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FAMILIES OF GENERALIZED WEIGHING MATRICES 

GERALD BERMAN 

Generalized weighing (GW) matrices are orthogonal matrices whose non­
zero entries are roots of unity. Several families are constructed with the aid of 
finite geometries which include as special cases interesting examples of con­
ference matrices and weighing matrices. The concept of negacyclic matrices 
is generalized to co-circulant matrices where co ^ 1 is a rf-th root of unity and 
it is shown that the rows and columns of a family of GW matrices constructed 
from EG(t, pn) can be permuted so that the resulting matrices are co-circulant. 
It is also shown that these matrices correspond to a family of relative difference 
sets. A second family oi GW matrices is constructed from the projective geo­
metry PG(t, pn) which are co-circulant but which do not correspond to difference 
sets. The method gives a simple construction for a ju-fold spread of (t — 2)-
spaces of PG(t, pn). Finally another family of GW matrices is constructed from 
EG(t, pn) in a different way. It is conjectured that these are not equivalent to 
co-circulant matrices. 

1. Introduction. A generalized weighing {GW) matrix W(d, k, m) is a 
square m X m matrix all of whose non-zero entries are d-th roots of unity such 
that A A* = kl where A* = (a*/) is the conjugate transpose of A and / = In. 
It follows t h a t \ / ^ 4 is a unitary matrix so that A*A = kl and every row and 
column of A has exactly k nonzero entries. 

Weighing matrices, the special case W(2, k, m), have been studied exten­
sively. The name comes from their application in accuracy of measurements by 
Yates [17]. They have recently been studied in connection with combinatorial 
designs by Mullin [9], Mullin and Stanton [10], and Berman [2; 3]. An applica­
tion ot coding theory has been considered by Pless [12]. Related negacyclic 
codes were first studied by Berlekamp [1]. Hadamard matrices are the special 
cases W(2, k, k) in which there are no zero entries. Generalized Hadamard 
matrices W(d, k, k) were considered by Butson [4; 5]. These matrices have also 
been studied in connection with combinatorial designs by Shrikhande [15] and 
in connection with codes by Delsarte and Goethals [6]. The special case 
W(2, m — 1, m) are C-matrices or conference matrices which were studied by 
Goethals and Seidel [8]. Negacyclic C-matrices were considered by Delsarte, 
Goethals and Seidel [7]. 

Many of the properties of weighing matrices and generalized Hadamard 

matrices also hold for GW matrices. Equivalent matrices are obtained by 

permutations of rows and columns. If a row or column of W(d, k, m) is multi-
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plied by a d-th root of unity the resulting matrix is an equivalent W(d, k, m). 
This implies t ha t a normalized form can be defined in which the first ent ry of 
each row and column is 1 and if the first 1 in the j - t h column (row) occurs in 
position \j, then X;- ^ X̂  for j ^ k. 

New GM matrices can be constructed from known matrices just as in the 
case of Hadamard matrices or weighing matrices. For example, if a row or 
column of W(d, k, m) is multiplied by an e-th root of uni ty the result is a 
W(LCM(d, e), k, m). New GW matrices can also be obtained in terms of the 
Kronecker product: if A\ is a W(du ki, Mi) and A2 is a W(d2f k2, m2) then 
A i X A2 is a W(LCM(di, d2), kik2, mxm2). Such constructions may be used to 
obtain new GM matrices from those constructed in this paper. 

In Section 2 collineations of order r in EG(t, pn) are used to construct GW 
matrices W(d, p(t~1)n, (ptn — l)/r) for every divisor of r, where r is any factor 
of pn — 1. If p is odd, and d = t = 2, r = pn — 1, the corresponding GW 
matrix W(2, pn, pn + 1) is a conference matrix. The weighing matrices con­
structed in [2] are also a special case. 

In Section 3 co-circulant matrices are defined which generalize negacyclic 
matrices. I t is shown tha t the rows and columns of the matrices constructed in 
Section 2 can be permuted into this form. The ideas are illustrated by con­
structing a number of co-circulant matrices associated with EG(2, 11) including 
a W(2, 11, 12). I t is shown in Section 4 tha t this family of GW matrices is in 
1-1 correspondence with a family of cyclic relative difference sets which param­
eters (q, s, p(t~1)n, pv-vn/r) where q = (ptn - l)/(pn - 1) and rs = pn - 1 
analogous to those constructed by Butson [5] for generalized Hadamard 
matrices. 

