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QUANTITIES RELATED TO UPPER AND LOWER
SEMI-FREDHOLM TYPE LINEAR RELATIONS

TERESA ALVAREZ, RONALD CROSS AND DIANE WILCOX

Certain norm related functions of linear operators are considered in the very general
setting of linear relations in normed spaces. These are shown to be closely related
to the theory of strictly singular, strictly cosingular, F+ and F- linear relations.
Applications to perturbation theory follow.

1. INTRODUCTION

Several authors ([11, 15, 19, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33]) have in-
troduced operational quantities in order to obtain characterisations and perturbation
results for various classes of operators of Predholm theory. We remark that all the
above authors considered only the case of bounded linear operators in Banach spaces.
It is the purpose of this paper to consider these quantities in the more general setting
of linear relations between normed spaces.

In Section 2 we define some quantities associated with an arbitrary quantity / , and
in particular, with the measures of nonprecompactness p and K and the measure of non
strict singularity 5 5 . These quantities are related to certain quantities generated by the
norm and these relations will be applied to obtain characterisations and perturbation
results for F+ and strictly singular linear relations. Cross [8] has proved analogous
results derived from the injection modulus j ; these results are included in this section
for completeness.

In Section 3 we analyze the F- and strictly cosingular linear relations in a similar
way. First, we consider quantities derived from an arbitrary quantity / , and in particu-
lar, from the measures p and K and the measure of non strict cosingularity SC, and
exhibit several equalities used to deduce characterisations and perturbation results for
F- and strictly cosingular linear relations.

In Section 4 we study the surjection modulus q for linear relations between normed
spaces. Various quantities generated by q are defined and use to obtain properties of
F- and strictly cosingular linear relations.
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276 T. Alvarez, R. Cross and D. Wilcox [2]

NOTATIONS. We recall some basic definitions from the theory of linear relations in
normed spaces. Let X and Y denote normed spaces. A linear relation or multivalued
linear operator ([1, 20]) T in X x Y is a mapping from a subspace D(T) C X, called
the domain of T, into P(Y) \ {0} such that T(axi + 0x2) = aTxx + /3Tx2 for all
scalars a, f3 £ K and xi , x2 S D(T). The class of such relations T is denoted by
LR(X, Y). If T maps the points of its domain to singletons, then T is said to be a
single valued linear operator or simply linear operator.

The graph G(T) of T € LR{X,Y) is G(T) := {(x,y) € X x Y : x € D(T),
y e Tx}. T is closed if its graph is a closed subspace. The closure T of T is defined
by G(T) := G{T). Let M be a subspace of D{T). Then the restriction T\M is
defined by G(T\M) := {(m,y) : m e M, y € Tm}. For any subspace M of X
such that MHD(T) ^ 0, we write T\M = T\MnD(Ty The inverse of T is the
linear relation T~l defined by G ^ " 1 ) := {(y,x) G Y x X : (x,y) € G(T)}. If
T"1 is single valued, then T is called injective, that is, T is injective if and only
if its null space N(T) := T~1(0) = {0}, and T is said to be surjective if its range
R(T) :=T(D(T)) =Y.

We shall adopt the following notation: If M and JV are subspaces of X and X' re-
spectively, then Mx := {x1 6 X' : x'{x) = 0 for all x e M}, NT

:= {x € X : x'(x) = 0 for all x' € N}. The adjoint or conjugate T of T is de-
fined by G(T') := G ( - r ~ 1 ) ± C Y> x X' where ((y,x), (y',x')) := (*,*') + (y)2/')-
This means that (y',x') G G(V) if and only if y'(y) - x'(x) = 0 for all (x,y) € G(T).

For a given closed subspace E of X let Q^ (or simply, QE ) denote the natural
quotient map from X onto X/E. We shall denote <2|^y by QT , or simply by Q when
T is understood. Clearly QT is single valued. For x € D(T), \\Tx\\ := ||QTx|| and the
norm of T is denned by ||T|| := ||<5T||. We note that this quantity is not a true norm
since ||T|| = 0 does not imply T = 0.

