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FAMILIES OF GENERALIZED WEIGHING MATRICES
GERALD BERMAN

Generalized weighing (GW) matrices are orthogonal matrices whose non-
zero entries are roots of unity. Several families are constructed with the aid of
finite geometries which include as special cases interesting examples of con-
ference matrices and weighing matrices. The concept of negacyclic matrices
is generalized to w-circulant matrices where w # 1 is a d-th root of unity and
it is shown that the rows and columns of a family of GW matrices constructed
from EG(t, p") can be permuted so that the resulting matrices are w-circulant.
It is also shown that these matrices correspond to a family of relative difference
sets. A second family of GW matrices is constructed from the projective geo-
metry PG(¢, p*) which are w-circulant but which do not correspond to difference
sets. The method gives a simple construction for a p-fold spread of (1 — 2)-
spaces of PG (¢, p"). Finally another family of GI¥ matrices is constructed from

EG(t, p*) in a different way. It is conjectured that these are not equivalent to
w-circulant matrices.

1. Introduction. A generalized weighing (GW) matrix W(d, k, m) is a
square m X m matrix all of whose non-zero entries are d-th roots of unity such
that AA* = kI where 4* = (a,;) is the conjugate transpose of 4 and I = 1I,.
It follows thatA/%A is a unitary matrix so that 4¥4 = kI and every row and
column of 4 has exactly k nonzero entries.

Weighing matrices, the special case W(2, k, m), have been studied exten-
sively. The name comes from their application in accuracy of measurements by
Yates [17]. They have recently been studied in connection with combinatorial
designs by Mullin [9], Mullin and Stanton [10], and Berman [2; 3]. An applica-
tion ot coding theory has been considered by Pless [12]. Related negacyclic
codes were first studied by Berlekamp [1]. Hadamard matrices are the special
cases W (2, k, k) in which there are no zero entries. Generalized Hadumard
matrices W(d, k, k) were considered by Butson [4;5]. These matrices have also
been studied in connection with combinatorial designs by Shrikhande [15] and
in connection with codes by Delsarte and Goethals [6]. The special case
W (2, m — 1, m) are C-matrices or conference matrices which were studied by
Goethals and Seidel [8]. Negacyclic C-matrices were considered by Delsarte,
Goethals and Seidel [7].

Many of the properties of weighing matrices and generalized Hadamard
matrices also hold for GW matrices. Equivalent matrices are obtained by
permutations of rows and columns. If a row or column of W(d, k, m) is multi-
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plied by a d-th root of unity the resulting matrix is an equivalent W (d, k, m).
This implies that a normalized form can be defined in which the first entry of
each row and column is 1 and if the first 1 in the j-th column (row) occurs in
position \;, then \; £ \; for j < k.

New GM matrices can be constructed from known matrices just as in the
case of Hadamard matrices or weighing matrices. For example, if a row or
column of W(d, k, m) is multiplied by an e-th root of unity the result is a
W(LCM(d, e), k, m). New GW matrices can also be obtained in terms of the
Kronecker product: if 4, is a W(di, ki, m,) and A, is a W(ds, ks, m») then
Ay X Aqgisa W(LCM (dy, d2), kiks, mims). Such constructions may be used to
obtain new GM matrices from those constructed in this paper.

In Section 2 collineations of order 7 in £G (¢, p") are used to construct GW
matrices W(d, p=0", (p™ — 1)/r) for every divisor of r, where r is any factor
of p» — 1. If pis odd, and d =t = 2, r = p" — 1, the corresponding GW
matrix W(2, p", p"* + 1) is a conference matrix. The weighing matrices con-
structed in [2] are also a special case.

In Section 3 w-circulant matrices are defined which generalize negacyclic
matrices. It is shown that the rows and columns of the matrices constructed in
Section 2 can be permuted into this form. The ideas are illustrated by con-
structing a number of w-circulant matrices associated with EG(2, 11) including
a W(2, 11, 12). It is shown in Section 4 that this family of GW matrices is in
1-1 correspondence with a family of cyclic relative difference sets which param-
eters (¢, s, pU=07, pU=22/y) where ¢ = (p™ — 1)/(p" — 1) and rs = p* — 1
analogous to those constructed by Butson [5] for generalized Hadamard
matrices.

