COMPACT 16-DIMENSIONAL PROJECTIVE PLANES WITH LARGE COLLINEATION GROUPS. IV

HELMUT SALZMANN

Let \mathscr{P} be a topological projective plane with compact point set P of finite (covering) dimension. In the compact-open topology (of uniform convergence), the group Σ of continuous collineations of \mathscr{P} is a locally compact transformation group of P.

THEOREM. If dim $\Sigma > 40$, then \mathscr{P} is isomorphic to the Moufang plane \mathscr{O} over the real octonions (and dim $\Sigma = 78$).

By [3] the translation planes with dim $\Sigma = 40$ form a one-parameter family and have Lenz type V. Presumably, there are no other planes with dim $\Sigma = 40$, cp. [17].

If dim $\Sigma > 35$, then dim P > 8, each line is homotopy equivalent to the sphere \mathbf{S}^8 , and dim P = 16, see [11, (4.0)] and [5]. Moreover, any connected closed subgroup $\Delta \leq \Sigma$ is a Lie group [6], and Δ is semisimple or fixes a point or a line [16, (2.1)]. In each of the following cases, $\mathscr{P} \simeq \mathcal{O}$ has already been shown:

(I) dim $\Delta \ge 37$, and Δ is semisimple [15],

(II) dim $\Delta \ge 39$, and Δ fixes exactly one element (point or line) [17, (C)] or a non-incident point-line pair [15, (2.2)],

(III) dim $\Delta \ge 40$, and Δ fixes two points or two lines [16, Section 5].

If Δ has more fixed elements, then dim $\Delta \leq 38$ by [12]. In the only remaining case, the fixed elements of Δ form a flag (v, W), and Δ has a minimal normal subgroup $\Theta \cong \mathbb{R}^{t}$ consisting [16, (2.2)] of translations with axis W and center v. The theorem will be proved in the following main steps: For $a \notin W$ the connected component Γ of the stabilizer Δ_{a} cannot be semisimple, and there is a normal subgroup $\Xi \cong \mathbb{R}^{s}$ which consists of elations with axis av. Dually, there is a group $\Pi \cong \mathbb{R}^{r}$ of translations with center $u \in W \setminus v$. Up to duality, $s \leq r$. The stabilizer ∇ of the triangle (a, u, v) induces irreducible representations on subgroups of Θ , Ξ , and Π . The representation on the product of two of these groups is faithful (∇ is reductive). By a combination of group theoretic and geometric arguments, r < 8 turns out to be impossible. Hence \mathscr{P}^{W} is a translation plane, and the result follows from Hähl's classification [3, p. 264] of all translation planes with dim $\Sigma \geq 38$.

Received April 29, 1985.

By [5], P is of dimension $d = 2^{m+1}$ ($0 \le m \le 3$). The theorem may then be combined with analogous results [9; 10; 13] for planes of dimension $d = 2^{m+1}$ ($0 \le m < 3$) to obtain the following corollary. Let g = g(m) denote the dimension of the full automorphism group of the "classical" plane over the real or complex numbers, the quaternions or octonions respectively.

COROLLARY. If \mathcal{P} is a compact d-dimensional projective plane, and if

$$\dim \Sigma > \left[\frac{g}{2}\right] + \left[\frac{m}{2}\right],$$

then \mathcal{P} is classical. The given bound is sharp.

Since dim $\Delta \leq 40$ for proper translation planes, it will be assumed throughout that the group T of translations in Δ with axis W is not translation also that \mathscr{P} is not a dual translation plane. The group of translations with center $z \in W$ will be denoted by T_z . The next theorem is also due to Hähl [4, Corollary 1.3], and will play a key role:

(H) If Ω is a connected subgroup of Δ and if $a^{\Omega} \neq a \notin W = W^{\Omega}$, then either Ω_a acts effectively on W or $a^{\Omega} = a^{\Gamma \cap \Omega}$.

Another useful fact is a topological analogue [18] of a well-known theorem of Gleason:

(T) If $T_z \cong \mathbf{R}^k$ for all $z \in W$ and some fixed k > 0, then T is transitive.

As in the case of 8-dimensional planes [11, (1.2)], and with an analogous proof one has

(R) There are at most 3 pairwise commuting reflections.

Many steps in the proof of the theorem require information about the connected component Λ of the stabilizer of a quadrangle (the automorphism group of a corresponding ternary field).

(A) Let \mathcal{F} be the subplane of the fixed elements of Λ .

(i) $\Lambda \cong G_2$, the compact 14-dimensional automorphism group of the octonions, or dim $\Lambda < 14$.

(ii) If Λ contains a pair of commuting involutions, then Λ is compact.

(iii) If Λ is compact, then $\Lambda \cong G_2$, SU_3 , or SO_4 , or dim $\Lambda < 5$.

(iv) If dim $\mathscr{F} > 2$, then $\Lambda \cong SU_3$ or dim $\Lambda < 8$.