T e LR(X, Y) is said to be continuous if for each neighbourhood V in R(T),
T- 1(V) is a neighbourhood in D(T) and T is called open if its inverse is continuous.
For linear relations, it can be shown that T is continuous if and only if ||T|| < oo (see
[8, II. 3.2]). This definition of a norm agrees with the standard definition of the norm of
a single valued linear operator. It also agrees with the norm defined for convex processes
(see Aubin and Frankowska [3]). We note that the notion for continuity adopted here
refers to the property of lower semi-continuity in set-valued analysis.

The minimum modulus of T € LR(X,Y), j(T) is defined by -y(T) := sup
{A ^ 0 : ||Tx|| ^ Xd(x, N(T)) for x e D(T)} and T is open if and only if 7(T) > 0
([8, II. 3.2]).

We denote the set {x € X : \\x\\ ̂  1} by Bx and we shall write Jx for the
injection of X into its completion X. The families of infinite dimensional, closed infinite
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[3] Semi-Fredholm type linear relations 277

codimensional, finite dimensional, finite codimensional and closed finite codimensional
subspaces of X are denoted by 1{X), £{X), T(X), C(X) and V{X) respectively.

A linear relation T e LR(X, Y) is said to be partially continuous if there exists
M € C(X) such that the restriction T \M is continuous, precompact if QTBD^ is
totally bounded, strictly singular if there is no M € l ( D ( T ) ) such that T \M is injective
and open, upper semi-Fredholm if there exists a finite codimensional subspace M of X
for which T \M is injective and open, lower semi-Fredholm if T" is upper semi-Fredholm,
strictly cosingular if s\ip{T'{QMT) : M 6 S(Y)} = 0, where F{T) := in f{ | |Q M ^yr | | :
M e £ ( ? ) } , (see [8]).

The class of partially continuous, precompact, strictly singular, strictly cosingular,
upper semi-Fredholm, lower semi-Fredholm linear relations in LR(X, Y) will be denoted
by PB(X,Y), K(X,Y), SS(X,Y), SC(X,Y), F+{X,Y) and F.(X,Y) respectively.

Continuous everywhere defined linear operators referred to as bounded linear op-
erators.

In the sequel X and Y will be denote normed spaces and T will always denote an
element of LR(X, Y) except where stated otherwise. A quantity will be a procedure
which determines for any pair X, Y of normed spaces, a map from LR(X, Y) into
[0, +00]. Let A be a subclass of the class of all linear relations between normed spaces.
Then, a quantity / is called a measure of non A if every T € LR(X, Y), T € A if and
only if /(T) = 0.

Linear relations were introduced into Functional Analysis by J. von Neumann [21},
motivated by the need to consider adjoints of non-densely defined linear differential
operators which are considered by Coddington [5], Coddington and Dijksma [6],
Dikjsma, Sabbah and De Snoo [10], among others.

Other recent works on multivalued mappings include the treatise on partial
differential relations by Gromov [16] and the application of multivalued methods to
solving differential equations by Favini and Yagi [12].

Problems in optimisation and control also led to the study of set-valued maps and
differential inclusions (see for example, Aubin and Cellina [2], Clarke [4], among others).
Studies of convex processes, tangent cones, subgradients and epiderivatives et cetera,
form part of the theory of convex analysis developed to deal with non-smooth problems
in viability and control theory, for example. Some of the basic topological properties
from this area coincide with the core of the topological results for multivalued linear
operators.

2 . F+ AND STRICTLY SINGULAR LINEAR RELATIONS

Some quantities derived from certain measures of non-precompactness and non-
strict-singularity will now be introduced.
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DEFINITION 1: Let T € LR(X, Y). The Hausdorff measure of non-precompactness
of T is p(T) := inf {A ^ 0: There exists a finite set {yi,...,yn} in Y such that

TBD(T) C U yi + XBy+T(0)}. The measure of non-precompactness K of T is defined
t=i

by fC(T) := inf{ | |T- S\\ : 5 € K(X,Y),D{T) C £>(5),5(0) C f(0)}. Analogously,
we define the measure of non-strict-singularity SS of T by SS(T) := inf{||T - S\\ : S
€ SS(X, Y), D(T) C D(S), 5(0) C f(0)} •

For bounded linear operators in Banach spaces, p appears in [15], K. in [18] and
SS in [23].