In Section 5 it is shown tha t a similar construction can be carried out in 
PG(t, pn) to obtain another family of GW matrices W(d, p(t~^n, q/(pn + 1)) 
where / is odd and d\pn + 1, which are also co-circulant but are not associated 
with relative difference sets as in the case of the family of Section 3. Instead it is 
shown tha t these matrices correspond to /x-fold spreads of (/ — 2)-spaces of 
PG(t, pn). As an example the co-circulant matr ix W(3, 15, 21) associated with 
P G ( 5 , 2) is constructed. This leads to the determination of a 5-fold spread of 
the 3-spaces of PG(5, 2) in a different way than tha t given in Rao [13]. 

In Section 6 any subgroup of the additive group of GF(pn) is used to con­
struct a GW matr ix W(p, p^-l)n, ptn~a) for any a, 1 ^ a ^ n. The construction 
is a generalization of the method used by Vanstone and Alullin [16] to con­
struct weighing matrices in the special case p = 2. I t is conjectured tha t the 
rows and columns of these matrices cannot be permuted so tha t the resulting 
matrix is co-circulant. 

2. Affine GW m a t r i c e s . The ptr points of the Euclidean geometry E = 
EG(t, pn) can be represented by the /-tuples or column vectors 

x = (xi, x2, . . . , xt)
T, xt G F, i = 1, 2, . . . , t 
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where F = GF(pn). The hyperplanes of E are the sets of points which satisfy 
linear equations and coefficients in F. Let P' denote the set of pin — 1 points 
not including the origin 0 = (0, 0, . . . , 0 ) T and let H' denote the set of 
ptn _ 1 hyperplanes which do not include 0. Every hyperplane u £ H' satisfies 
a linear equation which can be expressed in the form U\X\ + u^Xi + . . . + utx t 

= 1 with not all u^ zero, so that the elements of H' can be represented by the 
set of /-tuples or row vectors 

u = (ui, U2, . . . , u t) j Ui Ç F, i = 1, 2, . . . , / 

with u 9^ (0, 0, . . . , 0). Using matrix notation the equation satisfied by 
u G H' can be written as 

(2.1) ux = 1, x G P', u 6 H\ 

and we say that the point x is on the hyperplane u or u contains the point x 
and write x £ w if the pair x, w satisfies (2.1). It follows that a point x £ P ' is 
on pv-u*1 hyperplanes of i P and a hyperplane w £ H' contains pv-u*1 points 
o fP ' . 

A collineation 0 is a transformation of E which preserves collinearity. The 
order of </> is the smallest integer r such that fa is the identity transformation. 
Let fa denote the mapping defined by 

(2.2) fax = Xx = (Xxi, Xx2, . . . ,\xt) 

where X is a nonezro element of F. 

LEMMA 2.1. Fhe mapping fa, \ £ P, X =̂  0 is a collineation of E which maps 
the hyperplane u onto the hyperplane \~lu, i.e., 

(2.3) fau = \~lu = (X-1^!, X-^2 , . . . , X-1^)-

If \ 5* 1 there are no fixed points in P' or fixed hyperplanes in H' under the map­
ping fa. The order rx of fa is a factor of pn — 1, and if r\pn — 1 there is a X such 
that r\ = r. 

The points x, y, z of P' are collinear if there exists elements a, b, c £ F not 
all zero such that ax + by + cz = 0, a -\- b + c = 0. It follows that 

a (fax) + b(fay) + c(<M) = Max + fry + cs) = 0 

so that </>x is a collineation. For every x G w, (X-1x)(Xw) = 1 so that \~ht con­
tains fax, that is $xz/; = \~lu. The mapping <£x has no fixed points or hyper­
planes since very point x £ P' and every u ^ H' has at least one nonzero com­
ponent implying that fax ^ x, fau ^ w provided X ̂  1. Finally fakx = \kx 
so that the order of fa is the same as the multiplicative order of X in F, which 
divides pn — 1. Further if r\pn — 1 there are elements of F of order r. For these 
elements rx = r. 

Let fa have order rx and set 

[x] = {fakx,k = 0, 1 , . . . ,rx - 1}, x G P ' . 
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I t is immediate tha t} / Ç [x] if and only if x £ [y] so tha t we can choose elements 

x\ x2, . . . , xm 6 P ' , rxm = £ / m - 1 such tha t [x1] U [x2] U . . . U [xm] is a 

part i t ion of P r . Similarly if we set 

[u] = {(j>xku, k = 0, 1, . . . , rx - 1} , u £ H' 

there exist elements u1, u2, . . . , um such tha t [ul] \J [u2] U . . . U [wm] is a 
part i t ion of i f . Since the hyperplanes 0 \ V are parallel the point xj lies on a t 
most one of them. If xj is a point of <t>x

lu\ i.e., {4>\lui)xj = 1, then (\~*(</>xV)) 
(A*xJ) = 1 so tha t ^ x - 7 is a point of <t>\l+ku\ k = 0, 1, . . . , rx — 1. If points of 
[x;] are on hyperplanes of [w2] we shall write [xj] £ [wf] f ° r convenience. I t 
follows from the above remarks tha t if [xj] £ {ur\ there exists a unique integer 
h = v{u\ xj) say, such tha t (t>x

hxJ is a point of w1'; otherwise xj is not a point of 
any of the hyperplanes of [V]. 