In Section 3 it is shown that a similar construction can be carried out in
PG(t, p*) to obtain another family of GW matrices W(d, p¢—b%, ¢/ (p* + 1))
where ¢ is odd and d|p* + 1, which are also w-circulant but are not associated
with relative difference sets as in the case of the family of Section 3. Instead it is
shown that these matrices correspond to p-fold spreads of (¢ — 2)-spaces of
PG(t, p*). As an example the w-circulant matrix W (3, 15, 21) associated with
PG(5, 2) is constructed. This leads to the determination of a 5-fold spread of
the 3-spaces of PG (5, 2) in a different way than that given in Rao [13].

In Section 6 any subgroup of the additive group of GF(p") is used to con-
struct a GW matrix W(p, pt'=b" p"=) for any @, 1 = a < n. The construction
is a generalization of the method used by Vanstone and Mullin [16] to con-
struct weighing matrices in the special case p = 2. It is conjectured that the
rows and columns of these matrices cannot be permuted so that the resulting
matrix is w-circulant.

2. Affine GW matrices. The p!" points of the Euclidean geometry E =
EG(t, p") can be represented by the f-tuples or column vectors

x = (21, %0 ...,%)7, ;€ F,i=1,2,...,¢
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where F = GF(p"). The hyperplanes of E are the sets of points which satisfy
linear equations and coefficients in F. Let P’ denote the set of p” — 1 points
not including the origin 0 = (0, 0, ..., 0)7 and let H' denote the set of
p™ — 1 hyperplanes which do not include 0. Every hyperplane « ¢ H’ satisfies
a linear equation which can be expressed in the form w1 4 uexs + . .. 4 ux,
= 1 with not all u, zero, so that the elements of H’ can be represented by the
set of {-tuples or row vectors

= (ty, ty, ..., u,), u; € F,i=1,2,...,1

with « # (0, 0, ..., 0). Using matrix notation the equation satisfied by
u € H' can be written as

21) ux=1, x€ P, uc H,

and we say that the point x is on the hyperplane « or u contains the point x
and write x € u if the pair x, « satisfies (2.1). It follows that a point x € P’ is
on pU—b* hyperplanes of H' and a hyperplane # € H' contains p{~Y" points
of P'.

A collineation ¢ is a transformation of E which preserves collinearity. The
order of ¢ is the smallest integer » such that ¢” is the identity transformation.
Let ¢\ denote the mapping defined by

(2.2) éx = A = (A\xg, Axg, ..., A\Xy)
where \ is a nonezro element of F.

LEmMA 2.1, The mapping éx, N € F, X # 0 1s a collineation of E which maps
the hyperplane 1 onto the hyperplane \~1u, 1.e.,

(2.3) e = N = (N lug, N, L., N uy).

If N 5~ 1 there are no fixed points in P’ or fixed hyperplanes in H' under the map-
ping ér. The order vy of i is a factor of p* — 1, and if r|p™ — 1 there is a N such
that ry = r.

The points x, y, z of P’ are collinear if there exists elements «, b, ¢ € F not
all zero such that ax + 0y + ¢z = 0,a + b0 + ¢ = 0. It follows that

a(drx) + b(dy) + c(drz) = Nax + by +¢2) =0

so that ¢, is a collineation. For every x € u, (\"'x)(\t) = 1 so that A~'u con-
tains ¢\x, that is ¢au = A ~'u. The mapping ¢, has no fixed points or hyper-
planes since very point x € P’ and every u € H' has at least one nonzero com-
ponent implying that ¢yx # x, ¢ # u provided N # 1. Finally ¢\fx = NMx
so that the order of ¢, is the same as the multiplicative order of X\ in F, which
divides p" — 1. Further if 7|p® — 1 there are elements of F of order 7. For these
elements r\, = 7.
Let ¢\ have order 7, and set

[x]={d))\kx,k:O,l,...,r)\—l}, xEP/
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Itisimmediate thaty € [x]if and only if x € [y]so that we can choose elements

XL x? ..., x™ € P, rnm = p™ — 1 such that [x] U [x2]U...U[x"] is a
partition of P’. Similarly if we set