Noting that if E is a closed subspace of X then QEBX = BR(QE) , it follows
immediately from the definition that p(T) coincides with the Hausdorff measure of
non-precompactness of QT. Moreover, since if ||T|| < oo, then ||T|| = inf {A > 0 :
TBD(T) C XBR{T) + T(0)} [8, II. 1.10], we obtain that / < || || for / € {p,)C,SS}.

DEFINITION 2: Let f be any quantity. Then the quantities Tf and Ap are de-
fined by I7(T) := inf{/(T|M) : M € l(D(T))},Af(T) := aup{T,(T\M) : M
€ X(£>(T))}, with the convention that both quantities are zero when D(T) is finite
dimensional.

For bounded linear operators in Banach spaces, the quantities Tp and Ap were
introduced (independently) by Rakocevic [24] and Tylli [27]; and TK. and A*; by
Lebow and Schechter [18] (with a different notation).

In the particular case when f(T) is the norm function n(T) := \\T\\, we obtain
the quantities T(T) := Tn(T) and A(T) := An(T) which were introduced for bounded
linear operators by Gramsch [13] and Schechter [25] respectively, and generalised to
unbounded linear operators and linear relations in [7] and [8], where they are used to
characterise F+, unbounded strictly singular, and other classes of unbounded linear
operators and linear relations.

We shall also utilise the quantity (f^)(T) := inf{||T | M | | : M e V{X)}, (see [8]).

P R O P O S I T I O N 3 . Let T, S e LR(X, Y) with 5(0) c T(o). Then:

(i) j -

(ii) A(T) ^ A(T + 5) + A(5 ) .

(iii)

P R O O F :

(i) Since 5(0) C T(0) it follows that T(0) = (T + S)(0) and hence ||Tx||
= \\Tx + Sx- Sx\\ < ||Tx + 5x|| + ||5x||, x e D(T + S). Then, for
M G V(X) we have | |T|M| | ^ | | T | M ^ 5 | M | | + J | 5 | M | | and taking the
infimum over M € V{X) we obtain (ro)(T) ^ (ro)(T + 5) + (T0)(S).

(ii) The proof is similar to the preceding inequality.
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(iii) Combining [8, IV. 5.2] with the fact in this setting T(0) = (T + S)(0)

gives QT = Q^%-Qs = QT+S. Now, from [7] we have p(T)

= p{T + S-S) = p(QT+s(T + 5) - QT+SS) ^ p{T + S) + p(S) as re-
quired, ri

PROPOSITION 4 . We have:

(i) (ro)(TX/c(:r)<||T||.
(ii)

PROOF:

(i) Let 5 6 K{X,Y) such that D{T) c £>(5) and 5(0) C T(0). Then
jToj(S) = 0 [8, V. 2.2] and so by Proposition 3, (f^)(r) < (Fo)(T + 5)
^ \\T + S\\. Hence (f^)(T) ^ K{T) < ||T||.

(ii) Let 5 € SS(X, Y) with D(T) c D{S) and 5(0) C T(0). Then, since
A(5) = 0 [8, V. 2.6] from above Proposition we deduce that A(T)
< A(T + 5) ^ ||T + S\\. Therefore A(T) ̂  SS(T) ^ \\T\\. g

COROLLARY 5 . The quantities p and K are measures of non-precompactness
and SS is a measure of non-strict-singularity.

PROOF: Combine [7, 5.2], [8, V. 2.2 and V. 2.6] with Proposition 4. D

PROPOSITION 6. LetT&LR{X,Y). Then:

(i)
(ii)
(iii) T(T) = TK(T)=TSS(T).
(iii)

PROOF: Let / be either of the quantities (r0) or A. Then by [8, IV. 4.15]

(6.1) T(T) = inf {/(T \M) : M e X{D{T)) }

Now from p < || ||, we have TP{T) ^ F(T). Therefore substituting / = (r0) in
(6.1) and observing that (T0){QT) ^ 2p(QT) [7, 5.1], we obtain (i) and hence (ii).