Let d > 1 denote any divisor of rx and let co ^ 1 be a d-th root of unity. 
Let A(<j)\, x1, x2, . . . , xw, zi1, zz2, . . . , um, co) denote the m X m matr ix (a7j) 
defined by 

(2.4) atj = | Q 
fœ'iui'xi) if [x*] 6 M 

otherwise 

for i,j = 1, 2, . . . , m where fxra = ptn — 1. 

T H E O R E M 2.2. Let </>x denote a collineation of order rx of EG(t, pn) as defined by 
2.2 (and (2.3)). Let d\rx and let w ^ 1 be a d-/& r<?0̂  o/ unity. Then the matrix 
A = A(<f>x, x1, x2, . . . , xm, w1, u2, . . . , ^m) w a GIF wa/ftx W(d, p^-^n, 
(ptn _ \)/n). 

From the construction A is an m X m matrix, rxm = ptn — 1, whose non­
zero elements are d-t\\ roots of unity. Since there are p^~l)n points on every 
hyperplane and every set [xj] can contain at most one of these points, every 
row of A contains exactly p^-^n nonzero entries. 

I t remains to be shown tha t A is orthogonal, i.e., tha t the sum 

(2.5) Q = X Uijakj 
j 

equals 0 for i ^ k. If u\ uk are parallel, then none of the hyperplanes of [ul] 
have points in common with hyperplanes of [uk] so tha t Q = 0. If u\ uk inter­
sect there are nonzero terms in the sum Q corresponding to every point x3 

which is common to a hyperplane of [u*] and a hyperplane of [uk]. F rom the 
previous discussion the hyperplane ul intersects each of the hyperplanes 
<t>x

nuk, h = 0, 1, . . . , rx — 1 in pv-vn points so tha t the sum (2.5) contains 
rxp

(t~2)n nonzero terms. For any point <t>\lxj on u' and <t>\huj we have 

u'ifaW) = 1, (<hhuk)(4>\lxj) = uk(<t>x
l-hxj) = 1 

so t ha t v(u\ xj) = /, v(uk, xj) — I — h and by (2.4) atj = <al
} akj = œl~h, 

ttijâ/cj = co\ This means tha t for every h = 0, 1, . . . , rx — 1 there are p^-2^n 
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terms of Q which have value œh and we have 

Q = p('-v*(l + co + co2 + . . . + a/*-1) = 0 

since co is a d-ih root of uni ty and d\r\. 

COROLLARY 2.3. Let p, t, r, d denote any positive integers such that p is prime, 
d\r and r\pn — 1. Then there exists a GW matrix W(d, p{t~l)n, (ptn — \)/r). 

By Lemma 2.1 there exists a X such tha t the collineation <f>\ is of order r for 
any r which is a factor of pn — 1. T h e required matr ix is given by Theorem 2.2. 

3. o - c i r c u l a n t m a t r i c e s . Let co ^ 1 denote a d-th root of uni ty . A GW 

matr ix A is o^-circulant if the i-th row of A is 

( 3 . 1 ) œan-i+2i C0aw_$+3, • • • , <̂ &n> ftl> a2, • • • , # n - i + l 

where a\, a2, . . . , an is the first row of A. In the special case d = 2, A is a 
negacyclic matrix as defined in [7]. In this section it will be shown t h a t the rows 
and columns of any GW matr ix W(d, k, m) constructed in Section 2 can be 
permuted so t ha t the resulting matr ix is an co-circulant matr ix. 

Let K denote GF(ptn) considered as an extension field of F = GF(pn) and 
let x denote a primitive element of K. The points of P' (the points of EG(t, pn) 
7e 0) can be represented by the powers x, x2, . . . , xvf = I, v' = ptn — 1. I t is 
easy to verify t ha t the mapping x defined by xxj — xj+l is a collineation. 
Rao [13] showed tha t x is also transi t ive on the hyperplanes of H' (the hyper-
planes of EG(t, pn) which do not contain 0) . 