[w] = {fu,k=0,1,...,n —1}, u€ H
there exist elements u!, 2, ..., #™ such that [u'] U [u?] U ... U [u™] is a

partition of H'. Since the hyperplanes ¢\u? are parallel the point x7 lies on at
most one of them. If x7 is a point of ¢\'u?, i.e., (r'u’)x? = 1, then (N (pp'u?))
(Mx?) = 1 so that ¢\*x7 is a point of g'**u’, & = 0, 1,...,rn — 1. If points of
[x7] are on hyperplanes of [u#'] we shall write [x’] € [u?] for convenience. It
follows from the above remarks that if [x/] € (u'] there exists a unique integer
h = v(u?, x?) say, such that ¢\"x7 is a point of #?; otherwise x7 is not a point of
any of the hyperplanes of [#7].

Let d > 1 denote any divisor of 7, and let w # 1 be a d-th root of unity.
Let A (¢, x1, x2, ..., x™, ul, u?, ..., u™, w) denote the m X m matrix (a,;)
defined by

(e i )
24) a4y = lO otherwise

fore,7 =1,2,...,m where rnm = p" — 1.

THEOREM 2.2. Let ¢y denote a collineation of order ry of EG(t, p*) as defined by
2.2 (and (2.3)). Let d|ry and let » # 1 be a d-th root of unity. Then the matrix
A = A, xb, x2, .., x™, uly ud ..., u™) 1s a GW matrix W(d, p¢=b=,
(p™ — 1)/n).

From the construction 4 is an m X m matrix, rnm = p™ — 1, whose non-
zero elements are d-th roots of unity. Since there are '~V points on every
hyperplane and every set [x’] can contain at most one of these points, every
row of A contains exactly p¢*~V" nonzero entries.

It remains to be shown that 4 is orthogonal, i.e., that the sum

(25) Q= 2 ai@,

equals 0 for ¢ # k. If u?, u* are parallel, then none of the hyperplanes of [u]
have points in common with hyperplanes of [1%] so that Q = 0. If «?, ¥ inter-
sect there are nonzero terms in the sum Q corresponding to every point x/
which is common to a hyperplane of [#7] and a hyperplane of [#*]. From the
previous discussion the hyperplane u! intersects each of the hyperplanes
ok, b =0,1, ..., n —1in p—b" points so that the sum (2.5) contains
np~" nonzero terms. For any point ¢p'x? on u' and ¢\"u’ we have

ut(gr's’) =1, (e"u") (dr'x’) = uf(p'~"x7) =1

so that »(u?, x7) = [, v(u¥, x7) =1 — h and by (2.4) ay; = o', ar; = o,
a;;dr; = " This means that for every & = 0, 1, ..., r, — 1 there are p(*=?"
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terms of Q which have value o" and we have
Q=p""2"A4+w+ w4+ ... +aon1) =0
since w is a d-th root of unity and d|r,.

COROLLARY 2.3. Let p, t, v, d denote any positive integers such that p is prime,
dlr and r|p" — 1. Then there exists @ GW matrix W(d, pt=v", (p™ — 1)/r).

By Lemma 2.1 there exists a A such that the collineation ¢, is of order 7 for
any r which is a factor of p* — 1. The required matrix is given by Theorem 2.2.

3. o-circulant matrices. Let w # 1 denote a d-th root of unity. A GW
matrix 4 is w-ctrculant if the i-th row of 4 is

(B.1)  Wlpeigay Oy ihay « « vy Wlyy A1y A2y o o vy Uy iy

where a1, aq, ..., a, is the first row of A. In the special case d = 2, 4 is a
negacyclic matrix as defined in [7]. In this section it will be shown that the rows
and columns of any GW matrix W(d, k, m) constructed in Section 2 can be
permuted so that the resulting matrix is an w-circulant matrix.

Let K denote GF(p™) considered as an extension field of F = GF(p*) and
let x denote a primitive element of K. The points of P’ (the points of EG (¢, p*)
# 0) can be represented by the powers x, x2, ..., x" = 1,9 = p™ — 1. It is
easy to verify that the mapping x’ defined by x’x’ = x’*! is a collineation.
Rao [13] showed that x’ is also transitive on the hyperplanes of /' (the hyper-
planes of EG(¢, p") which do not contain 0).