Observing that (Fo) < /C < || || (Proposition 4), and again substituting / = (To)
in (6.1), we have T(T) = TK(T). From (6.1) with / = A and Proposition 4 it follows
that F(T) = TSs(T), proving (iii) and hence (iv). D

Parts (i) and (ii) of Proposition 6 are generalisations from Rakocevic [24].
From previous Proposition we can formulate extended versions of some earlier

results.
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THEOREM 7 . Let T € LR(X,Y) and let f £ {n,p,)C,SS}. Then:

(i) T is strictly singular if and only if A/(T) = 0.
(ii) If D(T) is infinite dimensional, then T e F+ if and only if Tf(T) > 0.
(iii) IfSe LR(X, Y) satisfies 5(0) C T(0) and A/(5) < T^T), then T+S

PROOF: Properties (i) and (ii) follow from above Proposition combined with [8,
V. 2.6 and V. 2.4].

(ii) If / = n, K. or SS, then the result is an immediate consequence of the
Proposition 6. On the other hand, if / = p, suppose that T + S £ F+. Then
dimD(T + S) = oo and according to [8, V. 2.4], T(T + S) = 0. Hence given e > 0
there exists M € l(D(T + S)) such that p(T\M + S \M) ^ | |T|M + S|W|| < e. Choose
e > 0 such that e < TP(T) — AP(S). From Proposition 3 it follows that for every in-
finite dimensional subspace N of M, p(T \N) — p(S \N) ^ p(T \N + S |jv) < e whence
p(S\N) > p{T\N) - e. Therefore Ap(5) ^ Tp{T) - e and so Tp(T) - AP(S) ^ e, a
contradiction.

Part (iii) of Theorem 7 generalises the result for bounded upper semi-Fredholm
linear operators in Banach spaces of Tylli [27]. D

We recall some quantities based on the injection modulus j . (See [8].)

DEFINITION 8: Let T e LR{X, Y). Define

j(T) := sup{A ^ 0 : | |rz|| ^ A||a;|| for all x 6 D(T)},

T(T) :=snp{j(T\M):M£l(D(T))),

T0(T) := sup{j(T |M) = M € C(X)},

(again with the convention T(T) = rQ(T) = 0 if dimZ)(T) < oo).

The injection modulus has been considered in [17, 22, 27, 29, 32] in the context
of bounded linear operators in Banach sspaces.

It is clear that Tj{T) = F(T) whenever dimD{T) = oo and Aj(T) = T(T).
Since T is strictly singular if and only if A(T) = 0 if and only if {TT) = 0 [8, V.

2.6] the quantities r and Aj are measures of non-strict-singularity.
It is shown in [8, V. 3.2 and V. 2.4] that if T(S) < ro(T) with T,S

e LR(X, Y), 5(0) C T(0), then T + S € F+, and that if dimU(T) = oo, then T € F+
if and only if TO(T) > 0.

The class of strict singular linear relations 5 with dim 5(0) < oo coincides with
the perturbation class of F+, that is, the class of linear relations P(F+) such that if
T € F+ and 5 6 P{F+), then T + 5 € F+ [8, V. 7.10]. We remark that the statement
of [8, V. 7.10] is know to be false in the context of bounded linear operators in Banach
spaces, (for details see [8, p. 175]).
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3 . F _ AND STRICT COSINGULAR LINEAR RELATIONS

In this section we study the F_-relations, paralleling our investigation of F+-
relations of the previous section. To this end, some new quantities will be introduced.

First we recall the following:

DEFINITION 9: If Y is infinite dimensional, define

T'(T) := inf{||gMJyT|| : M € £{¥)},

A'(T) := sup{r'(QMT) : M € S(Y)},

T'0(T):=mf{\\QMT\\:M€T(Y)}.

If Y is finite dimensional then all the quantities are defined to be zero.

For bounded linear operators in Banach spaces, Weis [28] define the quantities I"
and A' which also appear in [31]. (Here, F' is denoted by K because of its relation with
the Kolmogorov numbers). In this context, T'Q was introduced by Fajnshtejn [11], and
also by Zemanek [31]. These quantities are generalised to arbitrary linear operators
and linear relations in normed spaces in [9] and [8], where they serve to characterise
F- and strictly cosingular linear operators and linear relations.