Let a = (ptn — l)/(pn — 1) ; then the nonzero elements of F have the unique 
representation xjQ, j = 0, 1, . . . , pn — 2. Let r be a factor of pn — 1, rs = 
pn — 1; then xSQ G F and the mapping \pT = (x)sq is a collineation of order r 
and is a mapping <f>\ of Section 2 with X = xsq. Set m = sq and let xj = xjx, 
j — 1, 2, . . . , m. If u is any hyperplane of i / r set wz = xz^ — {xj+i, xj Ç wj, 
i = 1, 2, . . . , m. (Note t ha t the superscript in x3 is also a power of x in this 
case). 

T H E O R E M 3.1. Let r\pn — 1, rs = pn — 1, m = sq, and let \pr, xl, x2, . . . , xm, 

u1, u2, . . . , um be defined as above. Let d\r, co ^ 1 be a d-th root of unity, and let 
B = (°tj) = {-M^SJ x1, x2, . . . , xm, u1, u2, . . . , um) as defined in Section 2. Then 
B is a œ-circulant GW matrix W(d, p(l-vn, m). 

Let \pr
hxj be a point of ul so t ha t v(u\ xj) = h and btj = co\ Then x'*Prkxj is 

a point of yfu1. If 7 < m, x^rhxj = $rhx'xj — ^r
hxj+l so t ha t bi+iJ+i = œh. 

If j = m then \f/r
hxj+1 = \ps

h+1x is in ui+1 and bi+iti = œh+1. This implies 3.1 so 
tha t B is co-circulant. 

Several corollaries are immediate. 

COROLLARY 3.2. If p, t, r and d are positive integers such that p is prime, d\r and 
r\pn — I there exists an œ-circulant matrix W(d, p(t~1)n, (ptn — 1)/V). 
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COROLLARY 3.3. If p is an odd prime there exists a negacyclic matrix 

W(2,p^~l)n. (ptn - l)/r) for every even factor r of pn - 1. 

COROLLARY 3.4. There exists an ^-circulant conference matrix W(d, pn, pn + 1) 
for every divisor d of pn — 1. 

The first corollary is a restatement of the theorem. The second corollary is 
obtained by taking d — 2 where r = 2rf and the third corollary by taking 
r — pn — 1. If p is odd the matrix in Corollary 3.4 becomes a negacyclic 
conference matrix if we take d = 2 (which is a divisor of pn — 1). 

The above ideas are illustrated in the following example. Consider EG(2, 11). 
The polynomial x2 = 10x + 4 is a primitive polynomial so tha t the 120 points 
7± 0 can be represented by the powers x, x2, . . . , x120 = 1. Using the tables 
given in Rao [13] it is easy to verify t ha t the points in the hyperplane u = 
(0, 1) Ç H' are given by 

(3.2) u = {1, 6, 22, 62, 68, 69, 71, 88, 99, 103, 113} 

recording only the powers of x. Since the divisors ^ 1 of pn — 1 = 10 are 

10, 5, 2 the collineations which determine GW matrices are \pm = x'12> ^5 = 

x'24 and fa = x /60. 
The collineation i/'io determines three generalized conference matrices. If we 

write the points of u in terms of ^io we have 

u = {1, ^io52, ^ o 8 3 , ^io64, ^io95, 6, ^ o 8 7 , ^ 1 0
5 8 , ^io59, , M 0 , ^io5 l l} 

and if we let coio ^ 1 be a 10-th root of unity the first row of the corresponding 
coio-circulant generalized conference matrix 1^(10, 11, 12) is 

0, 1, coio5, coio8, coio6, coio9, 1, coio8, coio5, coio5, coio, coio5. 

If cos T^ 1 is a 5-th root of unity, the first row of the co5-circulant generalized 
conference matr ix W(5, 11, 12) is 

0 , 1 , 1 , C 0 5 8 , CO5, COS4, 1 , C 0 5
3 , 1 , 1 , CO5, 1 

and if we take œ = — 1 we obtain the conference matrix with first row 

0 , 1 , - 1 , 1 , 1 , - 1 , 1 , 1 , - 1 , - 1 , - 1 , - 1 . 

In terms of the collineation \f/5 (3.2) can be rewritten as 

u = {1, ^ 5
4 3 , 6, ^ 5

4 7, ^5
214, ^5316, ^5417, i^5220, ^ 5

2 2 1 , 22, ^ 5
2 23 j . 

Let co5 7e 1 be a 5-th root of uni ty as before. Then the first row of a second 
co5-circulant matrix, this t ime a W(5, 11, 24), has first row 

0, 1, 0, CO54, 0, 0, 1, a>54, 0, 0, 0, 0, 0, 0, a>5
2, 0, CO53, CO54, 0, 0, a;5

2, co5
2, 1, co5

2. 