Letg = (p™ — 1)/(p" — 1); then the nonzero elements of F have the unique
representation x4, j = 0, 1, ..., p" — 2. Let » be a factor of p* — 1, rs =
p" — 1; then x% € F and the mapping ¢, = (x’)* is a collineation of order »
and is a mapping ¢, of Section 2 with N = x°% Set m = sq and let x7 = x’x,

j=1,2,...,m If uis any hyperplane of H' set u’ = x'u = {x/+!, x7 € u},
1=1,2,...,m. (Note that the superscript in x7 is also a power of x in this
case).

THEOREM 3.1. Let r|p" — 1, rs = p" — 1, m = sq, and let ¢, x', x2, . .., x™,
uly u?, ..., u™ be defined as above. Let d|r, % 1 be a d-th root of umty, and let

B = (b“) = (Ayy,, xb x? .., 1™ ul, u? ..., u™) as defined in Section 2. Then
B is « w-ctrculant GW matrix W(d, pU'=0", m).

Let ¢,"x7 be a point of #® so that v(u?, x’) = h and b;; = w" Then x'¢,*x7 is
a point of x'ul. If j < m, x'¥,"x7 = ¢ x'x7 = "« so that b1 ;41 = o™
If j = m then ¢,"x’*! = ¢y xis in u™ and b,1,1 = "L This implies 3.1 so
that B is w-circulant.

Several corollaries are immediate.

COROLLARY 3.2. If p, t, r and d are positive integers such that p is prime, d|r and
r|lp® — 1 there exists an w-circulant matrix W(d, p¢=o", (p™ — 1)/r).
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COROLLARY 3.3. If p is an odd prime there exists a megacyclic matrix
W (2, pt=bn (p™ — 1)/r) for every even factor r of p* — 1.

COROLLARY 3.4. There extsts an w-circulant conference matrix W(d, p*, p* + 1)
for every divisor d of p" — 1.

The first corollary is a restatement of the theorem. The second corollary is
obtained by taking d = 2 where r = 2¢' and the third corollary by taking
r =p" — 1. If p is odd the matrix in Corollary 3.4 becomes a negacyclic
conference matrix if we take d = 2 (which is a divisor of p" — 1).

The above ideas are illustrated in the following example. Consider EG (2, 11).
The polynomial x? = 10x + 4 is a primitive polynomial so that the 120 points
# 0 can be represented by the powers x, x2, ..., x2° = 1. Using the tables
given in Rao [13] it is easy to verify that the points in the hyperplane u =
(0, 1) € H' are given by

3.2) u=1{1,6,22,62,68, 69,71, 88, 99, 103, 113}

recording only the powers of x. Since the divisors # 1 of p” — 1 = 10 are
10, 5, 2 the collineations which determine GW matrices are ¥ = x'12, 5 =
Y2 and ¢y = %0,

The collineation 1y determines three generalized conference matrices. If we
write the points of u in terms of ;0 we have

u = {1, ¥1°2, ¥10%3, ¥10°4, ¥10°5, 6, Y1037, ¥10°8, Y1679, Y1010, Y111}

and if we let wyo # 1 be a 10-th root of unity the first row of the corresponding
wyp-circulant generalized conference matrix W (10, 11, 12) is

9 5 5
0,1, wic®, w108y w10®, wi0?, 1, w108, w10®, w10, wio, w10®.

If ws % 1 is a 5-th root of unity, the first row of the w;-circulant generalized
conference matrix W (5, 11, 12) is

0,1, 1, w3 ws, ws*, 1, w53, 1, 1, w5, 1
and if we take @ = —1 we obtain the conference matrix with first row
o1, -1,1,1,-1,1,1, -1, —1, —1, —1.
In terms of the collineation ¥; (3.2) can be rewritten as
w = {1, ¥5*3, 6, ¥5'7, ¥s214, 5316, ¥:117, ¥5220, ¢5221, 22, 5223},

Let ws % 1 be a 5-th root of unity as before. Then the first row of a second
ws-circulant matrix, this time a W(5, 11, 24), has first row