These quantities are generalised as follows:
DEFINITION 10: Let / be a quantity. If dimy = oo, we define

T'f(T) := mi{f(QMJYT) : M € £(Y)},

A'f(T) := snp{T'f(QMT) : M € £(Y)},

r'of(T) :=mi{f(QMT) : M e T(Y)}.

Again, the quantities are defined to be zero if Y is finite dimensional.

The measure of non-strict-cosingularity SC will now be introduced.

DEFINITION 11: For T € LR(X,Y), we define SC(T) := inf{||T - S\\ : S

€ SC(X, Y),D(T) C D(S), 5(0) C T(0)}.

The authors believe that the quantities F ^ , A J ^ F ^ and A^c are new, even in
the case of bounded linear operators in Banach spaces. However, T'p and A'p have been
considered in the latter context by Tylli [27] (with a different notation).

We prove a generalisation of Fajnshtejn [11] (see Martindn [19, 23.1]).

PROPOSITION 12: Let T be single valued. Then T'0(T) s% p(T) with the equality

if T is continuous.

PROOF: Suppose that p(T) < a. Then there exists a finite set {yi,... ,yn} in Y

which is an a-net in TBD^. Let x € BD(T) • Then there exists j/j (1 ^ j ^ n) such

that HTx-j/jH <a.
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Let F denote the linear span of the set {yi,...,yn}. We have d(Tx,F)
= d(Tx - yj,F) < a. Hence | |QFTX| | < a, whence T'0{T) < p{T).

Now assume that T is continuous. Let T'0{T) < a. Then there exists a finite
dimensional subspace F of Y for which ||Qj?T|| < a. Let e > 0 be arbitrary.
Since ||T|| < oo, the set (||T|| + d)Bp is totally bounded and hence contains an e-
net {yi,... ,yn}- We shall verify that it is an (a + £)-net for TBD(T)- Indeed, for
each x € BD(T) we have d(Tx,F) = ||QFTx|| < a. Hence there exists y € F such
that d(Tx,F) < a, and consequently we have \\y\\ < d(Tx,y) + \\Tx\\ < a+ \\T\\.
Hence y € (||T|| + a)BF. Now choose j/;- (1 ^ j < n) so that \\y - j/j| | < e. Then
\\Tx - 2/j|| ^ \\Tx - y\\ +\\y-yj\\ ^ a + e as required. Hence p(T) ^ a + e. It follows
that p(T) <r{,(T). D

In general the inequality in above Proposition is strict; it suffices to consider an
operator T for which T'0(T) < oo but not continuous, for example a discontinuous
finite rank operator.

P R O P O S I T I O N 1 3 . We have.-

(i) r /co
(ii) r'(r)
(Hi) r(r)

PROOF:

(i) See [8, IV. 5.9].
(ii) Let S G SC(X,Y) such that D(T) c D(S) and 5(0) C T(0)- Then

A'(T) = A'(T + S-S)^ A'(JY(T + S)) < \\T + S\\ [8, IV. 5.2 and V.
5.18]. Hence (ii) holds.

(iii) Clearly T is discontinuous if and only if p(T) = oo. Accordingly we can
assume that ||T|| < oo.

Let us consider the various cases for T(0):
(a) T(0) infinite codimensional. Then by [8, IV. 5.4], part (i) and Proposition

12, we have_T(T) ^ T'(QT) ^ T'0(QT) < p(QT) ^ \\T\\.
(b) T(0) finite codimensional. In that case QT is a continuous linear operator

with finite dimensional range and applying [8, V. 1.3] we deduce that T is precompact,
that is, p(T) = 0 and also T is strict cosingular [8, V. 5.19], that is, A'(T) - 0.
Consequently T'(T) = 0.

(c) T(0) finite dimensional. This is covered by (a) if we assume without loss of
generality that dim Y = oo.

COROLLARY 14 . The quantity SC is a measure of non-strict-cosingularity.