Similarly, using \p2, (3.1) becomes 

u = {1, ^ 2 2 , 6, ^ 2 9, ^ 2 1 1 , 22, ^ 228, ^ 2 9 , ^239, ^ 2 43 , ^ 5 3 } 

which leads to a weighing matrix W(2, 12, 60). 
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4. Cycl ic re lat ive difference s e t s . A cyclic relative difference (CRD) set 
R(q, v, k, X) is a subset of k integers D = {du d2, . . . , dk} modulo qv such t ha t 
di — dj ^ 0 mod q for any du dj, i ^ j , and for every d ?*• 0 mod g there are 
exactly X pairs dt, dj for which dt — dj = d mod qv. A CRZ) set is a special case 
of a difference set of a group G of order gy relative to a normal subgroup i f of 
order v in which G is cyclic. If y = 1, R is an ordinary cyclic difference set with 
parameters q, k, X. The parameters of D satisfying the ident i ty k(k — 1). 
= \(q - Iv. 

T h e following lemma is required. 

L E M M A 4.1. Let r be a factor of v, rs = v and let d/ denote the integer dt reduced 

modulo qs, i = 1, 2, . . . , & where D = {d\, d2, . . . , dk} is an R(q, v, k, X). Then 

D' = {di\ d2', . . . , dh') is anR(q, s, k, Xr). 

Each of the integers d + hqs, h = 0, I, . . . , r — 1 occurs X times among the 
differences dt — dj. Each of these integers equals d modulo qs, so t ha t d occurs 
r\ t imes among the integers d( — d/ t aken modulo qs. 

A CRD set can be associated with every co-circulant matr ix constructed in 
Section 3. 

T H E O R E M 4.2. Let B = (btj) be the ^-circulant matrix W(d, p{t~l)n, sq), where 
d\r rs = pn — 1, qrs = ptn — 1, constructed in Section 3, and let 

D i = {j\bij T^ 0} mod qs, i = 1, 2, . . . , qs 

Then Dt is a CRD set R(q, s, p^-»», pv-»nr) i = 1, 2, . . . , qs. 

Consider the set of integers 

Sh = {j\x
j Ç uh\ mod q(pn - 1). 

We shall show tha t this set is a CRD set R(q, pn - 1, p^~l)n, p^~2)n). Firs t note 
t ha t Sf contains p(~un integers so t ha t k = p^l~l)n. Suppose i — j = d and 
x\ xj Ç w\ Then X ' V ' = x* so t ha t x* £ x'dw* = w*+d. I t follows t h a t dt - dj 
has a solution in ^ whenever x1 is on the hyperplanes uh, uh+d. Since these 
hyperplanes are not parallel they have p^-2)n points in common and X = 
p(t-2)n^ ^JQ difference c a n D e a multiple of q. For if i — j = kq the points xz = 

X;+A;<Z _ a X ; a n c ] x ; a r e m ^ where a G -F. I t follows tha t ul contains the origin 
and so could not be in H', a contradiction. The hyperplanes uh and uh+lQ are 
parallel for every /. 

Now consider Dt. If r = 1, i.e., \î s = pn — 1 the above remarks show tha t 
the theorem holds. If r ^ 1, then D7 can be obtained from St by reducing the 
integers of St modulo qs. To see this note t h a t the ith row of B corresponds to 
the set [uf]. If btj = coh then u' contains the point xi+hSQ. T h a t is, if xl is a point 
of u\ I = j + /w<? so tha t / £ 5 f , btj ^ 0 and j £ Dt. T h e result now follows 
from Lemma 4.1 since j = / mod sq. 
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COROLLARY 4.3. Let p, t, n be positive integers such that p is prime and t > 1. 
Then there exists an ordinary cyclic difference set with parameters ((ptn — 1)/ 
(pn- l)}p^-^\p^-^n(pn- 1)). 

This follows from the theorem by taking r = pn — 1, s = I. 

5. Project ive o - c i r c u l a n t m a t r i c e s . In this section a cyclic collineation 
in PG(t, pn) is used to construct co-circulant matrices which do not correspond 
to relative difference sets as in the case of affine co-circulant matrices of Section 3. 

The set of qt points of PG(t, pn), where q, = (p(>+i>* - l)/{pn - 1), can 
be represented by the powers x, x2, . . . , xQt = 1 of a primitive element of 
K = GF(p(t+1)n). The points of a cr-flat are the points linearly dependent on 
c + 1 linearly independent elements with respect to the subfield F = GF(pn), 
(7 = 0, 1, . . . , / — 1. A point is a 0-flat and a hyperplane is a (t — l)-flat. A 
collineation of PG(t, pn) is a transformation of the set of points P which maps 
cr-spaces on cr-spaces for all <J = 1, 2, . . . , / — 1. Singer [14] showed t ha t the 
mapping % defined by xxj = xi+l is a collineation which is transit ive on the 
set H of hyperplanes as well as transitive on the set P, i.e., if u is any hyper­
plane, the hyperplanes xfu, i — 1, 2, . . . , qt are distinct and thus represent all 
elements of H. 