(v) If dim $\mathscr{F} = 8$ (i.e., if \mathscr{F} is a Baer subplane), then $\Lambda \cong SU_2$ or SO_2 .

For a proof see [12] and [16, Corollary], and note that Λ is a Lie group. Assertion (v) follows from [12, (1.7) and (2.3)].

More can be said exploiting the existence of an invariant group $\Theta \cong \mathbf{R}'$ of translations [17; 16; 13]:

(B) Assume that Λ fixes $a \notin W$ and $c \in a^{\Theta}$ and 3 points $u, v, w \in W$ where $a^{\Theta} \subseteq av$.

(i) If t = 1, then $\Lambda \cong G_2$ or dim $\Lambda \le 10$.

(ii) If t = 2, then $\Lambda \cong SU_3$ or dim $\Lambda < 8$.

(iii) If 2 < t < 8, then dim $\Lambda \leq 6$, or $\Lambda \simeq SU_3$ and t = 7.

(iv) If t = 8, then Λ is compact and (A, iii) applies.

The last part of (iii) is a consequence of the fact that the action of Λ on a^{Θ} is naturally equivalent to the action on Θ and that SU₃ has no representation in dimension <6.

(C) If the assumption $c \in a^{\Theta}$ in (B) is replaced by $c \in av \setminus a^{\Theta} \setminus v$, then Λ is compact or dim $\Lambda \leq 6$ or t = 1 and dim $\Lambda < 8$, see Section 1 below.

It will be proved in (2.3) that dim $\Delta > 40$ and dim T < 16 imply $\Lambda \not\cong G_2$. Hence

(B') dim $\Lambda \leq 8$ or t = 1 and dim $\Lambda \leq 10$.

Together with (2.2) and its dual follows immediately

(D) If ∇ fixes a triangle (a, u, v), then

 $17 \leq \dim \nabla \leq 22.$

Another useful application of (B') is

(E) If dim $\Delta > 40$, and if the translation group satisfies $T_{\nu} < T$, then dim T = n > 8, and dim $T_z > 0$ for each $z \in W$. Moreover, T is the centralizer of its connected component T^1 .

Proof. Let $b \in a^{\Gamma \setminus \Gamma_{\nu}}$ and $c \in a^{\Theta \setminus a}$, and denote the connected component of $\Delta_{a,b,c}$ by Λ . Then

 $24 - n < \dim \Delta_{a,b} \leq t + \dim \Lambda \leq 16$, and n > 8.

By the definition of translations, $\tau \mapsto a^{\tau}z$ induces an injective map of T/T_z into the pencil \mathscr{L}_z , and the dimension $T:T_z$ is at most 8. Hence each $z \in W$ is the center of some connected subgroup of T and is fixed by the centralizer of T^1 . Note in particular

(F) dim $T \leq \dim T_{z} + 8$.

The following fact [7, 19 or 22] will be needed repeatedly

(G) If G is a connected transitive subgroup of $GL_6\mathbf{R}$, then a maximal compact subgroup of G is isomorphic to SU_3 , U_3 , or SO_6 , and dim $G \leq 10$ or dim $G \geq 16$. Moreover, G' is compact or dim $G' \geq 16$.

Notation is mostly standard, and is in accordance with that in parts I-III ([15, 16, 17]). The meaning is often indicated in the text. We note that

 $\Gamma:\Delta = \dim \Gamma - \dim \Delta$

is the dimension of the coset space Γ/Δ , so that

 $\Gamma:\Gamma_x = \dim x^{\Gamma};$

and distinguish between the commutator group $\Delta' = \Delta \circ \Delta$ and the connected component Δ^{l} of the identity.

1. The stabilizer of a quadrangle. For the proof of (C), introduce coordinates from a ternary field K as in [16, Section 1]. The translations in Θ are given by $(x, y) \mapsto (x, y + s)$, where $s \in S = S^{\Lambda} \cong \mathbf{R}^{t}$ and $1 \notin S$ by the hypothesis of (C). Let $0 \neq d \in S$ and denote the subternary of the fixed elements of Λ_d by D. Then D properly contains the one-parameter group spanned by d in S. Hence D is connected [14, (1.8)], and dim $D = 2^k > 1$. If there is a closed subternary H with D < H < K, then A is compact by [12, Zusatz]. For t = 1 the assertion is but a restatement of [16, Corollary]. If t > 1, then Λ is compact or $\Lambda_{dd'} = 1$, so that (C) is true for $t \leq 3$. Now choose S minimal and assume $t \geq 4$. Then A acts faithfully and irreducibly on S. Hence Λ' is semisimple and $\Lambda: \Lambda' \leq 2$, see [2, (19.17)]. If Λ contains a pair of commuting involutions, then Λ is compact by (A, ii). Otherwise Λ' is quasisimple and dim $\Lambda' \leq 3$ or a maximal compact subgroup of Λ' is isomorphic to Spin₃. In the latter case, A contains a central involution α . The fixed elements of α coordinatize an invariant Baer subplane. Now [11, (2.13)] and (A, v) imply again dim $\Lambda' \leq 3$.

