in the previous case, for each u = 1 , . . . , k, consider the 
matrix obtained by repeating the w-th row of JÏ, 

* . = [ * 1 . 
I Qu,l • ' mQu,d-k+\ J 

so that det J^ = 0, and put QuJ = £ ^ = 1 /3u
h

,lJWhWi. Then, for every u = 1 , . . . , k and 
every v = l , . . . , d — fc+l,we have, after multiplying det !Au by Fv: 

d-k+\ d-k+\ , 3 3 

0 = FvdetJ^ = Fv E G ^ - = F v E E E /^^"W^Wij/v 

3 d-ifc+l 3 / 3 \ 

;—1 ;—1 i,— i V — i ' i = l j = l fc=l 

https://doi.org/10.4153/CJM-1993-043-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1993-043-2


ON THE IDEAL OF VERONESEAN SURFACES 767 

where 
d-k+l 3 

E E 
7=1 h=\ 

Buj= E E / ^ hy 

Therefore, by setting MUjV = £?=1 X(VBUti, we obtain k(d — k+ 1) quadratic forms Muy 

which belong to Ker 9. 
Let # be the k x 3 matrix of linear forms: $ = (BUJ)UJ. Consider the quadratic forms 

given by the 2 x 2 minors of X and by the entries of the product matrix *B • X, and the 
cubic forms given by the 3 x 3 minors of {B. Let / be the ideal generated by the residue 
classes of all those forms in 777—4J—T • 

As before, we need to prove that / = Iy, after identifying Iv with ,H
 KeTJ—r. 

EXAMPLE 3.1. Let s = 13 (here d = 4 and k = 3) and let P\,..., P\3 be 13 points 
in P2 with generic resolution, 

0 —> S(-6)3 —> S(-4)2 0 S(-5)2 —> J 

like, for instance, the 13 points in the configuration below: 

Pi 

P2 / 

/>5 

0, 

p% 

Pô 

P}0 

P3 

Pi 

Pi I 

P\3 

PA 

P% 

Pn 

We may assume the 13 point have the following coordinates: 

P, = (1,0,2), P2 = (1, -1,1), P3 = (1,0,1), P4 = (1,1,1), 

P5 = (1,-2,0), P6 = (1,-1,0), P7 = (1,0,0), P8 = (1,1,0), P9 = (1,2,0), 

P10 = (1 , -1 , -1 ) , Pn = (1,0,-1), Pn = (1,1,-1), P13 = (1,0,-2). 

Then the ideal of these points is generated by the maximal minors of the matrix: 

[ 2W2 -4W3 W\-AW] -5Wf + 5Wf-
-w2 0 0 A-
0 

0 
0 w w2 

4W2 w2
3 

-w2
2 + w2 

In this case N = 2d-k + 2 = l<mdR= i[XiJ9 F/], with / = 1,2,3, j = 1,2 and 
/ = 1,2. Thus: 

(X\\, X\2 
X — I X2\ X22 

X3i X32 J 
Moreover, from Si we compute the <5's and the /3's and obtain: 

0 2F14-Zi2-5X22 

4z12 -y , 
^11 —^22 

4F 2 -4X 3 i+5X 3 2l 
—X32 

—X31 +X32 
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Therefore 

/ = (minors of order 2 of X, entries of $ • X, det *B) 

— (X12X21 — X11X22, X12X31 — X11X32, X22X31 — X21X32, 

X12X21 — 5X21X22 — 4X3 1 + 5X31X32 + 2X21 Y\ — 4X31 y2» 

X 1 2 X 2 2 - 5X^2 - 4X 3 1 X 3 2 + 5X^2 + 2 X 2 2 ^ - 4X32K2, 

4XnXi2 — X31X32 — X2iKi ,4X 1 2 — X 3 2 — X2iY\, 

X n — X21X22 — X3 1 +X31X32, X11X12 — X 2 2 — X31X32 + X32). 

The computation for this example was done partially by hand, partially with the help 
of "C0C0A" by Giovini-Niesi (in the MS/DOS version by Armando). 