0,1,0, w4 0,0, 1, w4 0,0,0,0,0, 0, w;?, 0, w3, ws*, 0,0, ws?, w2, 1, ws?.
Similarly, using ¢», (3.1) becomes

u = {1, 22, 6, 29, Yall, 22, 128, 29, 239, ¥243, Y153}
which leads to a weighing matrix W (2, 12, 60).
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4. Cyclic relative difference sets. A cyclic relative difference (CRD) set
R(q, v, k, \) is a subset of k integers D = {d, ds, . . ., d;} modulo gv such that
d; — d; # 0 mod ¢ for any d,, d;, © # j, and for every d # 0 mod ¢ there are
exactly \ pairs d;, d, for which d; — d; = d mod gv. A CRD set is a special case
of a difference set of a group G of order gv relative to a normal subgroup H of
order » in which G is cyclic. If » = 1, R is an ordinary cyclic difference set with
parameters g, k, \. The parameters of D satisfying the identity k(k — 1).
= Ngq — 1.

The following lemma is required.

LemMA 4.1. Let 7 be a fuctor of v, rs = v and let d;' denote the integer d; reduced

modulo gs, 1 = 1,2,..., kwhere D = {dy,ds, ..., d;} 1san R(q, v, k, \). Then
D' = {d/,dY,...,d '} isan R(q, s, k, ).
Each of the integers d + hgs,h = 0,1, ...,7 — 1 occurs \ times among the

differences d; — d;. Each of these integers equals d modulo gs, so that d occurs
r\ times among the integers d;/ — d; taken modulo g¢s.

A CRD set can be associated with every w-circulant matrix constructed in
Section 3.

THEOREM 4.2, Let B = (b;;) be the w-circulant matrix W (d, p¢=b", sq), where
dlrrs = p* — 1,qrs = p" — 1, constructed in Section 3, and let

D; = {jlby; # 0} modgs, i=1,2,...,¢s
Then D;is a CRD set R(q, s, p=0", pU=2%) ¢ = 1,2,...,gs.
Consider the set of integers
Sy = {jlx? € u*} mod q(p* — 1).

We shall show that this set is a CRD set R(gq, p* — 1, pt=b* pU=2") First note
that S; contains p¢ —P" integers so that k& = pU~Y" Suppose 7 — j = d and
xf, x7 € w" Then x'%7 = x* so that ' € x'%u" = u"*% It follows that d;, — d;
has a solution in S, whenever x7 is on the hyperplanes u”, u"t% Since these
hyperplanes are not parallel they have p{~»" points in common and \ =
pt=2" No difference can be a multiple of ¢q. For if ¢ — j = kq the points x? =
x* = qx? and x7 are in #*, where a € F. It follows that u? contains the origin
and so could not be in H’, a contradiction. The hyperplanes " and «"*% are
parallel for every [

Now consider D,. If r = 1, i.e., if s = p" — 1 the above remarks show that
the theorem holds. If » 5 1, then D, can be obtained from S; by reducing the
integers of S; modulo ¢s. To see this note that the 7th row of B corresponds to
the set [#?]. If b;; = o" then ' contains the point x7+"¢ That is, if x' is a point
of ut, | = j 4 hsq so that I € Sy, b;; # 0 and j € D,. The result now follows
from Lemma 4.1 since j = [ mod sq.
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COROLLARY 4.3. Let p, t, n be positive integers such that p is prime and t > 1.
Then there exists an ordinary cyclic difference set with parameters ((p™ — 1)/

(0" = 1), U, pi=2n (gt — 1),

This follows from the theorem by takingr = p* — 1,5 = 1.

5. Projective w-circulant matrices. In this section a cyclic collineation
in PG (t, p") is used to construct w-circulant matrices which do not correspond
to relative difference sets as in the case of affine w-circulant matrices of Section 3.

The set of g, points of PG(t, p*), where ¢; = (pU+tbr — 1)/(p" — 1), can
be represented by the powers x, x?, ..., x% = 1 of a primitive element of
K = GF(pt*+b"). The points of a ¢-flat are the points linearly dependent on
o + 1 linearly independent elements with respect to the subfield F = GF(p"),
c=0,1,...,¢t— 1. A point is a 0-flat and a hyperplane is a (¢ — 1)-flat. A
collineation of PG(¢, p") is a transformation of the set of points P which maps
a-spaces on g-spaces for all ¢ = 1, 2, ..., t — 1. Singer [14] showed that the
mapping x defined by xx? = x*! is a collineation which is transitive on the
set H of hyperplanes as well as transitive on the set P, i.e., if «# is any hyper-
plane, the hyperplanes x'u, 7 = 1, 2, ..., g, are distinct and thus represent all
elements of H.