LEMMA 15 . Let f be any quantity satisfying T' < / ^ || ||. Then V = T'f.
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PROOF: We have for M e £(Y), f(QMJyT) ^ \\QMJYT\\ and we have T'f(T)
^ T'(T). But r'(T) = F{JYT) ([8, IV. 5. 12]) ^ T'(QMJYT) ([8, IV. 5.4]). Thus
r'(r) ^ /{QMJYT) and hence T'(T) ^ T'f(T).

For the case / = r'o, this Lemma was obtained by [4, IV. 5.4]. D

PROPOSITION 16. We have:

(i) r'(r)-r;(T)-r^(T) = r^c(r).
(ii) A'(T) = A'p(T) = A'K(T) = A'sc(T).

PROOF:

(i) It suffices to apply Proposition 13 and Lemma 15.
(ii) This is an immediate consequence of (i). ri

Using Proposition 16 we can now derive generalised versions of some known re-
sults from the perturbation theory of bounded lower semi-Predholm linear operators in
Banach spaces.

THEOREM 17. For any quantity f such that T' ^ / ^ || || we have:

(i) If dim Y/T(0) = oo, then T G F_ if and only if T'f (QT) > 0.
(ii) T is strictly cosingular if and only if A'* (T) = 0.

(iii) Let T G F_ and let S G LR{X,Y) with D(T) C D{S), A'f(JYS)
< T'f(T) and d\mQTS(0) < oo. Then T + S € F- .

PROOF: By Lemma 15 we need only establish the result for / = || ||.
The properties (i) and (ii) were proved by Cross [8, V. 5.16 and V. 5.18].
(iii) Since JyT G F_ if and only if T G F_, we may suppose that Y is complete.

Moreover, by the equivalence T G F_ •» QTT G F_ [8, V. 5.2] it is sufficient to show
that QT+s(T+S) E f -

First, assume that dim 5(0) = 0, that is, S is single valued. Then since
T = T + S - S, and T(0) = (T + S)(0), we have QTT = QT+S{T + S - S) and
so from [8, IV. 5.11] we obtain that

(17.1) T\QTT) = T'(QT+S(T + S) - QT+SS) < T'(QT+S(T + S)) + A'(QTS).

Let us consider three possibilities for T(0) :
(a) dimY/T(0) = oo. Then T + S £ F_ if and only if T'(QT+s(T + S)) > 0

[8, V. 5.16]. Moreover, T'(T) ^ T'(QTT); A'(QTS) ^ A'{S) [8, IV. 5.4]. Now from
(17.1) we obtain that r ' (Q T + s (T + S)) > T'{QTT) - A'{QTS) > Y'{T) - A'(S) > 0.

(b) dim Y/T(0) < oo. In that case QTS is a linear relation with finite dimen-
sional range and since T G F_, QT+S{T + S) G F_ by [8, V. 5.12].
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(c) dim T(0) < oo. This is covered by (a) if we assume without loss of generality
that Y is infinite dimensional.

For the general case, let d imQ r S(0) < oo. For any N € T(Y), T € F_ if and
only if QNT € F. (as (QNT)' = T'JNx). Hence with F := QTS(0) € -F(F/f(0))
and combining [8, IV. 5.2] with the fact that in this setting T(0) + 5(0) = (T + 5)(0)
we have the chain of implications:

T € F_ => QTT e F_ => QFQTT = QT+S e F_.

But, since T'(QFQTT) = T'{QTT)\ A'(QFQTS) = A'(QTS) [8, IV. 5.6] it follows
from what has been shown that QT+S(T + S) € F_.

For the case f = p and bounded linear operators in Banach spaces, the statements
(i) and (iii) of Theorem 17 were obtained by Tylli [27], and (ii) by Martinon [19]. D

4. QUANTITIES DERIVED FROM THE SURJECTION MODULUS

The notion of surjection modulus (see [22, 27, 30, 31]) is generalised to linear
relations as follows:

DEFINITION 18: For T e LR(X, Y), the surjection modulus q(T) is the quantity
q(T) := sup{a ^ 0 : TBD{T) D aBY}.

The relationship between q and the minimum modulus 7 is described in the fol-
lowing proposition.

PROPOSITION 19 . Let T e LR(X,Y). Then q(T) = 0 if T is not surjective
and q(T) = 7(T) if T is surjective.