2. The stabilizer of an affine point. In the sequel, \mathscr{P} will always denote a compact 16-dimensional projective plane such that neither \mathscr{P} nor its dual is a translation plane; Δ is a connected Lie group of automorphisms of \mathscr{P} with dim $\Delta > 40$ fixing a line W, a point $v \in W$ and no other elements. These general assumptions will usually not be repeated. By [16, Section 2], the group $T_v = \Delta_{[v,W]}$ of translations in Δ with center v has an invariant subgroup $\Theta \cong \mathbb{R}^t$. In this section, the connected component Γ of the stabilizer Δ_a of a point $a \notin W$ will be investigated. Note that $25 \leq \dim \Gamma \leq 38$ by (A, i).

(1) If $u \in W \setminus v$, then dim $u^{\Gamma} > 4$.

Proof. (a) First assume $u^{\Gamma} = u$. Let K = av and consider the connected component Ψ of Δ_K . With (A, i) follows dim $\Gamma \leq 30 < \dim \Psi$. If $u^{\Psi} = u \neq u^{\delta}$ then $K^{\delta} = L \neq K$ and $\Psi^{\delta} = \Delta_L^1$. Therefore $\Gamma_L^1 \leq \Psi \cap \Psi^{\delta}$ fixes a quadrangle, but dim $\Gamma_L \geq 17$. Hence $\Psi: \Psi_u > 0$ and there is some $\delta \in \Psi$ with $u^{\delta} \neq u$ and $a^{\delta} = c \neq a$. Now $\Gamma_c^1 \leq \Gamma \cap \Gamma^{\delta}$ fixes also u and u^{δ} , which again contradicts (A, i). Consequently, dim $u^{\Gamma} = k > 0$.

(b) If Λ is the connected component of the stabilizer of $a, c \in a^{\Theta}$ and two points in u^{Γ} , then $\Gamma:\Lambda \leq 2k + t$, and k > 1. Moreover, k > 4 or $\Lambda \simeq G_2$ acts in the standard way on W by (B) and [15, (1.2)], and u^{Γ} contains an orbit $z^{\Lambda} \approx S^6$.

(2) Γ_u is not transitive on $W \setminus \{u, v\}$ for any $u \in W \setminus v$.

Proof. Assume that the effective action

 $\Omega = \Gamma^{W} = \Gamma / \Gamma_{[W]}$

is doubly transitive on $W \setminus v \approx \mathbb{R}^8$. Then Ω is an extension of \mathbb{R}^8 by a transitive linear group, and the latter contains a subgroup $\Phi \cong \operatorname{Spin}_k$ with $5 \leq k \leq 7$, see [19, IV C; 7 or 22]. There is an isomorphic copy of Φ in a maximal semisimple subgroup of Γ , and Φ fixes a triangle. Since Φ does not act on a proper subplane by [11, (**)], the central involution $\sigma \in \Phi$ is a reflection with center $u \in W \setminus v$ or axis *au*. Transitivity of Γ implies that the elation group $\Delta_{[v,av]}$ is transitive. The axis *av* not being fixed by the general assumption, \mathscr{P} is then even a dual translation plane, a contradiction.

(3) The group G_2 is not contained in Δ .

Proof. The fixed elements of a group $\Lambda \cong G_2$ form a flat (= 2dimensional) subplane & by [15, (1.2)]. Choosing a in &, one has $\Lambda < \Gamma$. Let $\Omega = \sqrt{\Gamma}$ denote the radical (maximal connected solvable normal subgroup) of Γ . Either $\Gamma = \Lambda \Omega$ or Λ is properly contained in a semisimple subgroup Ψ of Γ . In the latter case, Λ is normal in Ψ or there is even a quasisimple group Ψ . Inspection of the list of simple Lie groups shows that Ψ is then the complexification $G_2^{\mathbb{C}}$ or contains a compact group Φ isomorphic to SO₇ or Spin₇. These 5 possibilities will be treated separately.

(a) $\Lambda \triangleleft \Psi$. Then Ψ / Λ induces on \mathscr{E} a quasisimple group fixing 2 points and two lines. This contradicts [9, (5.2)].

(b) $\Psi \cong G_2^{\mathbb{C}}$. Then Λ is a maximal subgroup of Ψ , and $\Psi:\Lambda = 14$. Hence Ψ fixes each point of $\mathscr{E} \cap W$ and dually. This contradicts (A, i).

(c) $\Phi \cong SO_7$. Then the diagonal involution $\alpha = (-1)^6 \times (1)$ and each of its conjugates has a centralizer SO_6 . Hence α is not planar by the first part of [11, (*)], and α cannot be a reflection by (R).