4. / is the ideal of V. We shall prove the equality we are after by showing that the 
set of zeros of /, W — Z(I), coincides with V and that / is prime. 

The main tool used to prove that / is prime is a theorem by Huneke (see [H, Theo­
rem 60]), which we rephrase as follows: 

THEOREM 4.1 (HUNEKE). Let X = (X/y) be an r x s matrix of indeterminates and 
Y = (Yjk) ansxt matrix of indeterminates. Let I be afield and J be the ideal in t[Xy, yjk] 
generated by the entries of the product matrix X • Y, all {a + 1) x {a + 1) minors o/X and 
all (b + 1) x (b + 1) minors ofY. If a + b < s, then J is prime and perfect. 

THEOREM 4.2. For a generic choice of the points P\,... ,PS in P2, the ideal I is prime 
(and perfect). 

PROOF. Let us consider the case d <2k first. In this case the ideal / is not given by 
matrices made of indeterminates, but we can consider the ring R' — t[Xhj, Yh Zu\\ (where 
hj— 1,2,3; / = l,...,2fc — d'J = 1,.. . ,d — k + 1 and u — 1,... ,1c) and the ideal 
/ ' Ç R\ defined as in Huneke's theorem, with the matrix Bf — (ZUi) as X, the matrix X 
as Y, and with a = 2, b = 1, and s = 3. Then V is prime and perfect, and we can easily 
see that we can view / as the quotient ideal of / ' in the ring f [X/y, Yh Zui]/(Hui), where: 

2k-d d~k+\ 3 

/= 1 j= 1 h= 1 

By Huneke's theorem the scheme Wf defined by /' is a. C. M. 
Moreover, W is an integral (i.e. a reduced, irreducible) scheme in PM, where M = 

2d + 2k + 2, and the ideal / defines the section W obtained by cutting W' with the 3k 
hyperplanes //M/'s. 

Observe also that, since W D V, we have 2 < dim W < dim W'. 
Now, it is well known that if we cut an integral projective scheme of dimension greater 

than 1 with a generic hyperplane, we obtain an integral scheme. So we have to check that 
the Hut's are "generic enough". This will also imply that every HU( is not a zero divisor 
modulo /', hence that the ideal (If,Hui), which is the homogeneous ideal associated to 
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WfnZ(Hui), is again a perfect ideal, i.e. that Wfr\Z(Hui) is a. C. M. By iteration, we shall 
get that (/', Hn,..., Hk3) is perfect and that W is a. C. M. 

In other words, we have to show that a generic choice of A (hence a generic choice of 
P\,...,PS) corresponds to a generic choice of the 3k hyperplanes Hui, hence to a generic 
3&-codimensional linear space I1A in PM and to a generic section W = H\D W. Thus, 
by Bertini's Theorem (see, for instance, [J, Theorem 6.3]), W will be integral, i.e. I will 
be prime. 

More precisely: consider any p x (p + 1) matrix with entries given by linear and 
quadratic forms of S = ï[W\, W2, W3] (i.e. of the same type as the matrix A described in 
§1 and §3). The coefficients of its entries will be of type (ëf, ^ \ with h,i = 1,2,3; 
u= l , . . . , £ ; / = l,...,2k-d;j= l , . . . , d - j f e+1 . 

For any choice of u (hence of a row in the given matrix) and any choice of / = 1,2,3, 
the coefficients 6f'1, f3u^ will determine a hyperplane HUi in PM. Hence we have a map 
H which associates to the given matrix a 3k-tuple of hyperplanes in PM. For a generic 
matrix the 3k hyperplanes will be independent, so we can see the image of the map /i as 
a 3&-codimensional subspace of PM. 

We have to check that the image of this map covers an open set of Gr(M — 3k, M), the 
grassmannian which parameterizes the linear spaces of codimension 3k in PM. 