PROOF: From the definition of surjection modulus it is clear that q(T) = 0 when-
ever T is not surjective.

Suppose that T is surjective. Then q(T) — i(T) since by [8, II. 2.4] we obtain
that 7(T) = sup{A : TBD(T) D XBR{T)}. D

PROPOSITION 20 . We have:

(i) q(T')=j(T).
(ii) Ifq(T)>O,thenq(T)=j(T')._
(iii) If X is a Banach space, then q(T) = j(T').

PROOF: The linear relation T" is surjective if and only if T is injective and open
(see [8, II. 3.2 and III. 6.2]). We thus have the chain of implications, q(T') > 0 =• T
surjective and q(T') = j(T') by Proposition 19 => T is injective and open, and 0
< j(T) = 7(T) = 7(2") = q(V) [8, III. 4.6].

Now suppose that q(T') — 0. Then either T is not injective (in which case j(T)
= 0), or T is not open, that is, 7(T) = 0. It thus suffices to consider the case when T
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is injective. Then j(T) = 7 ( T ) , while y(T) = 0 (as T is not open). Thus j(T) = 0.

Hence (i) is true.

(ii) Let q(T) > 0. Then 0 < q{T) = 7 (T) = 7 (T ' ) [8, III. 4.6]. Now from

the equality N(T') = R(T)X - {0}, the linear relation T" is injective. Hence j{T')

(iii) By (ii) we may assume that q(T) = 0 (as T' = Jf). If j(T') > 0, then j(T')
= 7(T') > 0, and so V is open and injective. Let X be complete. Then 7(T) - j(T')
and since 7(T') > 0, R(T) is closed [8, III. 5.3]. Now, we have R{T) = R(T)±T

= N(T')T = Y, that is, T is surjective. Therefore q(T) = 7(T) = 7(T') = j{T')
= 0. D

For a simple example with j(T') ^ q(T), let Y be a Banach space, X a proper
dense subspace of Y and T the identity injection operator of X into Y.

Recall the following Lemma (see [14, V. 1.1]).

LEMMA 2 1 . Let M and N besubspaces of X with dimM > dimiV. Then there
exists m ^ 0 in M such that \\m\\ = d(m, N).

PROPOSITION 22 . Let D(T) be infinite dimensional. Then:

(i) j(T)<ro(T).
(ii) If dimN(T) < oo, then q(T) ^ 7(T) ^ T0(T).

PROOF: (i) First assume that T is single valued. If j(T) — 0, then the inequality
holds trivially. Accordingly we suppose that T is injective. Let F € F(Y). By
Lemma 21, there exists x e D{T), \\x\\ = 1, such that | |Ti | | = d(Tx,F). Thus

Taking the infimum over F e T{Y) gives j(T) ^ T'0(T).
For the general case, let us consider three possibilities for T(0):

(a) T(0) infinite codimensional. Then by single valued case and [8, IV. 5.4]
we have j(T) = j(QT) ^ F'0(QT) < T'0(T).

(b) T(0) finite codimensional. In that case QT is a finite rank linear operator
such that dimD(QT) = oo and consequently QT is not injective, that
is,

(c) T(0) finite dimensional. This case is covered by (a) if we assume without
loss of generality that dim Y = oo.

(ii) First we prove the property when T is single valued. Let M G C(D(T)).
Clearly 7(T) ^ 7(T|M + i V(T)) • Suppose that dimiV(T) < oo. By Lemma 21, there
exists m0 / 0 in M such that ||mo|| = d(mo,N(T)). We have

7(T) ^ <y{T\M+N(T)) = inflUTmll/^m.ivXr)) : m €
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Taking the infimum over M € C(D(T)) gives the property required.

Let T e LR(X, Y) with N(T) finite dimensional.

(a) q(T) > 0, then 0 < q(T) = ~/(T) (Proposition 19). Therefore T is open
and its null space is closed. Hence N(T) = N(QT); ~f(T) = -y(QT) [8,
II. 3.9]. Now, the result follows by single valued case.