A p-fold spread Z of a-spaces is a collection of o-spaces such that each point
of P occurs in exactly u o-spaces of Z. Rao [13] proved thatift + 1 and ¢ + 1
have p + 1 as a common factor, then a u-fold spread of s-flats in PG (¢, p")
exists, where u = ¢,/¢q,. It is also shown that the o-flats of £ have period
v = q,/q,, (under the collineation x) and if S is a o-space of Z, then all the
o-spaces of 2 can be represented in the form S, xS, ..., x*~\S.

LEMMA 5.1. If ¢t is odd, every (t — 1) space of PG(t, p") contuins a (t — 2)-
space which is invariant under the collineation x’, where v = q,/q.

Since tisodd ¢ = t — 2 is odd so that { + 1 and ¢ 4+ 1 have a factor p + 1
where p = 1. It follows from Rao’s theorem that there is a u-fold spread Z
of (t+ — 2)-spaces of period v = ¢q,/q1 where p = ¢,_2/q1. Let S be a member of
2. Suppose it lies in the hyperplane u; then the hyperplane u#* = x'u contains
the o-spaces S; = xS € Z. It follows that every hyperplane contains a
member of Z. Further x'S; = x"(x'S) = x*(x*S) = x’S = .S, since v is the
period of S, showing that S; € uis invariant under x’.

Let ¢ be odd and 7 a factor of ¢; = p* + 1, say ¢1 = rs. Then ¢, = quw =
r(sv). Let 6, = x* so that 6, is a collineation of period » which leaves the
(t — 2)-spaces of Z fixed. Let

(2] = {x7,6,x7,0,%7, ...} j7=0,1,...,q — 1.

The set [x?] contains 7 distinct elements for every j and the sets [x], [x%], ...,
[x®*] are disjoint and determine a partition of . Similarly for every u € H set

[u] = {u, 0,u,6,u,...}.
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The set [1] contains 7 elements and if we set u® = x'u, 7 =1, 2, ..., s», then
the sets [u!], [u?], ..., [u*] are disjoint and determine a partition of H.

These sets have properties similar to the corresponding sets defined in
Section 2. If x7 is a point of 8,1 then 6,%x’ is a point of 8,*t"u’. However the
hyperplanes of [#'] are not parallel. Instead they have the property that if x7
is on more than one hyperplane of [u?] it is on every hyperplane. This follows
immediately from Lemma 5.1 since every pair of hyperplanes of [#] intersect
in a unique (f — 2)-space which must be the (¢ — 2)-space of £ invariant
under x”.

We now define a matrix C(8,, w) = (c;;) as follows. Let d > 1 be a factor of »
and w # 1 a d-th root of unity. Set

61) e = {wh if o7 ¢ T,
' Y710  otherwise

where T'; is the set of points of «’ not in S., the invariant (¢ — 2)-space of Z.
p p

THEOREM 5.2. Let r > 1 be a factor of ¢ = p" + 1, ¢1 = rs say, and let d # 1
be a factor of r and w a d-th root of unity. Let C = C(6,, w) denote a matrix con-
structed as above. Then C is an w-circulant matrix W(d, p=9", q,/r).

The number of points of 7°;is ¢,—1 — q,—2 = p*~P" so that the number of
nonzero elements in each row is p¢*=Y* Alsom = sv = sq,/q1 = q,/r. To show
that C is orthogonal, consider rows 7 and k and let Q = Z, ¢;;¢;,; analogous to
(2.5). If [u®], [u*] intersect in a (¢ — 2)-space of 2 then every term of Q is zero.
Otherwise a term will be equal to " only if ¢;; = '™, ¢;; = ' for some L.
This implies that the hyperplanes 6,"u* and #* contain a common point 6,'%’
(for some j) which is not a point of S, or S; (the subspaces of Z). The hyper-
planes §,"u, and %’ contain ¢, » common points (i.e., a (¢t — 2)-space). The
spaces S;, S; are (t — 2)-spaces which each intersect this common space in
(t — 3)-spaces having a (t — 4)-space in common and hence determine
2¢,-3 — ¢4 distinct points which correspond to zero terms of Q. Thus the
number of common points of 8,"«* and #’ which correspond to terms " in Q
18 G2 — 2¢,—3 + ¢,—4 Since this is true foreach » = 0,1,...,r — 1, the sum
Q is equal to

(qem2 — 29,5 + )l + o4 ... + ™).
This is zero since w 5 1 is a d-th root of unity and d|r.