In the space [(PM)V]3Â:, which parameterizes the 3&-tuples of hyperplanes in PM, con­
sider the open set U which consists of 3A:-tuples of independent hyperplanes. There is 
an obvious map, A: U —* @ = Gr(M — 3k, M), which associates to each a G U the 3k-
codimensional space which is the intersection of the 3k hyperplanes corresponding to a. 
Such a map À is obviously surjective. 

For any a E U, we can consider the matrix, <Ma, of the coefficients of the 3k equations 
defining the hyperplanes (up to multiplication of every row by a constant). In other words, 
ifa = (#1,...,#3*), with 

Hm 

3 k 2k~d d-k+1 3 

/ = 1 K = 1 1=1 y'=l /i=l 

for every m = 1, . . . , 3k, then 

* 6 = (<«S):0Di (fly)} = 
a 1,1 

v3£ 
*1,1 

l l ,2 l l ,3 a, 

a or 
3k 
1,3 

1,3 

v3£ 
**,3 

*i 

f̂ 

*i • 

«i* • 
•• ^ - „ 

•• *L 
# . . 

#?. 

# . . 

%i 

# . i • 

àx • 

03,d-k+l 

•• B3k \ 
P3,d-k+l J 

Let Aa be the 3k x 3k matrix (a™) and Ba the 3& x (2d - k + 3) matrix (6?, ffîj), so 
tha tS^ = (Afl,5fl). 

Now consider the subet U' of U given by those a's such that Aa has maximal rank. 
Then A | u> is no longer surjective, but \(U') is a (Zariski) open subset of®, since ©\A(£/') 
is given by those 3&-codimensional suspaces of PM contained in some hyperplane. 
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Now, let a G Uf, and consider the matrix 94a. Because rkAa = 3k, we can find an 
invertible 3k x 3k matrix Ea, such that Ea • 94a = (I,Ea • Ba), where / is the 3k x 3k 
identity matrix. 

Note that Va G U\ 3v G U' such that 94v = Ea • 94a = (/, Ea • Ba) and A(v) = \{a)\ 
hence if U" is the subset of U' of the v's such that 94v = (/,£v), then A(£/") = A(tf'). 

Now consider 3W = M(S;k,k + 1), the space parameterizing the matrices of size 
k x (k+ I) with entries in S\, for the first 2k — d columns and in S2 for the remaining 
ones. Also recall the map /̂ : 23? —̂  U", which we have considered above, defined by 
H(M) = ( # u , . . . ,Hk3). Then we get that 

Km = 

i 
o 

lo 

RU 

% 

s l ,2 

K*,2 

c\,2k-d 

bW-d 

a i , i , i 

^ u,i 

#'• ' 

tf3-' 

# 
l,l,ûf-*+l 

nkXd-k+\ 
^3 

The map // is surjective and \{U") is dense in ©, so À o /i: 33? —•» G> has an open 
(dense) image too. It is not hard to check that both A and /i are continuous (with respect 
to the Zariski topology). Now let U be the open subset A o fi(3Jl) C 6 corresponding to 
3&-codimensional spaces "generic enough" to intersect W' (scheme-theoretically) in an 
integral scheme. 

Finally, let 11 be the open subset of 3K parameterizing those matrices which corre­
spond to ideals of distinct points P\,...9PS in P2 with generic resolution. Then the set 
(A o /x)_1(LJ) n 11 Ç SW will give us a (non-empty) open set where we can choose our 
matrix A (hence our points) in such a way that the ideal / will be prime. This completes 
the proof in the case d < 2k. 