A fjL-fold spread 2 of a-spaces is a collection of cr-spaces such tha t each point 
of P occurs in exactly ju cr-spaces of 2 . Rao [13] proved tha t if / + 1 and a + 1 
have p + 1 as a common factor, then a ju-fold spread of cr-flats in PG(t, pn) 
exists, where JU = q<r/qP. I t is also shown tha t the c-flats of 2 have period 
v = qt/qP, (under the collineation x) and if 5 is a c-space of 2 , then all the 
cr-spaces of 2 can be represented in the form S, \S, • • • » X"-1*^ 

LEMMA 5.1. If t is odd, every (/ — 1) space of PG(t, pn) contains a (t — 2)-
space which is invariant under the collineation \v, where v = qt/q\. 

Since t is odd a = t — 2 is odd so tha t t + 1 and a + 1 have a factor p + 1 
where p = 1. I t follows from Rao 's theorem tha t there is a p-fold spread 2 
of (/ — 2)-spaces of period v = qt/qi where /x = qt-2/qi. Let 5 be a member of 
2 . Suppose it lies in the hyperplane u; then the hyperplane ul = x*u contains 
the cr-spaces St = x^ G 2 . I t follows tha t every hyperplane contains a 
member of 2 . Fur ther xv$i = X"(x^) = XÙX^) = x ^ = Si since v is the 
period of S, showing tha t Si G u1 is invariant under xv-

Let / be odd and r a factor of q\ = pn + 1, say q\ — rs. Then qt = q\v = 
r(sv). Let 0r = xs" so tha t 6r is a collineation of period r which leaves the 
(/ — 2)-spaces of 2 fixed. Let 

[*'] = {xj, 6rx\ dr
2xj, . . .} j = 0, 1, . . . , qt - 1. 

The set [xj] contains r distinct elements for every j and the sets [x], [x2], . . . , 
[xSv] are disjoint and determine a part i t ion of P. Similarly for every u G H set 

[u] = {uy 6ru, 6r
2u, . . . } . 
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The set [u] contains r elements and if we set ul = x*u, i = 1, 2, . . . , sv, then 

the sets [u1], [u2], . . . , [uSv] are disjoint and determine a par t i t ion of H. 

These sets have properties similar to the corresponding sets defined in 

Section 2. If xj is a point of Bfu1 then 6r
kxj is a point of Br

k+hu\ However the 

hyperplanes of [u*] are not parallel. Instead they have the proper ty t ha t if xj 

is on more than one hyperplane of [u*] it is on every hyperplane. This follows 

immediately from Lemma 5.1 since every pair of hyperplanes of [u1] intersect 

in a unique (/ — 2)-space which must be the (/ — 2)-space of 2 invar iant 

under \v-

We now define a matr ix C(6r, co) = {cif) as follows. Let d > 1 be a factor of r 

and co ^ 1 a d-t\\ root of unity. Set 

r u _ V iffl,V<E Tt 
koA) CiJ - | Q o t h e r w i s e 

where T { is the set of points of ul not in Si, the invariant (/ — 2)-space of 2. 

THEOREM 5.2. Letr > 1 be a factor of qi = pn + 1, qi = rs say, and let à ^ 1 
be a factor of r and co a d-th root of unity. Let C = C{0T, co) denote a matrix con­
structed as above. Then C is an ^-circulant matrix W(d, p^-^n

} qt/r). 

The number of points of Tt is qt-\ — qt-2 = p(l-vn so t ha t the number of 
nonzero elements in each row is p^~^n. Also m = sv = sqt/q\ = qt/r. T o show 
tha t C is orthogonal, consider rows i and k and let Q = 2^ c^-c^Janalogous to 
(2.5). If [V], [uk] intersect in a (/ — 2)-space of 2 then every term of Q is zero. 
Otherwise a term will be equal to coh only if ctj = œl+h, ckj = œl for some /. 
This implies t ha t the hyperplanes dfu1 and uk contain a common point 6r

lxj 

(for some j) which is not a point of St or Sk (the subspaces of 2 ) . T h e hyper­
planes 6T

hul and uj contain qt_2 common points (i.e., a (/ — 2)-space). T h e 
spaces Si} Sk are (/ — 2)-spaces which each intersect this common space in 
(/ — 3)-spaces having a (/ — 4)-space in common and hence determine 
2ç;_3 — qt_A distinct points which correspond to zero terms of Q. T h u s the 
number of common points of dfu1 and uj which correspond to terms wh in Q 
is qt-2 — 2g.t-z + Qt-4- Since this is t rue for each h = 0, 1, . . . , r — 1, the sum 
Q is equal to 

(g,_2 - 2<Z;_3 + qt-,)(l + co + . . . + co'"1). 

