COMPACT 16-DIMENSIONAL PROJECTIVE PLANES WITH LARGE COLLINEATION GROUPS. IV

HELMUT SALZMANN

Let \mathscr{P} be a topological projective plane with compact point set P of finite (covering) dimension. In the compact-open topology (of uniform convergence), the group Σ of continuous collineations of \mathscr{P} is a locally compact transformation group of P.

Theorem. If $\operatorname{dim} \Sigma>40$, then \mathscr{P} is isomorphic to the Moufang plane \mathcal{O} over the real octonions (and $\operatorname{dim} \Sigma=78$).

By [3] the translation planes with $\operatorname{dim} \Sigma=40$ form a one-parameter family and have Lenz type V. Presumably, there are no other planes with $\operatorname{dim} \Sigma=40, \mathrm{cp} .[17]$.

If $\operatorname{dim} \Sigma>35$, then $\operatorname{dim} P>8$, each line is homotopy equivalent to the sphere \mathbf{S}^{8}, and $\operatorname{dim} P=16$, see [11, (4.0)] and [5]. Moreover, any connected closed subgroup $\Delta \leqq \Sigma$ is a Lie group [6], and Δ is semisimple or fixes a point or a line $[16,(2.1)]$. In each of the following cases, $\mathscr{P} \cong \mathcal{O}$ has already been shown:
(I) $\operatorname{dim} \Delta \geqq 37$, and Δ is semisimple [15],
(II) $\operatorname{dim} \Delta \geqq 39$, and Δ fixes exactly one element (point or line) [17, (C)] or a non-incident point-line pair [15, (2.2)],
(III) $\operatorname{dim} \Delta \geqq 40$, and Δ fixes two points or two lines [16, Section 5].

If Δ has more fixed elements, then $\operatorname{dim} \Delta \leqq 38$ by [12]. In the only remaining case, the fixed elements of Δ form a flag (v, W), and Δ has a minimal normal subgroup $\Theta \cong \mathbf{R}^{t}$ consisting [16, (2.2)] of translations with axis W and center v. The theorem will be proved in the following main steps: For $a \notin W$ the connected component Γ of the stabilizer Δ_{a} cannot be semisimple, and there is a normal subgroup $\Xi \cong \mathbf{R}^{s}$ which consists of elations with axis $a v$. Dually, there is a group $\Pi \cong \mathbf{R}^{r}$ of translations with center $u \in W \backslash v$. Up to duality, $s \leqq r$. The stabilizer ∇ of the triangle (a, u, v) induces irreducible representations on subgroups of Θ, Ξ, and Π. The representation on the product of two of these groups is faithful (∇ is reductive). By a combination of group theoretic and geometric arguments, $r<8$ turns out to be impossible. Hence \mathscr{P}^{W} is a translation plane, and the result follows from Hähl's classification [3, p. 264] of all translation planes with $\operatorname{dim} \Sigma \geqq 38$.

Received April 29, 1985.

By [5], P is of dimension $d=2^{m+1}(0 \leqq m \leqq 3)$. The theorem may then be combined with analogous results $[\mathbf{9} ; \mathbf{1 0} ; \mathbf{1 3}]$ for planes of dimension $d=2^{m+1}(0 \leqq m<3)$ to obtain the following corollary. Let $g=g(m)$ denote the dimension of the full automorphism group of the "classical" plane over the real or complex numbers, the quaternions or octonions respectively.

Corollary. If \mathscr{P} is a compact d-dimensional projective plane, and if

$$
\operatorname{dim} \Sigma>\left[\frac{g}{2}\right]+\left[\frac{m}{2}\right]
$$

then \mathscr{P} is classical. The given bound is sharp.
Since $\operatorname{dim} \Delta \leqq 40$ for proper translation planes, it will be assumed throughout that the group T of translations in Δ with axis W is not transitive and also that \mathscr{P} is not a dual translation plane. The group of translations with center $z \in W$ will be denoted by T_{z}. The next theorem is also due to Hähl [4, Corollary 1.3], and will play a key role:
(H) If Ω is a connected subgroup of Δ and if $a^{\Omega} \neq a \notin W=W^{\Omega}$, then either Ω_{a} acts effectively on W or $a^{\Omega}=a^{\top \cap \Omega}$.

Another useful fact is a topological analogue [18] of a well-known theorem of Gleason:
(T) If $\mathrm{T}_{z} \cong \mathbf{R}^{k}$ for all $z \in W$ and some fixed $k>0$, then T is transitive.

As in the case of 8 -dimensional planes [11, (1.2)], and with an analogous proof one has
(R) There are at most 3 pairwise commuting reflections.
Many steps in the proof of the theorem require information about the connected component Λ of the stabilizer of a quadrangle (the automorphism group of a corresponding ternary field).
(A) Let \mathscr{F} be the subplane of the fixed elements of Λ.
(i) $\Lambda \cong \mathrm{G}_{2}$, the compact 14-dimensional automorphism group of the octonions, or $\operatorname{dim} \Lambda<14$.
(ii) If Λ contains a pair of commuting involutions, then Λ is compact.
(iii) If Λ is compact, then $\Lambda \cong \mathrm{G}_{2}, \mathrm{SU}_{3}$, or SO_{4}, or $\operatorname{dim} \Lambda<5$.
(iv) If $\operatorname{dim} \mathscr{F}>2$, then $\Lambda \cong \mathrm{SU}_{3}$ or $\operatorname{dim} \Lambda<8$.
(v) If $\operatorname{dim} \mathscr{F}=8$ (i.e., if \mathscr{F} is a Baer subplane), then $\Lambda \cong \mathrm{SU}_{2}$ or SO_{2}.