(d) $\Phi \cong \text{Spin}_7$. Then the central involution $\sigma \in \Phi$ is a reflection. If σ has axis W and center a, the translation group T is connected by (H), and $\tau^{\sigma} = \tau^{-1}$ for each $\tau \in T$. Hence Φ acts faithfully on each invariant component $\Xi \cong T$ and dim Ξ is even and >6. Since $T \neq T_{\nu}$ and the action of Φ is completely reducible (see e.g. [2, (35.4)]), $T = \Theta \times \Pi$ is a product of two irreducible components, and dim T = 16 contrary to the assumption. By analogous arguments, σ cannot have a center on W.

(e) $\Gamma = \Lambda \Omega$. Choose $u \in W \setminus v$ in \mathscr{E} , and consider the stabilizer $\nabla = \Gamma_u^1 = \Lambda P$ where

$$\mathsf{P} = \sqrt{\nabla} = \Omega_u^{\mathsf{I}}$$

is the radical of ∇ . From dim $\Delta > 40$ follows dim P > 2. On the other hand,

 $\dim(\nabla \cap \operatorname{Cs} \Lambda) \leq 2$

by [8, Section 3]. Consequently $\Lambda \circ P \neq 1$, and Λ is faithfully represented on the Lie algebra ℓP . This implies dim $P \ge 7$. Being solvable, Ω has a normal subgroup N such that $1 \le \dim u^N \le 2$. If $u \neq w \in u^N$, then $w^P \subseteq u^N$ and $P:P_w \le 2$. Also, there is $c \in a^{\Theta} \setminus a$ with $P:P_c \le 2$. Now $\dim P_{c,w} \ge 3$, and $P_{c,w} \lhd \nabla_{c,w}$. Not being simple, $\nabla_{c,w} \ncong G_2$. From $\nabla = \Lambda P$ follows dim $\nabla \ge 21$, dim $\nabla_w \ge 13$, and (B) implies $t \ge 7$.

If t = 7, then ∇ induces an irreducible group on Θ , and $K = P \cap Cs \Theta$ acts freely on $W \setminus \{u, v\}$ since a^{Θ} is not contained in any proper subplane. The radical P/K consists of scalar multiplications of $\Theta \cong \mathbf{R}^7$ and P:K ≤ 1 . But this would imply $6 \leq \dim w^K \leq 2$. For t = 8, finally, $P_{c,w}^1$ is solvable and compact by (B, iv) and hence contains a torus \mathbf{T}^3 in contradiction to [12, (1.9)].

If a group acts transitively on \mathbb{R}^7 , then a maximal compact semisimple subgroup is transitive on \mathbb{S}^6 and contains G_2 , see [7 or 22]. Therefore, (3) has the following corollary:

(4) No subgroup of Δ has a transitive representation on \mathbf{R}^{T} .

(5) If Γ is semisimple, then Γ is even simple.

Proof. (a) Assume $T_v < T$. Then Γ acts faithfully and completely reducibly on $T^1 \cong \mathbf{R}^n$ by (E) and semisimplicity. Hence there are $b \in a^T$ and $c \in a^{\Theta}$ such that $\Lambda = \Gamma_{b,c}^1$ fixes a quadrangle and $\Gamma:\Lambda \leq n < 16$. Now dim $\Lambda \geq 25 - n \geq 10$ in contradiction to (B') and (F). This shows $T = T_v$.

(b) $\Gamma_{[W]} = 1$ by (H) and (a) and the fact that av is not fixed.

(c) The centre Z of Γ is trivial: If $u^Z \neq u \in W$, then $\Lambda = \Gamma_{c,u}^1$ fixes a quadrangle, and dim $\Lambda \ge 17 - t$ in contradiction to (B').

(d) Each involution in Γ is planar: a reflection would have center v or axis av by (b). Because of (1), the elation group $\Gamma_{[v,av]}$ would be a commutative normal subgroup of positive dimension.

(e) Consider an involution $\alpha \in \Gamma$, the subplane \mathscr{F} of its fixed elements, a connected subgroup Ψ in the centralizer of α in Γ , and the effective action $\Psi^{\mathscr{F}} = \Psi/\Phi$ on \mathscr{F} . The kernel satisfies dim $\Phi \leq 3$ by (A, v), and $\Psi:\Phi \leq 4 + 11$ by [11, (*)]. Moreover, if Ψ is quasisimple, then dim $\Psi < 14$, because Ψ cannot act doubly transitively on the points of $W \setminus v$ in \mathscr{F} by [19], cp. [15, (1.1)], and Ψ is not of type G₂ by [11, (**) and (†)].

(f) Note that Z = 1 by (c). If $\Gamma = A \times B$, where A is a proper simple factor, apply (e) to an involution $\alpha \in A$. Then successively dim $B \leq 18$, dim $A \geq 8$, $\Phi = 1$, dim B < 14 and B is simple, dim $B \leq 10$, dim $A \leq 10$, but dim $\Gamma \geq 25$.

(6) Γ is not semisimple.