This is zero since co ^ 1 is a ci-th root of uni ty and d\r. 

COROLLARY 5.3. If p, t, n, d and r are positive integers greater than one such that 
p is prime, d\r, r\pn + 1, then there exists an ^-circulant matrix W(d, / ? ( i - 1 ) w , 
(P(t+l)n _ l)/r(pn _ 1)) . 

COROLLARY 5.4. There exists an ^-circulant generalized conference matrix 
W{d, p2n, p2n + 1) for every divisor d of pn + 1. 

Corollary 5.3 is a res ta tement of the theorem and Corollary 5.4 is the special 
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case / = 3, r = pn + 1. If p is odd, the special case d = 2 is a negacyclic 
conference matrix. 

To illustrate the above ideas consider PG(3, 3). Using the primitive poly­
nomial x4 = 2xs + 1 and the tables in Rao [13] we find tha t the hyperplane 
u = (0, 0, 0, 1) contains the points 

(5.2) u = {1, 2, 3, 9, 17, 19, 24, 26, 29, 30, 35, 38, 39} 

recording only powers of x. In this case pn + 1 = 4. Taking r = 2, 02 = x20> 
w can be rewritten as 

(5.3) u = {1, 2, 3, 024, 026, (9, 029), 021O, 0215, 17, 0218, (19, 0219)} 

from which we deduce the negacyclic matrix W{2, 19, 20) whose first row is 
given by 

0, 1, 1, 1, - 1 , 0, - 1 , 0, 0, 0, - 1 , 0, 0, 0, 0, - 1 , 0, 1, - 1 , 0. 

Taking r = 4 04 = x10> (5.2) can be rewritten as 

(5.4) u = {04
3O, 1, 2, 3, 04

24, 04
35, 04

26, 047, 04
38, (9, 049, 04

29, 04
39)| 

corresponding to the co4-circulant generalized conference matrix W(4, 9, 10) 
with first row 

co4
3, 1, 1, 1, a>4

2, co4
3, co4

2, C04, co4
3, 0 

or if we prefer 

0, CO43, 1, 1, 1, co4
2, co4

3, CO42, co4, co4
3 

where co4 T^ 1 is a 4-th root of unity. Taking d = 2 we have as a special case 
the negacyclic matr ix with first row 

0, - 1 , 1 , 1 , 1 , 1 , - 1 , 1 , - 1 , - 1 . 

In this caes S is a spread of lines with JU = 1 v — 10. The invariant line / 
in u given by (5.2) is immediate from (5.4) (or 5.3), / = {9, 19, 29, 39} = 
{9, 049, 04

29, 04
39} and S is the set of lines lj = x

jh j = 0, 1, . . . , 9. 
This method provides a simple al ternative method for obtaining S in case 

a = t — 2. To illustrate the case fx ^ 1 we find the 5 fold spread of 3-spaces of 
PG(5, 2) . 

Again using the tables in Rao and using the hyperplane u = (1, 0, 1, 0, 0, 0) 
we find the points of u are given by 

(5.5) u = {0, 1, 2, 4, 9, 10, 12, 14, 15, 16, 19, 20, 21, 22, 24, 25, 26, 27, 28, 

35, 37, 39, 42, 43, 46, 50, 53, 55, 56, 58, 59} 

where this time the integers are taken modulo 63 and r = 3, 03 = x21> M — 5, 
v — 21. In term of 03, (5.5) has the representation 

(5.6) u = {(0, 03O, 03
2O), (1, 031, 032, 1), 2, 033, (4, 034, 03

24), 035, 036, 037, 03
28, 

9, 10, 03
211, 12, 03

213, (14, 0314, 03
214), 15, (16, 0316, 03

216), 17, 0318, 19, 20} 
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T h e 3-spaces of 2 are immediate. If we set M = {0, 1, 4, 14, 16}, II = M U 
dzM U 03

2M, the 3-spaces of S are given by Ut = x ' n , j = 0, 1, . . . , 20. 
The representation (5.6) also provides us with the first row of the correspond­

ing co3-circulant matr ix W(3, 16, 21), namely 

0, 0, 1, co, 0, co, co, co, co2, 1, 1, co2, 1, co2, 0, 1, 0, 1, co, 1, 1. 