For a proof see [12] and [16, Corollary], and note that Λ is a Lie group. Assertion (v) follows from [12, (1.7) and (2.3)].

More can be said exploiting the existence of an invariant group $\Theta \cong \mathbf{R}^{t}$ of translations [17; 16; 13]:
(B) Assume that Λ fixes $a \notin W$ and $c \in a^{\Theta}$ and 3 points $u, v, w \in W$ where $a^{\Theta} \subseteq a v$.
(i) If $t=1$, then $\Lambda \cong \mathrm{G}_{2}$ or $\operatorname{dim} \Lambda \leqq 10$.
(ii) If $t=2$, then $\Lambda \cong \mathrm{SU}_{3}$ or $\operatorname{dim} \Lambda<8$.
(iii) If $2<t<8$, then $\operatorname{dim} \Lambda \leqq 6$, or $\Lambda \cong \mathrm{SU}_{3}$ and $t=7$.
(iv) If $t=8$, then Λ is compact and (A, iii) applies.

The last part of (iii) is a consequence of the fact that the action of Λ on a^{Θ} is naturally equivalent to the action on Θ and that SU_{3} has no representation in dimension <6.
(C) If the assumption $c \in a^{\Theta}$ in (B) is replaced by $c \in a v \backslash a^{\Theta} \backslash v$, then Λ is compact or $\operatorname{dim} \Lambda \leqq 6$ or $t=1$ and $\operatorname{dim} \Lambda<8$, see Section 1 below.

It will be proved in (2.3) that $\operatorname{dim} \Delta>40$ and $\operatorname{dim} T<16$ imply $\Lambda \neq \mathrm{G}_{2}$. Hence
(B^{\prime}) $\operatorname{dim} \Lambda \leqq 8$ or $t=1$ and $\operatorname{dim} \Lambda \leqq 10$.
Together with (2.2) and its dual follows immediately
(D) If ∇ fixes a triangle (a, u, v), then
$17 \leqq \operatorname{dim} \nabla \leqq 22$.
Another useful application of (B^{\prime}) is
(E) If $\operatorname{dim} \Delta>40$, and if the translation group satisfies $\mathrm{T}_{v}<\mathrm{T}$, then $\operatorname{dim} \mathrm{T}=n>8$, and $\operatorname{dim} \mathrm{T}_{z}>0$ for each $z \in W$. Moreover, T is the centralizer of its connected component T^{1}.

Proof. Let $b \in a^{\top \backslash T_{v}}$ and $c \in a^{\Theta} \backslash a$, and denote the connected component of $\Delta_{a, b, c}$ by Λ. Then

$$
24-n<\operatorname{dim} \Delta_{a, b} \leqq t+\operatorname{dim} \Lambda \leqq 16, \text { and } n>8
$$

By the definition of translations, $\tau \mapsto a^{\tau} z$ induces an injective map of $\mathrm{T} / \mathrm{T}_{z}$ into the pencil \mathscr{L}_{z}, and the dimension $\mathrm{T}: \mathrm{T}_{z}$ is at most 8 . Hence each $z \in W$ is the center of some connected subgroup of T and is fixed by the centralizer of T^{1}. Note in particular
(F) $\operatorname{dim} T \leqq \operatorname{dim} T_{z}+8$.

The following fact [7, 19 or 22] will be needed repeatedly
(G) If G is a connected transitive subgroup of $\mathrm{GL}_{6} \mathbf{R}$, then a maximal compact subgroup of G is isomorphic to $\mathrm{SU}_{3}, \mathrm{U}_{3}$, or SO_{6}, and $\operatorname{dim} G \leqq 10$ or $\operatorname{dim} G \geqq 16$. Moreover, G^{\prime} is compact or $\operatorname{dim} G^{\prime} \geqq 16$.

Notation is mostly standard, and is in accordance with that in parts I-III ($[\mathbf{1 5}, \mathbf{1 6}, \mathbf{1 7}])$. The meaning is often indicated in the text. We note that

$$
\Gamma: \Delta=\operatorname{dim} \Gamma-\operatorname{dim} \Delta
$$

is the dimension of the coset space Γ / Δ, so that

$$
\Gamma: \Gamma_{x}=\operatorname{dim} x^{\Gamma}
$$

and distinguish between the commutator group $\Delta^{\prime}=\Delta \circ \Delta$ and the connected component Δ^{1} of the identity.

1. The stabilizer of a quadrangle. For the proof of (C), introduce coordinates from a ternary field K as in [16, Section 1]. The translations in Θ are given by $(x, y) \mapsto(x, y+s)$, where $s \in S=S^{\Lambda} \cong \mathbf{R}^{t}$ and $1 \notin S$ by the hypothesis of (C). Let $0 \neq d \in S$ and denote the subternary of the fixed elements of Λ_{d} by D. Then D properly contains the one-parameter group spanned by d in S. Hence D is connected [14, (1.8)], and $\operatorname{dim} D=2^{k}>1$. If there is a closed subternary H with $D<H<K$, then Λ is compact by [12, Zusatz]. For $t=1$ the assertion is but a restatement of [16, Corollary]. If $t>1$, then Λ is compact or $\Lambda_{d, d^{\prime}}=1$, so that (C) is true for $t \leqq 3$. Now choose S minimal and assume $t \geqq 4$. Then Λ acts faithfully and irreducibly on S. Hence Λ^{\prime} is semisimple and $\Lambda: \Lambda^{\prime} \leqq 2$, see [$\mathbf{2}$, (19.17)]. If Λ contains a pair of commuting involutions, then Λ is compact by (A, ii). Otherwise Λ^{\prime} is quasisimple and $\operatorname{dim} \Lambda^{\prime} \leqq 3$ or a maximal compact subgroup of Λ^{\prime} is isomorphic to Spin_{3}. In the latter case, Λ contains a central involution α. The fixed elements of α coordinatize an invariant Baer subplane. Now [11, (2.13)] and (A, v) imply again $\operatorname{dim} \Lambda^{\prime} \leqq 3$.
2. The stabilizer of an affine point. In the sequel, \mathscr{P} will always denote a compact 16 -dimensional projective plane such that neither \mathscr{P} nor its dual is a translation plane; Δ is a connected Lie group of automorphisms of \mathscr{P} with $\operatorname{dim} \Delta>40$ fixing a line W, a point $v \in W$ and no other elements. These general assumptions will usually not be repeated. By [16, Section 2], the group $\mathrm{T}_{v}=\Delta_{[v, W]}$ of translations in Δ with center v has an invariant subgroup $\Theta \cong \mathbf{R}^{t}$. In this section, the connected component Γ of the stabilizer Δ_{a} of a point $a \notin W$ will be investigated. Note that $25 \leqq \operatorname{dim} \Gamma \leqq 38$ by (A, i).
(1) If $u \in W \backslash v$, then $\operatorname{dim} u^{\Gamma}>4$.