When d > 2k, we have to consider the ring R' = f[Xy,ZM,-], with h, i = 1,2,3; 
j = 1 , . . . , d — k+ l;u = l,...,/c, and we define an ideal / ' (and the associated variety 
W'), defined as above. Then we have to cut Wf, with the hyperplanes 

d-k+\ 3 d-k+\ 3 
Hm = Zm~ £ X X ^ a n d / / ^ £ £<5^ 

j=\ h=\ j=\ /=i 

(see §2). 
We can do this in two steps. First we cut with the //M/'s, and we work as in the previous 

case. Namely: we set 
Wl =M(S\d-k,d-k+\) 

to be the space parameterizing matrices of size (d — k) x (d — k+ I) with entries in S2 
for the first k rows, and in S\ for the last d — 2k rows (as the matrix A). In this case we 
will have a map fi which associates the given matrix 94 G M a 3^-tuple of hyperplanes 
\i{94) = (#1,1,. • • ,Hkj), whose coefficients are given by the first k rows of 94. If A is 
as before, we will get 

94t 

1 
0 

0 
0 

0 1,1,1 /3 1,1,1 £ l,l,d-*+l 

M-2) 

10 0 
oU,l oU,l 

# 
Jk,3,d-*+l 
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Working as in the previous case we get, for a generic choice of Jl, a (perfect) prime 

ideal / " in 

R" = t[Xij,Zui]/(HltU...,Hk,3)-

We can view / as the quotient of/" by the ideal (H\,..., Hd_2k)> where /// is the image 

of/// in R"'. Finally, by using again the genericity of A to check that the /// 's are "generic 

enough" to preserve primeness, we conclude the argument. • 

Recall that we denoted by W the scheme associated to the ideal / defined in §3. 

LEMMA 4.3. If d < 2k, then the points P = (xiJ9yi) G W (where i = 1,2,3; j = 

1 , . . . , d — k+1; I = I,... ,2k — d) such that Xy = 0, for all i and], form a closed subset 

oj W of dimension less than or equal to 1. 

PROOF. First assume k > 3 and consider the subspace p 2 *-^- 1 of PN, defined by the 

equations {Xtj — 0, V/J} and its coordinate ring S' = i[Y\,..., Y2k-d]- Consider also 

the matrix # ' = (B'ui), where B'ui = Z g j ^ ^ F / . Its maximal minors define an ideal 

Y Ç Sf which is the image of / in the quotient ring Sf = S/(Xtj). The zero set Z(Y) can be 

viewed as VKPi P 2 ^ - ^ - 1 , which is exactly the set that we want to determine. If we prove 

that dimZ(Y) < 1, we will be done (recall that dim W > 2, since V C W). 

Let Y' be the ideal generated by the 3 x 3 minors of the generic matrix rB" — (ZU(), 

in f [ZUi, Yi\. We can view Y as the quotient ideal of Y' (which is a prime, perfect ideal of 

height £ — 3 + 1 = k — 2) modulo the linear forms Hui = Zui — T!\Z\ ^lYt. By using 

a "genericity argument", as in the proof of Theorem 4.2, one gets that either Y is an 

irrelevant ideal, or it has the same height as Y\ i.e. ht (Y) = k — 2. 

In the first case, Z{Y) = 0, and we are done; while in the second we have that 

dimZ(F) = 2k - d - 1 - (k - 2) = k - d + 1, and so (since k < d), dimZ(7) equals 1 

orO. 

Now assume k < 3. First of all, k = 1, combined with d < 2k, would give d = 1, 

while we assume d > 2, to avoid trivial cases. Thus, we may assume k = 2, hence we 

have that d is 2 or 3, and so / = 2k — d = 1,2. Therefore the subspace of VN defined 

by the equations {Xtj = 0, V/,y'} has already dimension less than or equal to 1, hence, a 

fortiori, so does Z(Y). m 

PROPOSITION 4.4. Let I be the ideal defined in §3 and V the surface introduced in 

§/; then W = Z{T) = V, as sets. 

PROOF. We have, by construction, that WD V, so we have to prove the reverse 

inclusion. 

Assume first that d > 2k and let P G Z(/) C P^ C P ^ . Recall that, in this case, 

p — d — k, hence N, = 3d — 3k + 2; and think of P as a point of P^' : 

P = (X\\,X2\9X3\,... ,X\^k+\x2,d-k+\ix?>4-k+\), 

recalling that 

d-k+l 3 

(f) Hl(P)= E £ ^ = 0. VZ=l,...,d-2*. 
j=\ i=\ 
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Because P G Z(/), the matrix 

X = X21 " ' ' x2,d-k+\ 

1*31 • ' • *3,d-k+l 

has rank 1. 