Proof. If Γ is simple, then $25 \leq \dim \Gamma \leq 30$ by (D), and $\Gamma \cong PSL_4C$ or Γ is an orthogonal group $PSO_8(r)$. With the notation of (5e), there is a group $\Psi \cong SL_3C$ or $SO_6(r)$ respectively in the centralizer of some involution α . This contradicts the last part of (5e).

The next aim is to show that the elation group $E = \Gamma_{[v,av]}$ has dimension >1. The proof is rather involved. It will follow from (H) if Γ contains any homology, from (6) otherwise.

(7) If $1 \neq \Xi \triangleleft \Gamma$, then dim $\Xi \ge 2$.

Proof. The orbit $u^{\Xi} \subseteq W \setminus v$ is invariant under Γ_u , and $17 \leq \dim \Gamma_u \leq 1$ dim Ξ + 7 + 8 by (B'). (In the case $\Theta \cong \mathbf{R}^8$ use the dual of (2).)

(8) If Γ contains a (non-trivial) homology with axis as or with center v, then dim E > 4 by (H) and (1).

(9) If Γ does not contain homologies with axis as or center v, then Γ acts effectively on W.

Proof. Assume $\Gamma_{[W]} \neq 1$. Then (H) implies $a^{\Delta} = a^{\mathsf{T}}$. Consequently, T is connected and $\Delta: \Gamma = \dim T < 16$. Choose $u \in W \setminus v$ and put again $\nabla = \Gamma_u^1$. Then dim $\nabla \ge 18$. By (E) and because \mathscr{P} is not a translation plane, $0 < r = \dim T_u < 8$. (a) $T_u \cong \mathbf{R}^7$ and $T_v \cong \mathbf{R}^8$: From (H), (F) and (2) follows

(*)
$$25 - r \leq \dim \nabla \leq 7 + r + \dim \Lambda$$
,

where Λ fixes a quadrangle. Applying (B) to T_u instead of Θ , this gives r = 7 or dim $\Lambda = 6 = r$. But the latter is impossible by (*) and (G). Hence $T_u \cong \mathbf{R}^7$ for any $u \neq v$. Similarly, dim $T_v > 6$, and T_v is transitive by (T).

(b) ∇ does not contain any reflection, and each involution has 4-dimensional eigenspaces in T_{μ} : If σ is a reflection, then σ has center a, and $\tau^{\sigma} = \tau^{-1}$ for each $\tau \in T \cong \mathbf{R}^{15}$, but the negative eigenspace of σ has even dimension because ∇ is connected.

(c) ∇ acts faithfully and irreducibly on T_{u} : By (4) there is some $b \in a^{|_{u}} \setminus a$ with dim $\nabla_b \ge 12$. Let $\Psi = \nabla_b^1$ and consider a minimal Ψ -invariant subgroup Θ_1 of I_{ν} . From (B) follows dim $\Theta_1 \ge 6$ so that Ψ is faithful and irreducible on Θ_1 . The radical $\sqrt{\Psi}$ induces real or complex scalar multiplications on Θ_1 ([2, (19.17)], cp. [17, p. 186]). Now (b) implies $\sqrt{\Psi} \ncong \mathbb{C}^{\times}$ and dim $\Psi' \ge 11$. Being semisimple, Ψ acts completely reducibly on T_{ν} , and (B) shows that T_{ν} cannot split into proper invariant subgroups.

(d) ∇' is semisimple and $17 \leq \dim \nabla' \leq 21$ by (c), (B'), (2) and (4).

(e) ∇ induces also an irreducible action on T_{μ} : From (d), (B) and (2) follows easily that T_u is not a sum of two invariant subgroups.

Noting that each involution in ∇' is planar and hence has proper

eigenspaces in T_u and T_v , a study of the possible representations will reveal a contradiction. The details will be given in Section 3 where a few similar situations will be treated together.

For steps (10)-(14), assume in view of (8) and (9) that Γ does not contain any homology so that, in particular, Γ acts effectively on W. Changing the previous notation, $\Theta \cong \mathbf{R}^t$ shall denote a minimal Γ -invariant subgroup of T_{ν} , it need no longer be normal in Δ .

(10) Γ has a minimal normal subgroup $\Xi \cong \mathbf{R}^s$.

Proof. Because of (6) there is either a normal vector group or a central torus, but the latter is impossible by (5e).

(11) $\Xi \circ \Theta = 1$ and Ξ acts freely on $W \setminus v$.