Proof. (a) First assume $u^{\Gamma}=u$. Let $K=a v$ and consider the connected component Ψ of Δ_{K}. With (A, i) follows $\operatorname{dim} \Gamma \leqq 30<\operatorname{dim} \Psi$. If $u^{\Psi}=u \neq u^{\delta}$ then $K^{\delta}=L \neq K$ and $\Psi^{\delta}=\Delta_{L}^{1}$. Therefore $\Gamma_{L}^{1} \leqq \Psi \cap \Psi^{\delta}$ fixes a quadrangle, but $\operatorname{dim} \Gamma_{L} \geqq 17$. Hence $\Psi: \Psi_{u}>0$ and there is some $\delta \in \Psi$ with $u^{\delta} \neq u$ and $a^{\delta}=c \neq a$. Now $\Gamma_{c}^{1} \leqq \Gamma \cap \Gamma^{\delta}$ fixes also u and u^{δ}, which again contradicts (A, i). Consequently, $\operatorname{dim} u^{\Gamma}=k>0$.
(b) If Λ is the connected component of the stabilizer of $a, c \in a^{\Theta}$ and two points in u^{Γ}, then $\Gamma: \Lambda \leqq 2 k+t$, and $k>1$. Moreover, $k>4$ or $\Lambda \cong \mathrm{G}_{2}$ acts in the standard way on W by (B) and [15, (1.2)], and u^{Γ} contains an orbit $z^{\Lambda} \approx \mathbf{S}^{6}$.
(2) Γ_{u} is not transitive on $W \backslash\{u, v\}$ for any $u \in W \backslash v$.

Proof. Assume that the effective action

$$
\Omega=\Gamma^{W}=\Gamma / \Gamma_{[W]}
$$

is doubly transitive on $W \backslash v \approx \mathbf{R}^{8}$. Then Ω is an extension of \mathbf{R}^{8} by a transitive linear group, and the latter contains a subgroup $\Phi \cong \operatorname{Spin}_{k}$ with $5 \leqq k \leqq 7$, see [19, IV C; 7 or 22]. There is an isomorphic copy of Φ in a maximal semisimple subgroup of Γ, and Φ fixes a triangle. Since Φ does not act on a proper subplane by $\left[\mathbf{1 1},\left({ }^{* *}\right)\right]$, the central involution $\sigma \in \Phi$ is a reflection with center $u \in W \backslash v$ or axis $a u$. Transitivity of Γ implies that the elation group $\Delta_{[v, a v]}$ is transitive. The axis $a v$ not being fixed by the general assumption, \mathscr{P} is then even a dual translation plane, a contradiction.
(3) The group G_{2} is not contained in Δ.

Proof. The fixed elements of a group $\Lambda \cong G_{2}$ form a flat ($=2$ dimensional) subplane \mathscr{E} by [15, (1.2)]. Choosing a in \mathscr{E}, one has $\Lambda<\Gamma$. Let $\Omega=\sqrt{\Gamma}$ denote the radical (maximal connected solvable normal subgroup) of Γ. Either $\Gamma=\Lambda \Omega$ or Λ is properly contained in a semisimple subgroup Ψ of Γ. In the latter case, Λ is normal in Ψ or there is even a quasisimple group Ψ. Inspection of the list of simple Lie groups shows that Ψ is then the complexification G_{2}^{C} or contains a compact group Φ isomorphic to SO_{7} or Spin_{7}. These 5 possibilities will be treated separately.
(a) $\Lambda \triangleleft \Psi$. Then Ψ / Λ induces on \mathscr{E} a quasisimple group fixing 2 points and two lines. This contradicts [$\mathbf{9},(5.2$)].
(b) $\Psi \cong G_{2}^{\mathbf{C}}$. Then Λ is a maximal subgroup of Ψ, and $\Psi: \Lambda=14$. Hence Ψ fixes each point of $\mathscr{E} \cap W$ and dually. This contradicts (A, i).
(c) $\Phi \cong \mathrm{SO}_{7}$. Then the diagonal involution $\alpha=(-1)^{6} \times(1)$ and each of its conjugates has a centralizer SO_{6}. Hence α is not planar by the first part of $\left[11,\left(^{*}\right)\right]$, and α cannot be a reflection by (R).
(d) $\Phi \cong \operatorname{Spin}_{7}$. Then the central involution $\sigma \in \Phi$ is a reflection. If σ has axis W and center a, the translation group T is connected by (H), and $\tau^{\sigma}=\tau^{-1}$ for each $\tau \in \mathrm{T}$. Hence Φ acts faithfully on each invariant component $\Xi \leqq T$ and $\operatorname{dim} \Xi$ is even and >6. Since $T \neq T_{v}$ and the action of Φ is completely reducible (see e.g. [2, (35.4)]), $T=\Theta \times \Pi$ is a product of two irreducible components, and $\operatorname{dim} T=16$ contrary to the assumption. By analogous arguments, σ cannot have a center on W.
(e) $\Gamma=\Lambda \Omega$. Choose $u \in W \backslash v$ in \mathscr{E}, and consider the stabilizer $\nabla=\Gamma_{u}^{1}=\Lambda \mathrm{P}$ where