(b) q(T) = 0, Then if 7(T) = 0, the property holds trivially. Accordingly
we suppose that ~i(T) > 0. The rest of the proof now proceeds as for the
previous case. n

Some further quantities derived from the surjection modulus will now be defined.

DEFINITION 23: For T € LR(X,Y) define

(qo)'(T) := snp{q(QFT) : F

(qi)\T) := sup{q(QMJYT) : M € E(Y)},

(ft)'(r) := mf{(qi)'(QMJyT) : M € €(Y)},

with the convention that (qi)'(T) = (qo)'{T) = oo and {q2)'{T) = 0 if dimY < oo.

For bounded linear operators in Banach spaces, the quantities (qo)' and (gi)' were
introduced by Zemanek [31] and (qo)' was denoted by M because of its relation with
the Mityangin numbers; (92)' was considered in [19, 15].

THEOREM 24 . If (qo)'(T) > 0, then T € F_ . The converse holds if T is closed

and X is complete.

PROOF: If (go)'(T) > 0, then there exists some F € T{Y) such that q{QpT) > 0.
Hence, since (QFT)' = T'JF± (see [8, III. 1.6]), applying Proposition 20, we have
T'JF± is open and injective. Therefore T e F+, that is, T 6 F_ .

Now, let X be complete and suppose that T is a closed F_ -relation. Then there
exists F G T(Y) such that QFT is open and surjective [8, V. 5.21]. Hence (QFT)'

= T'JF± is open and injective. Moreover, since T is closed and QF is a quotient map
with finite dimensional null space, the linear relation QFT is closed by [8, II. 5.13]
and so from Proposition 20 we deduce that 0 < J((QFT)') = I((QFT)') = I(QFT)

= Q(QFT) and consequently (qo)'(T) > 0. D

This Theorem extends the classical result for bounded lower semi-Fredholm linear

operators in Banach spaces of Zemanek [31].

THEOREM 25 . If JYT is strictly cosingular, then (qi)'(T) = 0. The converse is

true whenever Y is complete and T € PB(X, Y) and single valued.

PROOF: Suppose that (qi)'(T) > 0. Then there exists M E £(Y) such that
q(QMJyT) > 0. By Proposition 20, T'JM± = (QMJYT)' is open and injective.
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Therefore QMJYT € F _ . If JyT is strictly cosingular, then QMJYT is strictly
cosingular (as A'(QMJYT) ^ A'(JyT)) and so from [8, V. 5.20] it follows that
QMJYT - QMJYT e F - , a contradiction.

Now, let Y be complete. Since T is partially continuous and single valued, there
exists some F € T(Y) for which QFT is continuous [8, V. 9.2 and V. 9.3]. Assume
that T is not strictly cosingular. Then there exists M 6 £(Y) such that (QMT)'

has a continuous inverse. Consequently, since QM+FT — QM+F/FQFT [8, IV. 5.2],
QM+FT is continuous with (QM+FT)' having a continuous inverse (as T' \,M+F\J- is
a restriction of V \M±). By Proposition 20, we now have q(QM+pT) — j((QM+FT)')

> 0. Therefore (gi)'(T) > 0. D

COROLLARY 26 . Let Y be a Banach space and T a partially continuous and
single valued. Then T is strictly cosingular if and only if (qi) (T) = 0.

This Corollary generalises the corresponding result for bounded strictly cosingular
linear operators in Banach spaces of Martinon [19]. We do not know whether non
partially continuous strictly cosingular operators exist.

PROPOSITION 27. (q2)'(T) ̂ r'(T).

PROOF: Since i(T) ^ i(QT) [8, II. 3.4], from Proposition 19 we deduce that
q ^ || ||, so (qi)' ^ || ||, and it follows from the definitions that (q2)' ^ || || as
required. D

COROLLARY 28 . Let T e F- and let S € LR(X, Y) such that D(T) c D(S)
and dimQT5(0) < oo. If T'0(JYS) < (q2)'(T), then T + S 6 F_.

PROOF: Since A'(JyS) ^ r'0(JyS) (Proposition 13), the result follows immedi-
ately from Proposition 16 combined with Proposition 27. D

For bounded linear operators in Banach spaces, this result was obtained by Mar-
tin6n [19].
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