Proof. From (B') follows as in (7) that $s + t \ge 9$ or t = 1 and $s \ge 6$. If t < s, then obviously $\Xi \cong \mathbb{R}^s$ cannot act faithfully on Θ . If $s \le t$, then $s \ge 2$ by (7), and $t \ge 5$. Because Θ is minimal, Γ acts irreducibly on Θ , and Ξ induces a group of real or complex scalar multiplications, so that again

 $1 \neq \Xi \cap Cs \Theta \triangleleft \Gamma.$

Now $\Xi \leq C_S \Theta$ by (7) and the minimality of Ξ . Consequently, Ξ fixes each point of a^{Θ} , and (1) implies $u^{\Xi} \neq u$ for each $u \in W \setminus v$. Because Ξ is commutative, Ξ_u induces the identity on the subplane \mathscr{F} generated by a^{Θ} and u^{Ξ} . From (B') follows dim $u^{\Xi} > 4$ or t > 4 and hence $\mathscr{F} = \mathscr{P}$ and $\Xi_u = 1$.

(12) s < 8 or s = t.

Proof. If s = 8, then $u^{\Xi} = W \setminus v$. By assumption, $\nabla = \Gamma_u$ does not contain any homology. Hence (10) implies that ∇ acts faithfully and irreducibly on Ξ . Now ∇' is semisimple, $\sqrt{\nabla} \ncong \mathbb{C}^{\times}$, and $16 \le \dim \nabla' \le 22$. For t < 8 this possibility will be excluded in Section 3, case (β).

(13) t > 1.

Proof. If $\Theta \cong \mathbf{R}$, then $\Psi = \nabla \cap \operatorname{Cs} \Theta$ acts faithfully on Ξ , $6 \leq s \leq 7$ and dim $\Psi = 16$ by (B'), (4) and (12). Moreover, Ψ is transitive on a 6-dimensional invariant subgroup $\Xi_1 \leq \Xi$ or irreducible on $\Xi \cong \mathbf{R}^7$.

(a) In the first case, (G) implies easily $\Psi \cong SL_3C$ and hence s = 6. For $u \neq w \in u^{\Xi}$ the stabilizer Ψ_w fixes a 2-dimensional subset of u^{Ξ} pointwise, and dim $\Psi_w \ge 10$. This contradicts (A, iv).

(b) In the second case, Ψ' is semisimple and dim $\Psi' \ge 15$. Therefore, Ψ contains a 2-torus Φ which fixes some $w \in u^{\Xi} \setminus u$. Now Ψ_w is compact by (A, ii), and dim $\Psi_w \ge 9$. But this is impossible by (A, iii) and (3).

(14) Ξ fixes each line through v and hence consists of elations in $E = \Gamma_{[v,av]}$.

Proof. By (12) and (13) either $s \leq t$ or 1 < t < s < 8. In the latter case, (B, iii) and (4) imply $t \geq 5$. If s = 6 and $c \in a^{\Theta} \setminus a$, then dim $\nabla_c = 12$ and ∇_c is transitive on Ξ . This contradicts (G) and shows s = 7. Let $\mathbf{R} \cong \mathbf{P} < \Xi, \Psi = \Gamma \Theta \cap \mathrm{Cs} \, \mathbf{P}$ and $x \notin W \cup av$. Then Ψ_x fixes each point of $x^{\mathsf{P}} \neq x$ and

 $\dim \Psi_{x} \ge 25 + t - s - 16 > 6.$

If x^{P} is not contained in a line, then $\Psi_x \cong \mathrm{SU}_3$ by (B) and (C). This is only possible if t = 6 and s = 7. In that case, Γ is not transitive on Ξ by (4), and there is some P such that dim $\Psi_x > 8$ for all x. Hence x^{P} is contained in a line $L = L^{\mathsf{P}}$, and $L \cap W = v$ by (11). Now $\mathsf{P} \cong \Xi_{[v]} \cong \mathsf{E}$, and $\Xi = \Xi_{[v]}$ because Ξ is a minimal normal subgroup of Γ .

The result of (7-10) and (14) is

(15) dim E > 1. Dually, dim $T_u > 1$ for each $u \in W \setminus v$.

As before, put $\nabla = \Gamma_u^1$ and consider minimal ∇ -invariant subgroups $\Pi \leq T_u, \Xi \leq E$, and $\Theta \leq T_v$ of dimensions *r*, *s*, and *t* respectively. Remember that \mathscr{P} is not a translation plane. Hence up to duality

(16) $s \leq r \leq 7$, and dim $\nabla \leq 20$ by (B') and (4).

On the other hand, dim $\nabla \ge 17$. Applying the dual of (B) to Ξ and Θ , we obtain

(17) $r, s, t \ge 5$. Moreover, $r + s \ge 12$ by (G).

(18) Each involution in ∇ is planar.

Proof. If the connected group ∇ contains a reflection with center v, then dim E = 6 and dim $\nabla > 18$ by the dual of (H). But (4) and the dual of (B, iii) imply dim $\nabla \leq 3 \cdot 6$. If there is a reflection with axis av or with center a, then dim $T_u = 6$, and an analogous argument leads to a contradiction.