$$
\mathrm{P}=\sqrt{\nabla}=\Omega_{u}^{1}
$$

is the radical of ∇. From $\operatorname{dim} \Delta>40$ follows $\operatorname{dim} \mathrm{P}>2$. On the other hand,

$$
\operatorname{dim}(\nabla \cap \operatorname{Cs} \Lambda) \leqq 2
$$

by [8, Section 3]. Consequently $\Lambda \circ P \neq 1$, and Λ is faithfully represented on the Lie algebra $\ell \mathrm{P}$. This implies $\operatorname{dim} \mathrm{P} \geqq 7$. Being solvable, Ω has a normal subgroup N such that $1 \leqq \operatorname{dim} u^{N} \leqq 2$. If $u \neq w \in u^{N}$, then $w^{P} \subseteq u^{N}$ and $\mathrm{P}: \mathrm{P}_{w} \leqq 2$. Also, there is $c \in a^{\Theta} \backslash a$ with $\mathrm{P}: \mathrm{P}_{c} \leqq 2$. Now $\operatorname{dim} P_{c, w} \geqq 3$, and $P_{c, w} \triangleleft \nabla_{c, w}$. Not being simple, $\nabla_{c, w} \not \equiv G_{2}$. From $\nabla=\Lambda P$ follows $\operatorname{dim} \nabla \geqq 21$, $\operatorname{dim} \nabla_{w} \geqq 13$, and (B) implies $t \geqq 7$.

If $t=7$, then ∇ induces an irreducible group on Θ, and $\mathrm{K}=\mathrm{P} \cap \mathrm{Cs} \Theta$ acts freely on $W \backslash\{u, v\}$ since a^{Θ} is not contained in any proper subplane. The radical P / K consists of scalar multiplications of $\Theta \cong \mathbf{R}^{7}$ and $P: K \leqq 1$. But this would imply $6 \leqq \operatorname{dim} w^{k} \leqq 2$. For $t=8$, finally, $\mathrm{P}_{c, w}^{1}$ is solvable and compact by (B, iv) and hence contains a torus \mathbf{T}^{3} in contradiction to [12, (1.9)].

If a group acts transitively on \mathbf{R}^{7}, then a maximal compact semisimple subgroup is transitive on \mathbf{S}^{6} and contains G_{2}, see [7 or 22]. Therefore, (3) has the following corollary:
(4) No subgroup of Δ has a transitive representation on \mathbf{R}^{7}.
(5) If Γ is semisimple, then Γ is even simple.

Proof. (a) Assume $\mathrm{T}_{v}<\mathrm{T}$. Then Γ acts faithfully and completely reducibly on $T^{1} \cong \mathbf{R}^{n}$ by (E) and semisimplicity. Hence there are $b \in a^{\top}$ and $c \in a^{\Theta}$ such that $\Lambda=\Gamma_{b, c}^{1}$ fixes a quadrangle and $\Gamma: \Lambda \leqq n<16$. Now $\operatorname{dim} \Lambda \geqq 25-n \geqq 10$ in contradiction to (B^{\prime}) and (F). This shows $T=T_{v}$.
(b) $\Gamma_{[W]}=1$ by (H) and (a) and the fact that $a v$ is not fixed.
(c) The centre Z of Γ is trivial: If $u^{2} \neq u \in W$, then $\Lambda=\Gamma_{c, u}^{1}$ fixes a quadrangle, and $\operatorname{dim} \Lambda \geqq 17-t$ in contradiction to (B^{\prime}).
(d) Each involution in Γ is planar: a reflection would have center v or axis $a v$ by (b). Because of (1), the elation group $\Gamma_{[v, a v]}$ would be a commutative normal subgroup of positive dimension.
(e) Consider an involution $\alpha \in \Gamma$, the subplane \mathscr{F} of its fixed elements, a connected subgroup Ψ in the centralizer of α in Γ, and the effective action $\Psi^{\mathscr{F}}=\Psi / \Phi$ on \mathscr{F}. The kernel satisfies $\operatorname{dim} \Phi \leqq 3$ by (A, v), and $\Psi: \Phi \leqq 4+11$ by $\left[\mathbf{1 1},\left(^{*}\right)\right]$. Moreover, if Ψ is quasisimple, then $\operatorname{dim} \Psi<14$, because Ψ cannot act doubly transitively on the points of $W \backslash v$ in \mathscr{F} by [19], cp. [15, (1.1)], and Ψ is not of type G_{2} by [11, (**) and $(\dagger)]$.
(f) Note that $Z=1$ by (c). If $\Gamma=A \times B$, where A is a proper simple factor, apply (e) to an involution $\alpha \in \mathrm{A}$. Then successively $\operatorname{dim} \mathrm{B} \leqq 18$, $\operatorname{dim} A \geqq 8, \Phi=1, \operatorname{dim} B<14$ and B is simple, $\operatorname{dim} B \leqq 10, \operatorname{dim} A \leqq 10$, but $\operatorname{dim} \Gamma \geqq 25$.
(6) Γ is not semisimple.