Now, the Xi/s are obviously not all 0, therefore we can assume there is ay such that 

X3j ? 0. 
Then, rk(X) = 1 tells us that the first two rows of X are multiples of the third one, 

( x\j = rfXv 
i.e. there are non-zero 77, ( G ï such that v _ > , Vy = 1 , . . . , d — k + 1. Now, write 

{ xy — s*3/ 
rj — W\/WT, and £ = W2/W3, for suitable w\, H>2,W3 G ! with W3 ^ 0, and put JC3J = c}. 

Then we can write: 

P = (WiCi, W2Ci, W3C1, . . . , W\ Cd-k+U W2Cd-k+i, W3Cd-k+x ), 

with the c/s not all 0. 

We also have: 

(t) 
,d-k+l 3 

E E 
for all w = 1 , . . . , k and all v = l,...,d — k+ I. 

3 ,d-k+\ 3 x 

wB.vW = E ^ ( E HfiJ,JXhi)=o> 

Now, from (f) we get 

d-k+l 3 . d-k+l 

YJ H^WiCj = J2 Llj(WuW2,W3)Cj =0, 
7=1 i=l j=l 

for all / = 1 , . . . , d - 2Jfc; while (J) yields 

3 /<*-*+1 3 

E ^ M E E/3r^cy) = o, 
ï = l v j = l /z=l 

for all u — 1 , . . . , k and all v = 1 , . . . , d — k + 1 ; with some cv ^ 0. Thus: 

d-k+l , 3 . x d-k+\ 

H ( X $'hJWiWh]Cj = XI Gul/(wi,W2,w3)c/- = 0, 

for all w = 1 , . . . , k. 

In other words, Q — (w\, w2, W3) is a point of P2 such that 

-î^(Wi, VV2, W3) 

Cl 01 

0 ^ Cd-k+l > 

If Q is not one of the initial points P\,...,PS G P2, then A(w\, n>2, W3) has maximal 

rank (which is p = d — &), and so, by elementary linear algebra, after recalling that the 

F / s are the maximal minors of JÏ, ( c i , . . . , Q-/t+i) must be a multiple of 

(Fi(wi, w2, w 3 ) , . . . , F d - k + i ( w u w 2 , w3)); 
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namely: 

Cj — lFj{w\, W2, W3), V/ = 1, . . . ,d — k + 1, 

for some 7 G f. In this case P = </>(<2), where <j> is the map defined in §2. 
If Q is one of the initial points P\,..., P2 G P2, then F belongs to the image in P^' of 

one of the exceptional lines of P2(Z), hence to the closure of Im </> in PN'. 
In both cases P belongs to Im </>, and hence to V (after cutting with the hyperplanes 

H\,..., Hd_2k)> a s we wished. 
Now assume d < 2k. In this case we work directly in P^, so we let 

P = (*11,*21,*31 >X\4-k+\ »x2,d-k+l >*?>4-k+\>y\> ,yù 

be a point of Z(7). 
In this case, we are not sure that the X(/s are not all 0. Nevertheless, it is enough to 

prove the statement for a point P G U, where U is the open set where the xi/s are not all 
0, which is not empty by Lemma 4.3. In fact, if we prove that U CV, then we also have 
0 C V. On the other hand, by Theorem 4.2, W is irreducible, hence Û — W, and so we 
obtain W C V. Thus we can assume the xt/s are not all 0. 

