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Abstract. Let k be an algebraically closed field of characteristic zero, F be an algebraically
closed extension of k of transcendence degree one, and G be the group of automorphisms over
k of the field F. The purpose of this note is to calculate the group of continuous automor-
phisms of G.
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1. Introduction

Let k be an algebraically closed field of characteristic zero, L its finitely generated
extension of transcendence degree > 1, and L' another finitely generated extension
of k. It is a result of Bogomolov [3] that any isomorphism between Gal(L/L) and
Gal(L’/L’) is induced by an isomorphism of fields L — L’ identifying L with L.

If the transcendence degree of L over k is one, the group Gal(L/L) is free, and
therefore, its structure tells nothing about the field L.

Let F be an algebraically closed extension of k of transcendence degree one, and
G = Gy be the group of automorphisms over k of the field F. Let the set of sub-
groups Uy := Aut(F/L) for all subfields L finitely generated over k be the basis of
neighborhoods of the unity in G.

Let A be a continuous automorphism of G. The purpose of this note is to show that
if Z induces an isomorphism Gal(F/L) — Gal(F/L’) then the fields L and L’ are iso-
morphic (see Theorem 4.2 below for a more precise statement).

1.1. NOTATIONS

For a field F; and its subfield F, we denote by G, ,r, the group of automorphisms of
the field F; over F,. Throughout the note k is an algebraically closed field of charac-
teristic zero, F its algebraically closed extension of transcendence degree 1 < n < o0
and G = Gpy. If K is a subfield of F then K denotes its algebraic closure in F.
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For a topological group H we denote by H° its subgroup generated by the com-
pact subgroups, and by H*® the quotient of H by the closure of its commutant.

For a smooth projective curve C over a field, Pic > "(C) is the submonoid in Pic(C)
of sheaves of degree = m

2. A Galois-Type Correspondence

We consider a topology on G with the basis of neighborhood of an automorphism
o: F—> F over k given by the cosets of the form ¢U; for all subfields L of F finitely
generated over k, where U; = Aut(F/L). This topology was introduced in [4]. One
checks that the group G endowed with such topology is Hausdorff, locally compact,
and totally disconnected.

PROPOSITION 2.1 ([4], Lemma 1, Section 3). The map
{subfields in F over k} — {closed subgroups in G} given by

K —> Aut(F/K) is injective and restricts to bijections

— {subfields K with F = K} <> {compact subgroups of G};

B subfields K of F finitely ., | compact open
generated over k with F = K subgroups of G

The inverse correspondences are given by G > H—> F1 C F. O

Denote by G° the subgroup of G generated by the compact subgroups. Obviously,
G° is an open normal subgroup in G.

3. Decomposition Subgroups in Abelian Quotients

Let n = 1. We are going to show that for any continuous automorphism 4 of G and
any L of finite type over k one has A(Ur) = Up for some L’ isomorphic to L.

To do that we first need to construct decomposition subgroups in the Abelian
quotients U3P.

Set @, = HOl’n(DlVO(C) Z(l)) for a smooth projective model C of L over k. By
Kummer theory, U3® = Hom(L*, Z(l)) s0, as the groups k* and Pic’(C) are divisi-
ble, but there are no divisible elements in Z(l) except 0, the short exact sequence
I — L* /k* — Div’(C) — Pic’(C) — 0 induces an embedding &, Ui*. One
identifies ®; with the Z-module of the Z(l) valued functions on C(k) modulo the
constants.

The next step is to get a description of @, in terms of the Galois groups. Clearly,
Uity = Pucy-
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LEMMA 3.1.

(1) If U is an open compact subgroup in G then Ng(U) = Ng-(U). If, moreover,
Ng(U)/U is infinite and has no Abelian subgroups of finite index then
U = Uy for some x € F — k.

(2) For any x € L — k the transfer U,:j‘(t_’x) — U3 factors through ®@y..

(3) The span of images of the transfers U, ,?a) — U for all x € L — k is dense in ®y.

Proof. (1) By Proposition 2.1, U = U, for a field L finitely generated over k. Then
the group Ng(Ur)/ Uy coincides with the group of automorphisms of the field L over
k. As the automorphism groups of projective curves of genus > 1 are finite, if L is
isomorphic to the function field of such a curve, then the normalizer of U in G is
compact. As the automorphism groups of elliptic curves are generated by elements of
order < 4 and contain Abelian subgroups of index < 6, if L is isomorphic to the
function field of such a curve, then the normalizer of U in G is generated by its
compact subgroups. This implies that if Ng(U)/U has no Abelian subgroups of finite
index then L should be the function field of a rational curve. As the automorphism
group of the rational curve is generated by involutions, the normalizer of U in G is
generated by its compact subgroups.