Proof. If Γ is simple, then $25 \leqq \operatorname{dim} \Gamma \leqq 30$ by (D), and $\Gamma \cong \mathrm{PSL}_{4} \mathrm{C}$ or Γ is an orthogonal group $\mathrm{PSO}_{8}(r)$. With the notation of (5e), there is a group $\Psi \cong \mathrm{SL}_{3} \mathrm{C}$ or $\mathrm{SO}_{6}(r)$ respectively in the centralizer of some involution α. This contradicts the last part of (5e).

The next aim is to show that the elation group $\mathrm{E}=\Gamma_{[v, a v]}$ has dimension >1. The proof is rather involved. It will follow from (H) if Γ contains any homology, from (6) otherwise.
(7) If $1 \neq \Xi \boxtimes \Gamma$, then $\operatorname{dim} \Xi \geqq 2$.

Proof. The orbit $u^{\Xi} \subseteq W \backslash v$ is invariant under Γ_{u}, and $17 \leqq \operatorname{dim} \Gamma_{u} \leqq$ $\operatorname{dim} \Xi+7+8$ by (B^{\prime}). (In the case $\Theta \cong \mathbf{R}^{8}$ use the dual of (2).)
(8) If Γ contains a (non-trivial) homology with axis av or with center v, then $\operatorname{dim} \mathrm{E}>4$ by (H) and (1).
(9) If Γ does not contain homologies with axis av or center v, then Γ acts effectively on W.

Proof. Assume $\Gamma_{[W]} \neq 1$. Then (H) implies $a^{\Delta}=a^{\top}$. Consequently, T is connected and $\Delta: \Gamma=\operatorname{dim} T<16$. Choose $u \in W \backslash v$ and put again $\nabla=\Gamma_{u}^{1}$. Then $\operatorname{dim} \nabla \geqq 18$. By (E) and because \mathscr{P} is not a translation plane, $0<r=\operatorname{dim} \mathrm{T}_{u}<8$.
(a) $T_{u} \cong \mathbf{R}^{7}$ and $T_{v} \cong \mathbf{R}^{8}$: From (H), (F) and (2) follows
(*) $25-r \leqq \operatorname{dim} \nabla \leqq 7+r+\operatorname{dim} \Lambda$,
where Λ fixes a quadrangle. Applying (B) to T_{u} instead of Θ, this gives $r=7$ or $\operatorname{dim} \Lambda=6=r$. But the latter is impossible by $(*)$ and (G). Hence $T_{u} \cong \mathbf{R}^{7}$ for any $u \neq v$. Similarly, $\operatorname{dim} T_{v}>6$, and T_{v} is transitive by (T).
(b) ∇ does not contain any reflection, and each involution has 4-dimensional eigenspaces in T_{v} : If $\boldsymbol{\sigma}$ is a reflection, then $\boldsymbol{\sigma}$ has center a, and $\tau^{\sigma}=\tau^{-1}$ for each $\tau \in \mathrm{T} \cong \mathbf{R}^{15}$, but the negative eigenspace of σ has even dimension because ∇ is connected.
(c) ∇ acts faithfully and irreducibly on T_{v} : By (4) there is some $b \in a^{\top}{ }_{u} \backslash a$ with $\operatorname{dim} \nabla_{b} \geqq 12$. Let $\Psi=\nabla_{b}^{l}$ and consider a minimal Ψ-invariant subgroup Θ_{1} of T_{v}. From (B) follows $\operatorname{dim} \Theta_{1} \geqq 6$ so that Ψ is faithful and irreducible on Θ_{1}. The radical $\sqrt{\Psi}$ induces real or complex scalar multiplications on Θ_{1} ([2, (19.17)], cp. [17, p. 186]). Now (b) implies $\sqrt{\Psi} \not \equiv \mathbf{C}^{\times}$and $\operatorname{dim} \Psi^{\prime} \geqq 11$. Being semisimple, Ψ acts completely reducibly on T_{v}, and (B) shows that T_{v} cannot split into proper invariant subgroups.
(d) ∇^{\prime} is semisimple and $17 \leqq \operatorname{dim} \nabla^{\prime} \leqq 21$ by (c), (B^{\prime}), (2) and (4).
(e) ∇ induces also an irreducible action on $T_{u}:$ From (d), (B) and (2) follows easily that T_{u} is not a sum of two invariant subgroups.

Noting that each involution in ∇^{\prime} is planar and hence has proper
eigenspaces in T_{u} and T_{v}, a study of the possible representations will reveal a contradiction. The details will be given in Section 3 where a few similar situations will be treated together.

For steps (10)-(14), assume in view of (8) and (9) that Γ does not contain any homology so that, in particular, Γ acts effectively on W. Changing the previous notation, $\Theta \cong \mathbf{R}^{t}$ shall denote a minimal Γ-invariant subgroup of T_{v}, it need no longer be normal in Δ.
(10) Γ has a minimal normal subgroup $\Xi \cong \mathbf{R}^{S}$.

Proof. Because of (6) there is either a normal vector group or a central torus, but the latter is impossible by (5e).
(11) $\Xi \circ \Theta=1$ and Ξ acts freely on $W \backslash v$.