Then, as in the other case, we write 

P = (W\C\, W2C\, W3C1, . . . , W i Q _ * + i , W 2 Q _ £ + 1 , WiCd-k+Uy\ , . . . ,)>2*-</) 

with the c/s not all 0. 
As P G Z(7), we also have: 

3 

I 
i=l 

3 /2*-</ rf-*+l 3 ; A 

MuAP) = £ ^ ( £ ^ + £ £ ft^WkCj) = 0, 

for all « = 1, 

for all u = 1, 

2*-</ rf-*+l 3 

E^/+ E E 
/=1 j=\ h=\ 

, £ and all v = 1, . . . , d — k + 1. From this, for cv 7̂  0, we obtain: 

2k-d ,3 x rf-*+l • 3 v 

0= £ (E^.-V E Z ^ V » 9 
/=1 v /= l y 7=1 \/i=l y 

2k-d d-k+l 

= J2 LuJ(WuW2,W3)yi+ Yl Quj(W\,W2,W3)Cj, 
1=1 7=1 

, k. In other words, Q = (w\,W2, W3) is a point of P2 such that 

Yi 

- # ( H > I , H>2, VV3) 
*2*-rf 

Cd-k+l 

0 

OJ 
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Now, as before, if g i s note one of the initial points Pi , . . . , P S G P , then R(w\, vv2, W3) 
has maximal rank (which is p = k), and so, as the F/s and the G/'s are the maximal minors 
of J?, ( j i , . . . , y2d-h c\,..., Q_fc+i ) must be a multiple of 

(Gi(0, . . . , G2k_d(0, F(0 , . . . , Fd_*+1 (0 ) , 

Cj =jFj(w\, W2, W3), V/ = 1 , . . . , d — fc + 1, 

y 1 = /yGi(w\,W2, W3), V/ = 1 , . . . ,2d — k, 

for some 7 G f. 
This allows us to conclude the argument, as in the previous case. • 
By combining Theorem 4.2 with Proposition 4.4, we obtain the main result: 

COROLLARY 4.5. Let I be the ideal defined in §3 and Iy the ideal of the Vewnesean 
surface V. Then I = Iy. 

REMARK 4.6. While proving Proposition 4.4, we did not make use of the cubics of 
/, in the case d > 2k. In other words, in that range, V is set-theoretically generated by 
quadrics. However, this is not true ideal-theoretically, i.e. the cubics are not redundant in 
a minimal set of generators of / = Iv. This follows from the fact that they are obviously 
needed to generate the ideal / ' defined in the proof of Theorem 4.2, and that / is obtained 
from /' by cutting with general hyperplanes. 

5. Applications. By cutting the surface V twice with general hyperplanes, we ob­
tain t = deg V = (df) - k points in Pn, where n = N-2 = 2d-k>d. 

Clearly, n + 1 < t < (nf) : in fact, t = (n + 1) + (£). 
The Hilbert function of the t points so obtained, is the second difference of the Hilbert 

function of V, A2//y, which is inductively defined by: 

A2Hv(m) = AHv(m) - AHv(m - 1), 

where 
AHv(m) = Hv(m) - Hv(m - 1). 

Therefore, 
A2HV = Hv(m) - 2Hv(m - 1) + Hv(m - 2); 

and so, by using Proposition 2.2, we obtain: 

A2//v(0) = Hv(0) = 1, A2//V(l) = Hv(\) -2 = 2d-k+\=n+\, 

and 

A2Hv(m)= \ 2 ) ~k = t, form > 2. 

In other words, the t points have maximal (or, generic) Hilbert function. 
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Since our points also satisfy the Uniform Position Property in the sense of Harris (all 
subsets of the same cardinality have the same Hilbert function—see [Ha] and [DiG]), 
every subset still has generic Hilbert function (i.e. the points are in uniform position— 
see [DiG, Lemma 15]). 

The genericity of the Hilbert function implies, in particular, that the ideal of our points, 
like that of V, can be generated in degrees 2 and 3 (see also [GO, Corollary 1.6]) and needs 
the same number of generators as Iy in each degree. 

Obviously, one needs all the quadrics through the points, which are (^^ — t = 
dimf(/v)2. 