COROLLARY 5.3. If p, t, n, d and r are positive integers greater than one such that
p is prime, d|r, r|p" 4+ 1, then there exists an w-circulant matrix W(d, pt=o",

(pt+om — 1) /r(p" — 1)).

COROLLARY 5.4. There exists an w-circulant gemeralized conference matrix

W(d, p*, p*" + 1) for every divisor d of p" + 1.

Corollary 5.3 is a restatement of the theorem and Corollary 5.4 is the special
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case t = 3, r = p" 4+ 1. If p is odd, the special case d = 2 is a negacyclic
conference matrix.

To illustrate the above ideas consider PG(3, 3). Using the primitive poly-
nomial x* = 2x3 4 1 and the tables in Rao [13] we find that the hyperplane
u = (0,0,0, 1) contains the points
(5.2) u=1{1,2,3,9, 17, 19, 24, 26, 29, 30, 35, 38, 39}
recording only powers of x. In this case p” + 1 = 4. Taking r = 2, 6, = x?°,
u can be rewritten as
(5.3) u = 11,2,3, 054, 06,6, (9,0:9), 0,10, 0215, 17, 6218, (19, 6:19)}
from which we deduce the negacyclic matrix W (2, 19, 20) whose first row is
given by

01,11, -1,0, -1,0,0,0, —-1,0,0,0,0, —1,0,1, —1,0.
Taking r = 4 60, = x'°, (5.2) can be rewritten as
(5.4) wu = {60,%0,1, 2,3, 0.4, 035, 026, 0,7, 0,38, (9, 6,9, 6,29, 6,°9)}
corresponding to the w,-circulant generalized conference matrix W (4, 9, 10)
with first row

wid, 1,1, 1, we?, 0, we?, wy, 0,0
or if we prefer

4 9
Oy w»l3y 17 ly 17 (_042, wi‘{v W4, Wy, (_043

where w; # 1 is a 4-th root of unity. Taking d = 2 we have as a special case
the negacyclic matrix with first row

0-1,111,1,-1,1, =1, —1.

In this caes X is a spread of lines with p = 1 » = 10. The invariant line /
in # given by (5.2) is immediate from (5.4) (or 5.3), [ = {9, 19, 29, 39} =
{9, 049, 6,29, 6,29} and X is the set of lines I, = x/,7 = 0,1,...,9.

This method provides a simple alternative method for obtaining Z in case
o =t — 2. To illustrate the case u # 1 we find the 5 fold spread of 3-spaces of
PG(5, 2).

Again using the tables in Rao and using the hyperplane # = (1,0, 1, 0, 0, 0)
we find the points of u are given by

(5.5) u =1{0,1,2,4,9,10, 12, 14, 15, 16, 19, 20, 21, 22, 24, 25, 26, 27, 28,
35, 37, 39, 42, 43, 46, 50, 53, 55, 56, 58, 59}

where this time the integers are taken modulo 63 and » = 3, 63 = x*!, u = 5,
v = 21. In term of 6;, (5.5) has the representation

(56) u = { (Ov 030v 0320)v (17 031v 032v 1)7 27 0337 (47 0347 0324)y 635v 0367 0377 0328)
9,10, 0,211, 12, 0,213, (14, 6,14, 6;214), 15, (16, 8516, 6;216), 17, 6518, 19, 20)
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The 3-spaces of T are immediate. If we set M = {0, 1,4, 14, 16}, I = M U
0;M \J 6,2 M, the 3-spaces of 2 are given by 1T, = x/II,j = 0,1, ..., 20.

The representation (5.6) also provides us with the first row of the correspond-
ing ws-circulant matrix W (3, 16, 21), namely

0,0,1, 0,0, 0, 0, w, w?, 1,1, w?, 1, 2,0,1,0,1, w, 1, 1.