Proof. From (B') follows as in (7) that $s+t \geqq 9$ or $t=1$ and $s \geqq 6$. If $t<s$, then obviously $\Xi \cong \mathbf{R}^{s}$ cannot act faithfully on Θ. If $s \leqq t$, then $s \geqq 2$ by (7), and $t \geqq 5$. Because Θ is minimal, Γ acts irreducibly on Θ, and Ξ induces a group of real or complex scalar multiplications, so that again

$$
1 \neq \Xi \cap \operatorname{Cs} \Theta \triangleleft \Gamma
$$

Now $\Xi \leqq$ Cs Θ by (7) and the minimality of Ξ. Consequently, Ξ fixes each point of a^{Θ}, and (1) implies $u^{\Xi} \neq u$ for each $u \in W \backslash v$. Because Ξ is commutative, Ξ_{u} induces the identity on the subplane \mathscr{F} generated by a^{Θ} and u^{Ξ}. From (\mathbf{B}^{\prime}) follows $\operatorname{dim} u^{\Xi}>4$ or $t>4$ and hence $\mathscr{F}=\mathscr{P}$ and $\Xi_{u}=1$.
(12) $s<8$ or $s=t$.

Proof. If $s=8$, then $u^{\Xi}=W \backslash v$. By assumption, $\nabla=\Gamma_{u}$ does not contain any homology. Hence (10) implies that ∇ acts faithfully and irreducibly on Ξ. Now ∇^{\prime} is semisimple, $\sqrt{\nabla} \not \equiv \mathbf{C}^{\times}$, and $16 \leqq \operatorname{dim} \nabla^{\prime} \leqq$ 22. For $t<8$ this possibility will be excluded in Section 3, case (β).
(13) $t>1$.

Proof. If $\Theta \cong \mathbf{R}$, then $\Psi=\nabla \cap$ Cs Θ acts faithfully on $\Xi, 6 \leqq s \leqq 7$ and $\operatorname{dim} \Psi=16$ by (B^{\prime}), (4) and (12). Moreover, Ψ is transitive on a 6-dimensional invariant subgroup $\Xi_{1} \leqq \Xi$ or irreducible on $\Xi \cong \mathbf{R}^{7}$.
(a) In the first case, (G) implies easily $\Psi \cong \mathrm{SL}_{3} \mathrm{C}$ and hence $s=6$. For $u \neq w \in u^{\Xi}$ the stabilizer Ψ_{w} fixes a 2-dimensional subset of u^{Ξ} pointwise, and $\operatorname{dim} \Psi_{w} \geqq 10$. This contradicts (A, iv).
(b) In the second case, Ψ^{\prime} is semisimple and $\operatorname{dim} \Psi^{\prime} \geqq 15$. Therefore, Ψ contains a 2-torus Φ which fixes some $w \in u^{\bar{Z}} \backslash u$. Now Ψ_{w} is compact by (A, ii), and $\operatorname{dim} \Psi_{w} \geqq 9$. But this is impossible by (A, iii) and (3).
(14) Ξ fixes each line through v and hence consists of elations in $\mathrm{E}=\Gamma_{[v, a v]}$.

Proof. By (12) and (13) either $s \leqq t$ or $1<t<s<8$. In the latter case, (B, iii) and (4) imply $t \geqq 5$. If $s=6$ and $c \in a^{\Theta} \backslash a$, then $\operatorname{dim} \nabla_{c}=12$ and ∇_{c} is transitive on Ξ. This contradicts (G) and shows $s=7$. Let $\mathbf{R} \cong \mathrm{P}<\boldsymbol{\Xi}, \Psi=\Gamma \Theta \cap \mathrm{Cs} \mathrm{P}$ and $x \notin W \cup a v$. Then Ψ_{x} fixes each point of $x^{P} \neq x$ and

$$
\operatorname{dim} \Psi_{x} \geqq 25+t-s-16>6 .
$$

If x^{P} is not contained in a line, then $\Psi_{x} \cong \mathrm{SU}_{3}$ by (B) and (C). This is only possible if $t=6$ and $s=7$. In that case, Γ is not transitive on Ξ by (4), and there is some P such that $\operatorname{dim} \Psi_{x}>8$ for all x. Hence x^{P} is contained in a line $L=L^{\mathrm{P}}$, and $L \cap W=v$ by (11). Now $\mathrm{P} \leqq \Xi_{[v]} \leqq \mathrm{E}$, and $\Xi=\Xi_{[v]}$ because Ξ is a minimal normal subgroup of Γ.

The result of (7-10) and (14) is
(15) $\operatorname{dim} \mathrm{E}>1$. Dually, $\operatorname{dim} \mathrm{T}_{u}>1$ for each $u \in W \backslash v$.

As before, put $\nabla=\Gamma_{u}^{1}$ and consider minimal ∇-invariant subgroups $\Pi \leqq \mathrm{T}_{u}, \Xi \leqq \mathrm{E}$, and $\Theta \leqq \mathrm{T}_{v}$ of dimensions r, s, and t respectively. Remember that \mathscr{P} is not a translation plane. Hence up to duality
(16) $s \leqq r \leqq 7$, and $\operatorname{dim} \nabla \leqq 20$ by (B^{\prime}) and (4).

On the other hand, $\operatorname{dim} \nabla \geqq 17$. Applying the dual of (B) to Ξ and Θ, we obtain
(17) $r, s, t \geqq 5$. Moreover, $r+s \geqq 12$ by (G).
(18) Each involution in ∇ is planar.

Proof. If the connected group ∇ contains a reflection with center v, then $\operatorname{dim} E=6$ and $\operatorname{dim} \nabla>18$ by the dual of (H). But (4) and the dual of (B, iii) imply $\operatorname{dim} \nabla \leqq 3 \cdot 6$. If there is a reflection with axis $a v$ or with center a, then $\operatorname{dim} \mathrm{T}_{u}=6$, and an analogous argument leads to a contradiction.