The ideal generation conjecture, first stated in [GO], predicts that, for a "general" set 
of t points (with generic Hilbert function) the minimum number of cubics needed should 
depend only on / and should equal 

. L r.ln + 2 
mm 0,wr-2 

As for the ideal of our points, we know there are no cubics when k = 1 or k = 2; and 
so the corresponding t points do satisfy the ideal generation conjecture. Note that, since 
n ~ 2d — k, n and k have the same parity, and d = ^ , so that k = 1 forces n odd while 
k = 2 forces n even. 

With this in mind, start from any integer n and put 

^ r for n even J (^2) + 2 forn even 
n-f forrcodd ' a n J "" j ( ^ 1 ) + 2 forrcodd 

Now, let Z be a set of s points in P2 with generic resolution and let V = Vd+\,z he 
the surface of Pn+2 constructed as in § 1. Finally, cut V twice with generic hyperplanes to 
obtain t points in ¥n, where 

(*+1)
Q

(/2+7) for «odd 

' "2+1
8°"+8 for «even 

which satisfy the ideal generation conjecture. 
Because generation in the lowest degree can be extended to general subsets (see, for 

instance, Proposition 3.1 of [L3]), we can say that some—hence every, by Theorem 11 
of [DiG]—subset of the / points satisfies the ideal generation conjecture. We just proved: 

COROLLARY 5.1. Let n be any integer and let 

^f^n forn odd 
n2+1

8
0n+8 forn even' 

then any set of ppoints in ¥n, withn+l < p < t, cut on V by general hyperplane sections, 
satisfies the ideal generation conjecture. 

It was known (Corollary 2.2 of [MV]) that t < 2n points in uniform position satisfy 
the ideal generation conjecture; thus we obtain new cases as soon as n > 7, when n is 
odd, and n > 4, for n even. 
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The ideal generation conjecture can be extended to predict what a graded minimal free 
resolution of t "general" points should look like (see [L3]): linear almost everywhere, 
except in one place where two degrees (or, at best, a jump in degree) will show up: 

o -> > T(-(i+4)f '+1 -> r ( - ( i+2) ) a , "er ( - ( i+3) f — r ( - ( /+ i ) ) a " 1 -+ > o 

(with f3i possibly 0), where T denotes the coordinate ring of Pn. 
Where the double shift is expected, depends only on t (see [L3, Theorem 2.1]): for 

example, it is expected at the beginning (i.e. for / = 0), if and only if t > | ("J^)-
Furthermore, if /3i has the expected value, then, from the double shift on, the rest of the 

resolution also is forced to be the expected one (see §3 of [L2]): in particular, the whole 
resolution is the expected one if the double shift occurs at / = 0 and /3o = nt — 2(n* ). 

In the case of our points, a direct computation shows that, when k = d (whence also 
n = d), the number of cubics in the ideal of t — {n^') — n points equals the expected 
value of /3o, and so the whole resolution is the expected one. In other words: 

COROLLARY 5.2. (n* ) — n points in Pn cut on V by general hyperplane sections, 
satisfy the minimal resolution conjecture. 

For this number of points the result was known under the hypothesis that the points 
be in "transversal uniform position" (see Definition 4.3 of [GM] and §3 of [L2]). 

Note that, as t = (n + 1) + (f)> w r m ^ r < d < n, the number of points above 
(for k = d = ft), is the maximum we can possibly obtain, with respect to n. But also 
t = (d^2) — k, with 1 < k < d\ and so that is also the minimum number of points we can 
obtain, with respect to d. 

Unfortunately we cannot push this technique any further: we have already argued 
(Remark 4.6) that all the cubics are always needed, and this remains true also in the 
range where the ideal generation conjecture predicts generation by quadrics only, i.e. 
t <\ C1^2) ( s e e a^S0 Example 3.1, which is the lowest case in which the ideal generation 
conjecture fails). Even in the remaining range, t > | f^2)* m e number of cubics is not 
the expected one (except, obviously, for the case covered by Corollary 5.2). The lowest 
case in this range in which the ideal generation conjecture fails is t — 30 (i.e. d — 1\ 
k = 6): in this case no cubic is expected, while I = ly requires (3) = 20 cubics. 
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