6. Non-circulant affine GW matrices. A collineation in EG(t, pn) was 
used in Section 2 to construct a family of G W matrices which were shown to be 
co-circulant in Section 3. In this section a different method is used to construct 
another family of GW matrices related to EG(t, pn). 

Let the ptn points of EG(t> pn) be represented as pairs (%, y) where x = 

(xi, x2, . . . , xt-i)
T, Xi, x2, . . . , xt-i, y G F = GF(pn). Let the pairs (u, v), 

u = (u\j U2, . . . , ut-i)i U\, U2, . . . , ut-i, v G F represent the hyperplanes 

(6.1) y = ux + v 

i.e., the point z = (x, 3;) is on the hyperplane w = (u, v) if (6.1) is satisfied. 
Let G denote any subgroup of order pa (1 g a ^ n) of the addit ive group F+ 

of F. If z is in the hyperplane w then z -\- g = (x, y + g) is on the hyperplane 
w + g = (w, z; + g) for all g (z G. Fu r the r the hyperplanes w + g are parallel 
for all g £ G. 

Let P " denote the set of points z of EG(t, pn) and i P ' the set of hyperplanes 
w satisfying (6.1). Let 

W = {z + g,ge G}, [w] = {w + g,ge G). 

This mapping z —-> [2] clearly determines a par t i t ion of P " and the mapping 
w —• [w] a part i t ion of H". Let 21, z2, . . . , z&, (3 = ptn~a denote any set of points 
such t ha t the sets [21], [z2], . . . , [z^] are disjoint and determine a par t i t ion of 
F" and similarly let wl, w2, . . . , w& denote hyperplanes such tha t [w1], [w2], 
. . . , [w&] is a part i t ion of if". 

If a point 2 is on a hyperplane w -\- g then 2 + g' is on the hyperplane 
w + g + g'. Since the hyperplanes w + g, w + g + g' are parallel the point 
z + gf cannot lie on the hyperplane w. T h u s only one point of [z] can be on 
any hyperplane of [w], and if z lies on a hyperplane of [u] as also does z + g 
for every g G G. 

T h e elements of G can be represented as g = (gu g2, . . . , ga) where gj, 
j = 1, 2, . . . , a are residue classes of integers modulo p. Let 7(g) = gi + g2 + 
. . . + ga mod >̂ and let co ^ 1 denote a ^>-th root of uni ty. Let D (G) denote the 
13 X P matr ix (d l 7) defined by 

(6.2) du={f' «-'€»< + * 
v ' " l 0 otherwise 

f o r t , j = 1,2, . . . ,18. 
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T H E O R E M 6.1. Let G denote a subgroup of F+ or order pa (1 ^ a ^ n) and let 

D(G) be a (3 X P matrix constructed as above. Then D(G) is a GW matrix 

W(j>,pw,P). 

From the above remarks the number of nonzero entries in any row equals 
the number p(l-vn of points on a hyperplane of EG(t, pn). To prove D(G) is 
orthogonal consider the i-th and k-th rows and the sum Q = U ;- dijdkj where 
dij} dhj are denned by (6.2). Each term is 0 or wh for 0 ^ h ^ p — 1. Suppose 
g £ G and y (g) = h.lîw1 + g and w* intersect in a point s j + g' with y(gf) = 
h', then zj £ w* + g — g', zj £ wk —J^yig — gf) = h — h' and Y ( — g') = — fe' 
so t ha t d0- = c/~A ', d^- = œ~h', d j / / / c i = co\ Since the hyperplanes w' + g, wk 

intersect in p^~^n points there are pe-u* terms of Q equal to œh corresponding 
to g. But there are pn~1 elements of g G G such tha t y (g) — h so tha t there are 
pn-\p(t-2)n _ p(t~\)n - i t e rms of Q equal to co\ Since this number is the same for 
all h = 0, 1, . . . ,p - 1, 

Q = pV-l)n-l(l + œ + _ f + ^ - 1 ) = 0. 

COROLLARY 6.2. If p, t, n and a are positive integers such that p is prime t > 1 
and 1 ^ a ^ n, then there exists a GW matrix W(p} p^~l^n

} pm~a). 

Notice t ha t if Ga denotes a subgroup of order pa then there is a nest of 
subgroups 

Gi C G2 C . . . C G» = /"". 

I t follows tha t the corresponding matrices D(Gi), D(G2), . . . , D(Gn) can be 
constructed sequentially. Each element of D(Gj) corresponds in an abvious 
way to a p X p submatr ix of D(Gj-i), j = 2, . . . , n. 

I t is conjectured tha t the GW matrices D(G) constructed in this way are not 
equivalent to co-circulant matrices. 
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