Consider an involution $\alpha \in \nabla$, the subplane \mathscr{F} of its fixed elements, the connected component Ψ of $\nabla \cap \operatorname{Cs} \alpha$ and its effective action $\Psi^{\mathscr{F}} = \Psi/\Phi$ on \mathscr{F} . Then, [11, (*) and (*)] and (A, v) imply

(19) $\Psi:\Phi < 11$ or Ψ/Φ is isomorphic to the stabilizer of a triangle in the quaternion plane, and Φ^1 is a subgroup of Spin₃. In particular, dim $\Psi \leq 14$.

Because of (17),

 $\nabla \cap \operatorname{Cs} \Pi \cap \operatorname{Cs} \Xi = 1.$

Hence ∇ acts faithfully on the external direct product $\Pi \times \Xi$ (which is not a subgroup of Δ), and irreducibly on each factor: ∇ is reductive, in particular, ∇' is semisimple and the radical $\sqrt{\nabla}$ is in the centre of ∇ , see

[1, I, Section 6, no. 4 or 21, Theorem 3.16.3] for the corresponding Lie algebras. $\sqrt{\nabla}$ induces real or complex scalar multiplications on Π and Ξ and does not contain any involution by (19). Now $\sqrt{\nabla} \cap \text{Cs } \Xi$ is a closed proper subgroup of \mathbb{C}^{\times} , and dim $\sqrt{\nabla} < 3$. Hence

(20) ∇' is semisimple, dim $\sqrt{\nabla} \leq 2$ and dim $\nabla' \geq 15$.

In Section 3, case (γ), the representations of ∇ on Π and Ξ and statement (19) will be used to show that no group with the above properties can exist; this will then complete the proof of the theorem.

3. The stabilizer of a triangle. With the previous notation and conventions, the situations encountered in Section 2, (9), (12), and (20) have the following in common: ∇ is a reductive Lie group without reflections acting irreducibly on two of the vector groups Ξ , Π , and Θ and faithfully on their product. ∇' is semisimple and the radical $\sqrt{\nabla}$ is a vector group of dimension at most 2. Moreover, $17 \leq \dim \nabla \leq 22$ by (D). The respective additional information obtained in the three cases is

- (a) $\Pi \cong \mathbf{R}^7, \Theta \cong \mathbf{R}^8, \nabla \subseteq Aut \Theta$, and $17 \leq \dim \nabla' \leq 21$.
- (β) $\Theta \ncong \mathbb{R}^8 \cong \Xi, \nabla \subseteq \text{Aut } \Xi, \text{ and } 16 \subseteq \dim \nabla'.$

(
$$\gamma$$
) $\Pi \cong \Xi \cong \mathbf{R}^6$ or $\Pi \cong \mathbf{R}^7$, and $5 \leq \dim \Xi \leq 7$.

Moreover, Ξ consists of elations and dim $\nabla \leq 20$.

It will turn out that ∇' is then necessarily quasisimple. In the few remaining cases, the representations of ∇' will reveal non-planar involutions, a contradiction. For a list of simple (real) Lie groups and their representations see [20].

(1) ∇' is quasisimple. Hence ∇' is a complex group A_2 or B_2 of (real) dimension 16 or 20 or a real form of type A_3 and dimension 15 or of type B_3 or C_3 and dimension 21.

Proof. Let $\nabla = AB$ where $A \neq \nabla'$ is a quasisimple factor of minimal dimension and $A \circ B = 1$. Since ∇ has a faithful linear representation, there is an involution $\alpha \in A$ to which Section 2 (19) can be applied. Choose α so that $\Omega = A \cap \Psi$ has maximal dimension. Then $\Psi = \Omega B$, dim B < 14, dim $A \ge 6$, and dim $(B' \cap \Phi) = 0$ by minimality of A. Hence dim B' < 11 and B' is quasisimple. If dim A = 6, then dim $\Omega = 2$, dim B' = 10, and Spin₃ $\cong \Phi \le \Omega$, a contradiction. Now dim $A \ge 8$, $A:\Omega = 4$, dim $B' = 8 = \dim A$, and again Spin₃ $\cong \Phi \le \Omega$ for each admissible choice of α . Therefore, A is compact and so is B'. But the fixed points of α on W form a 4-sphere, and SU₃ cannot act on S⁴, cp. [11, (†)].

(2) dim $\nabla' < 21$. Consequently, ∇' has no irreducible representation in dimension 7.

Proof. This is true in case (γ). In the other two cases, ∇' has an irreducible representation in dimension 8. But each linear group of type B_3 or C_3 contains a torus T^3 which cannot act on \mathbf{R}^8 in such a way that each involution has 4-dimensional eigenspaces.

The second part of (2) excludes case (α) and reduces (γ) to $\Pi \cong \Xi \cong \mathbf{R}^{6}$.

(3) dim $\nabla = 17$.

Proof. The group $\text{Sp}_4 \mathbb{C}$ of type \mathbb{B}_2 can only act on \mathbb{R}^8 , and dim $\nabla' \leq 16$. Moreover, $\nabla: \nabla' \leq 1$ in case (β), and (G) implies dim $\nabla < 18$ in case (γ).