6. Non-circulant affine GW matrices. A collineation in EG(t, p") was
used in Section 2 to construct a family of GW matrices which were shown to be
w-circulant in Section 3. In this section a different method is used to construct
another family of GIW matrices related to EG(t, p*).

Let the p™ points of EG(t, p") be represented as pairs (x, y) where x =
(%1, %9, ...y X)) T, X1, Xoy ..., X4, ¥ € F = GF(p"). Let the pairs (u, v),
u = (U, thay .., Uy 1), U1, Uy ..., U, 1,0 € Frepresent the hyperplanes

6.1) vy=ux+v

i.e., the point z = (x, ) is on the hyperplane w = (u, v) if (6.1) is satisfied.
Let G denote any subgroup of order p* (1 < a =< #n) of the additive group F*
of F. If z is in the hyperplane w then z + g = (x, y + g) is on the hyperplane
w4 g = (u,v+ g) for all g € G. Further the hyperplanes w 4 ¢ are parallel
for all g € G.

Let P’ denote the set of points z of EG (¢, p") and H"' the set of hyperplanes
w satisfying (6.1). Let

2] ={z+g g€ G}, [w]l={w+ygygcCGl

This mapping z — [z] clearly determines a partition of P and the mapping

w — [w] a partition of H'. Let 2!, 22,. .., 2%, 8 = p™ = denote any set of points
such that the sets [2'], [5%], . .., [#f] are disjoint and determine a partition of
P’ and similarly let w!, w?, ..., w® denote hyperplanes such that [w!], [w?],

., |wf] is a partition of H".

If a point z is on a hyperplane w + g then z + ¢’ is on the hyperplane
w + g + ¢’. Since the hyperplanes w 4 g, w + g + g’ are parallel the point
z 4 ¢’ cannot lie on the hyperplane w. Thus only one point of [z] can be on
any hyperplane of [w], and if z lies on a hyperplane of [u#] as also does z + ¢
for every g € G.

The elements of G can be represented as g = (g1, g2 ..., go) Where g,
j=1,2,...,aareresidue classes of integers modulo p. Let y(g) = g1 + g2 +
...+ gamod p and let w # 1 denote a p-th root of unity. Let D(G) denote the
B8 X B matrix (d,;) defined by

alg) - _J i
6.2) di = {0 otherwise

fori,j=1,2,...,8
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THEOREM 6.1. Let G denote a subgroup of F*t or order p* (1 < o < n) and let
D(G) be a B X B matrix constructed as above. Then D(G) 1s a GW matrix

W(p, pt'=b", B).

From the above remarks the number of nonzero entries in any row equals
the number p¢*—V" of points on a hyperplane of EG(¢, p"). To prove D(G) is
orthogonal consider the i-th and k-th rows and the sum Q = \U, d,,d,; where
dij, di; are defined by (6.2). Each term is 0 or " for 0 < & < p — 1. Suppose
g € Gand y(g) = h. If w' 4+ g and w* intersect in a point z7 + ¢’ with v(¢g’) =
h,thenz/ c wi+g—g,z7€cw —gv(g—¢g)=h—h and y(—¢g') = —h'
so that d;; = "™, dy; = 0™, dy,d;; = «". Since the hyperplanes w! + g, w*
intersect in p(~»" points there are p¢~D* terms of Q equal to w" corresponding
to g. But there are p"~! elements of ¢ € G such that y(g) = & so that there are
pripl—dr = p0=Dr —lterms of Q equal to w". Since this number is the same for
allk =0,1,...,p — 1,

Q= p 1wt .. 4 o) =0,

COROLLARY 6.2. If p, t, n and a are positive integers such that p is prime t > 1
and 1 < a £ n, then there exists a GW matrix W(p, pti—0", pin—e),

Notice that if G, denotes a subgroup of order p* then there is a nest of
subgroups

61CGQC...CG,,=F+.

It follows that the corresponding matrices D(G,), D(G:), ..., D(G,) can be
constructed sequentially. Each element of D(G,) corresponds in an abvious
way to a p X p submatrix of D(G;_1),j = 2,...,n.

It is conjectured that the GW matrices D (G) constructed in this way are not
equivalent to w-circulant matrices.
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