Consider an involution $\alpha \in \nabla$, the subplane \mathscr{F} of its fixed elements, the connected component Ψ of $\nabla \cap \mathrm{Cs} \alpha$ and its effective action $\Psi^{\mathscr{F}}=\Psi / \Phi$ on \mathscr{F}. Then, $\left[11,(*)\right.$ and $\left.\left({ }_{*}^{*}\right)\right]$ and (A, v) imply
(19) $\Psi: \Phi<11$ or Ψ / Φ is isomorphic to the stabilizer of a triangle in the quaternion plane, and Φ^{1} is a subgroup of Spin_{3}. In particular, $\operatorname{dim} \Psi \leqq 14$.

Because of (17),

$$
\nabla \cap \operatorname{Cs} \Pi \cap \operatorname{Cs} \Xi=1
$$

Hence ∇ acts faithfully on the external direct product $\Pi \times \Xi$ (which is not a subgroup of Δ), and irreducibly on each factor: ∇ is reductive, in particular, ∇^{\prime} is semisimple and the radical $\sqrt{\nabla}$ is in the centre of ∇, see
[1, I, Section 6, no. 4 or 21, Theorem 3.16.3] for the corresponding Lie algebras. $\sqrt{\nabla}$ induces real or complex scalar multiplications on Π and Ξ and does not contain any involution by (19). Now $\sqrt{\nabla} \cap$ Cs Ξ is a closed proper subgroup of \mathbf{C}^{\times}, and $\operatorname{dim} \sqrt{\nabla}<3$. Hence
(20) ∇^{\prime} is semisimple, $\operatorname{dim} \sqrt{\nabla} \leqq 2$ and $\operatorname{dim} \nabla^{\prime} \geqq 15$.

In Section 3, case (γ), the representations of ∇ on Π and Ξ and statement (19) will be used to show that no group with the above properties can exist; this will then complete the proof of the theorem.
3. The stabilizer of a triangle. With the previous notation and conventions, the situations encountered in Section 2, (9), (12), and (20) have the following in common: ∇ is a reductive Lie group without reflections acting irreducibly on two of the vector groups Ξ, Π, and Θ and faithfully on their product. ∇^{\prime} is semisimple and the radical $\sqrt{\nabla}$ is a vector group of dimension at most 2 . Moreover, $17 \leqq \operatorname{dim} \nabla \leqq 22$ by (D). The respective additional information obtained in the three cases is
$(\alpha) \Pi \cong \mathbf{R}^{7}, \Theta \cong \mathbf{R}^{8}, \nabla \leqq$ Aut Θ, and $17 \leqq \operatorname{dim} \nabla^{\prime} \leqq 21$.
(β) $\Theta \not \equiv \mathbf{R}^{8} \cong \Xi, \nabla \leqq$ Aut Ξ, and $16 \leqq \operatorname{dim} \nabla^{\prime}$.
(γ) $\Pi \cong \Xi \cong \mathbf{R}^{6}$ or $\Pi \cong \mathbf{R}^{7}$, and $5 \leqq \operatorname{dim} \Xi \leqq 7$.
Moreover, Ξ consists of elations and $\operatorname{dim} \nabla \leqq 20$.
It will turn out that ∇^{\prime} is then necessarily quasisimple. In the few remaining cases, the representations of ∇^{\prime} will reveal non-planar involutions, a contradiction. For a list of simple (real) Lie groups and their representations see [20].
(1) ∇^{\prime} is quasisimple. Hence ∇^{\prime} is a complex group A_{2} or B_{2} of (real) dimension 16 or 20 or a real form of type A_{3} and dimension 15 or of type B_{3} or C_{3} and dimension 21.

Proof. Let $\nabla=\mathrm{AB}$ where $\mathrm{A} \neq \nabla^{\prime}$ is a quasisimple factor of minimal dimension and $A \circ B=1$. Since ∇ has a faithful linear representation, there is an involution $\alpha \in A$ to which Section 2 (19) can be applied. Choose α so that $\Omega=\mathrm{A} \cap \Psi$ has maximal dimension. Then $\Psi=\Omega \mathrm{B}$, $\operatorname{dim} B<14, \operatorname{dim} A \geqq 6$, and $\operatorname{dim}\left(B^{\prime} \cap \Phi\right)=0$ by minimality of A. Hence $\operatorname{dim} \mathrm{B}^{\prime}<11$ and B^{\prime} is quasisimple. If $\operatorname{dim} \mathrm{A}=6$, then $\operatorname{dim} \Omega=2$, $\operatorname{dim} \mathrm{B}^{\prime}=10$, and $\operatorname{Spin}_{3} \cong \Phi \leqq \Omega$, a contradiction. Now $\operatorname{dim} A \geqq 8$, $\mathrm{A}: \Omega=4$, $\operatorname{dim} \mathrm{B}^{\prime}=8=\operatorname{dim} \mathrm{A}$, and again $\mathrm{Spin}_{3} \cong \Phi \leqq \Omega$ for each admissible choice of α. Therefore, A is compact and so is B^{\prime}. But the fixed points of α on W form a 4 -sphere, and SU_{3} cannot act on \mathbf{S}^{4}, cp. [11, (\dagger)].
(2) $\operatorname{dim} \nabla^{\prime}<21$. Consequently, ∇^{\prime} has no irreducible representation in dimension 7.

Proof. This is true in case (γ). In the other two cases, ∇^{\prime} has an irreducible representation in dimension 8 . But each linear group of type B_{3} or C_{3} contains a torus T^{3} which cannot act on \mathbf{R}^{8} in such a way that each involution has 4 -dimensional eigenspaces.