(4) ∇' is locally isomorphic to SL₃C.

Proof. The only other possibility is dim $\nabla' = 15$ in case (γ). Then ∇ is transitive on Π or on Ξ by (B, iii), and ∇' induces a group SO₆ by (G). Hence ∇ would contain a central involution.

(5) Case (β) is impossible.

Proof. Denote again by \mathscr{F} the subplane of the fixed elements of an involution $\alpha \in \nabla'$. Then

 $\Psi = \nabla' \cap \mathbf{Cs} \ \alpha \cong \mathbf{GL}_2\mathbf{C}.$

Because of (B) either $\Theta \cong \mathbf{R}$ or $\Theta \cong \mathbf{R}^6$. In the first case $\Theta \circ \Psi = 1$ and dim $\Psi^{\mathscr{F}} = 7$ by (A, v), but this contradicts [11, (**)]. In the second case, ∇' acts on Θ in the standard way, and Ψ' fixes the positive eigenspace $\Theta^+_{\alpha} \cong \mathbf{R}^2$ element-wise. Now [11, (2.5') or (*)] would imply dim $\Psi' < 6$.

Now $\nabla' \cong SL_3C$ acts equivalently on Π and Ξ . For $1 \neq \xi \in \Xi$ let

 $\Lambda = \nabla' \cap \mathbf{Cs} \, \xi.$

Then dim $\Lambda = 10$, and the fixed elements of Λ form a 4-dimensional subplane. This final contradiction proves that \mathcal{P} or its dual is a translation plane.

Remark. Presumably, the same is still true if dim $\Delta = 40$, but several steps of the proof depend essentially on the stronger assumption. With the techniques of this paper, the following can be shown, however:

THEOREM. A compact 8-dimensional plane with dim $\Sigma = 18$ is a translation plane (and hence belongs to one of the 3 families of planes of Lenz type V determined by Hähl).

References

- 1. N. Bourbaki, Groupes et algèbres de Lie, 2nd ed. (Hermann, Paris, 1971).
- 2. H. Freudenthal and H. de Vries, Linear Lie groups (Academic Press, New York, 1969).

- 3. H. Hähl, Zur Klassifikation von 8- und 16-dimensionalen Translationsebenen nach ihren Kollineationsgruppen, Math. Z. 159 (1978), 259-294.
- 4. —— Homologies and elations in compact, connected projective planes, Topol. Appl. 12 (1981), 49-63.
- 5. R. Löwen, Topology and dimension of stable planes: On a conjecture of H. Freudenthal, J. Reine Angew. Math. 343 (1983), 108-122.
- 6. R. Löwen and H. Salzmann, Collineation groups of compact connected projective planes, Arch. Math. 38 (1982), 368-373.
- 7. J. Poncet, Groupes de Lie compacts de transformations de l'espace euclidien et les sphères comme espaces homogènes, Comment. Math. Helv. 33 (1959), 109-120.
- 8. H. Salzmann, Kompakte zweidimensionale projektive Ebenen, Math. Ann. 145 (1962), 401-428.
- 9. Topological planes, Advances Math. 2 (1967), 1-60.
- **10.** —— Kollineationsgruppen kompakter 4-dimensionaler Ebenen. II, Math. Z. 121 (1971), 104-110.
- 11. —— Compact 8-dimensional projective planes with large collineation groups, Geom. Dedic. 8 (1979), 139-161.
- 12. Automorphismengruppen 8-dimensionaler Ternärkörper, Math. Z. 166 (1979), 265-275.
- Kompakte 8-dimensionale projektive Ebenen mit groβer Kollineationsgruppe, Math. Z. 176 (1981), 345-357.
- Projectivities and the topology of lines, Geometry von Staudt's point of view, Proc. Bad Windsheim (1980), 313-337. (Reidel, Dordrecht, 1981).
- 15. —— Compact 16-dimensional projective planes with large collineation groups, Math. Ann. 261 (1982), 447-454.
- Compact 16-dimensional projective planes with large collineation groups. II, Monatsh. Math. 95 (1983), 311-319.
- Compact 16-dimensional projective planes with large collineation groups. III, Math. Z. 185 (1984), 185-190.
- 18. —— Homogeneous translation groups, Arch. Math. 44 (1985), 95-96.
- J. Tits, Sur certaines classes d'espaces homogènes de groupes de Lie, Acad. Roy. Belg. C1. Sci. Mém. Coll. 29 (1955), 1-268.
- Tabellen zu den einfachen Liegruppen und ihren Darstellungen, Lecture Notes in Math. 40 (Springer-Verlag, 1967), 1-53.
- 21. V. S. Varadarajan, Lie groups, Lie algebras, and their representations (Prentice-Hall, 1974).
- 22. H. Völklein, Transitivitätsfragen bei linearen Lie-gruppen, Arch. Math. 36 (1981), 23-34.

Universität Tübingen, Tübingen, Germany