The second part of (2) excludes case (α) and reduces (γ) to $\Pi \cong$ $\Xi \cong \mathbf{R}^{6}$.
(3) $\operatorname{dim} \nabla=17$.

Proof. The group $\mathrm{Sp}_{4} \mathbf{C}$ of type B_{2} can only act on \mathbf{R}^{8}, and $\operatorname{dim} \nabla^{\prime} \leqq 16$. Moreover, $\nabla: \nabla^{\prime} \leqq 1$ in case (β), and (G) implies $\operatorname{dim} \nabla<18$ in case (γ).
(4) ∇^{\prime} is locally isomorphic to $\mathrm{SL}_{3} \mathrm{C}$.

Proof. The only other possibility is $\operatorname{dim} \nabla^{\prime}=15$ in case (γ). Then ∇ is transitive on Π or on Ξ by (B, iii), and ∇^{\prime} induces a group SO_{6} by (G). Hence ∇ would contain a central involution.
(5) Case (β) is impossible.

Proof. Denote again by \mathscr{F} the subplane of the fixed elements of an involution $\alpha \in \nabla^{\prime}$. Then

$$
\Psi=\nabla^{\prime} \cap \operatorname{Cs} \alpha \cong \mathrm{GL}_{2} \mathbf{C}
$$

Because of (B) either $\Theta \cong \mathbf{R}$ or $\Theta \cong \mathbf{R}^{6}$. In the first case $\Theta \circ \Psi=1$ and $\operatorname{dim} \Psi^{\mathscr{F}}=7$ by (A, v), but this contradicts [11, (**)]. In the second case, ∇^{\prime} acts on Θ in the standard way, and Ψ^{\prime} fixes the positive eigenspace $\Theta_{\alpha}^{+} \cong \mathbf{R}^{2}$ element-wise. Now [11, (2.5') or (*)] would imply $\operatorname{dim} \Psi^{\prime}<6$.

Now $\nabla^{\prime} \cong \mathrm{SL}_{3} \mathrm{C}$ acts equivalently on Π and Ξ. For $1 \neq \xi \in \Xi$ let

$$
\Lambda=\nabla^{\prime} \cap \operatorname{Cs} \xi
$$

Then $\operatorname{dim} \Lambda=10$, and the fixed elements of Λ form a 4-dimensional subplane. This final contradiction proves that \mathscr{P} or its dual is a translation plane.

Remark. Presumably, the same is still true if $\operatorname{dim} \Delta=40$, but several steps of the proof depend essentially on the stronger assumption. With the techniques of this paper, the following can be shown, however:

Theorem. A compact 8-dimensional plane with $\operatorname{dim} \Sigma=18$ is a translation plane (and hence belongs to one of the 3 families of planes of Lenz type V determined by Hähl).

References

1. N. Bourbaki, Groupes et algèbres de Lie, $2^{\text {nd }}$ ed. (Hermann, Paris, 1971).
2. H. Freudenthal and H. de Vries, Linear Lie groups (Academic Press, New York, 1969).
3. H. Hähl, Zur Klassifikation von 8- und 16-dimensionalen Translationsebenen nach ihren Kollineationsgruppen, Math. Z. 159 (1978), 259-294.
4. -Homologies and elations in compact, connected projective planes, Topol. Appl. 12 (1981), 49-63.
5. R. Löwen, Topology and dimension of stable planes: On a conjecture of H. Freudenthal, J. Reine Angew. Math. 343 (1983), 108-122.
6. R. Löwen and H. Salzmann, Collineation groups of compact connected projective planes, Arch. Math. 38 (1982), 368-373.
7. J. Poncet, Groupes de Lie compacts de transformations de l'espace euclidien et les sphères comme espaces homogènes, Comment. Math. Helv. 33 (1959), 109-120.
8. H. Salzmann, Kompakte zweidimensionale projektive Ebenen, Math. Ann. 145 (1962), 401-428.
9. -Topological planes, Advances Math. 2 (1967), 1-60.
10. Kollineationsgruppen kompakter 4-dimensionaler Ebenen. II, Math. Z. 121 (1971), 104-110.
11. Compact 8-dimensional projective planes with large collineation groups, Geom. Dedic. 8 (1979), 139-161.
12. Automorphismengruppen 8-dimensionaler Ternärkörper, Math. Z. 166 (1979), 265-275.
13. Kompakte 8-dimensionale projektive Ebenen mit großer Kollineationsgruppe, Math. Z. 176 (1981), 345-357.
14. - Projectivities and the topology of lines, Geometry - von Staudt's point of view, Proc. Bad Windsheim (1980), 313-337. (Reidel, Dordrecht, 1981).
15. Compact 16-dimensional projective planes with large collineation groups, Math. Ann. 261 (1982), 447-454.
16. Compact 16-dimensional projective planes with large collineation groups. II, Monatsh. Math. 95 (1983), 311-319.
17. -Compact 16-dimensional projective planes with large collineation groups. III, Math. Z. 185 (1984), 185-190.
18. -Homogeneous translation groups, Arch. Math. 44 (1985), 95-96.
19. J. Tits, Sur certaines classes d'espaces homogènes de groupes de Lie, Acad. Roy. Belg. Cl. Sci. Mém. Coll. 29 (1955), 1-268.
20. -_Tabellen zu den einfachen Liegruppen und ihren Darstellungen, Lecture Notes in Math. 40 (Springer-Verlag, 1967), 1-53.
21. V. S. Varadarajan, Lie groups, Lie algebras, and their representations (Prentice-Hall, 1974).
22. H. Völklein, Transitivitätsfragen bei linearen Lie-gruppen, Arch. Math. 36 (1981), 23-34.

Universität Tübingen,
Tübingen, Germany