(2) The transfer is induced by the norm Lx/k>< k(x)*/k*, which is the
restriction of the push-forward Dlvo(Q =5 DivY(PY). Since k(x)* /k* = Divi(P),
the transfer factors through ®; .

(3) Each point p of a smooth projective model C of L over k is a difference of very
ample effective divisors on C. These divisors themselves are zero-divisors of some
rational functions, i.e., there are surjective morphisms x, y: C —> P! and a point
0 e P' such that x~'(0) — y~'(0) = p. Then 3, = x*3g — y*p: C(k) — Z(1) is a
o-function of the point p of C. As the span of J-functions is dense in the group
®;, we are done. O

ML /k(x)

For a point of C(k) its decomposition subgroup in ®; C U3® consists of all func-
tions supported on it. In the case L = k(x) the decomposition subgroups in UkFx)
are parametrized by the set (which is isomorphic to P!(k)) of parabolic subgroups
P in NgUjiy/Ukxy. The subgroup Dp consists of elements in U,‘;(Y) fixed under the
adjoint action of P. Clearly, Dp = Z(l)

Each inclusion of subgroups U C Uy induces a homomorphism U3® — UZE’V)
For any nonzero element / of the group U3®, considered as a homomorphism from
the group L*, there is an element x € L* w1th h(x) # 0, so the image of / in Uk(\) is
nonzero, and thus, the homomorphism U‘jlb = Teer s Ukm is injective.

To construct decomposition subgroups for an arbitrary L, consider such a sub-
group D = Z in the target of ¢ that its projection to each of UZE\_) is of finite index
in some decomposition subgroup. Then our next goal is to show that the set of
decomposition subgroups in U3® coincides with the set of maximal subgroups among
@, N o (D).
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LEMMA 3.2 (= Lemma 5.2 of [2] = Lemma 3.4’ of [3]). Let f be such a function on a
projective space P over an infinite field that the restriction of f to each projective line in
P is constant on the complement to a point on it. Then f'is a flag function, i.e., there is a
filtration Py C Py C Py C ... of P by projective subspaces such that f is constant on Py
and on all strata Py — P;. O

The present form of the following lemma as well as its proof are suggested by the
referee.

LEMMA 3.3. For any smooth projective curve C and any L, L' € Pic”*71(C) the
natural map T'(C, LY QT(C, L) — T'(C, L ® L) is surjective.

Proof. We may assume that deg £ < deg £’. Fix an effective divisor D on C of
degree 2g — 1 and a base point free pencil in |£(—D)| corresponding to a subspace V'
in I'(C, L(—D)) of dimension 2, and a subspace V' C W C I'(C, £) of dimension 3
such that W ®; Oc — L is surjective. If R is its kernel, it fits into a natural short
exact sequence

0— det V@i LY(D)— R— (W/V) @ Oc(—D) — 0.

This shows that H'(C,R® L) =0, hence W, I'(C,L)—T(C,LRL') is
surjective. [

LEMMA 3.4. If o7 '(D) is in @y, then it is a subgroup in a decomposition subgroup in
U3,

Proof. Letf€ o7 (D) N @y, ie., f: Ck)— 2(1) for a smooth projective model C
of L over k, and for any very ample invertible sheaf £ on C restrictions of the
induced function f: |£| — 2(1) to projective lines in |£| are ‘o-functions’ on them.
Then, by Lemma 3.2, f'is a flag function. Therefore, the functionfz L)Y —>2(1)
given by H > f(general point of H) is a ‘-function’. ~

Let g be the genus of C. Consider the compositionfg: C(k)y — |L£]Y i> 2(1). It
takes x to f(x) + f(general point of |£(—x)|). Since it is a ‘o-function’, and all the
hyperplanes x + |£(—x)| in £ are pairwise distinct, there are such functions
by : Pic > %t (C) — Z(1) and a : Pic > *71(C) — C(k) that

J(x) + flgeneral point of |L(—=xX)]) = bo(L)0x.a(c) + b1(L),

where b, : Pic > %(C) — 2(1) is the function sending L to the general value of f on
L1, Then f(x) = bo(L)x.ac) + b1 (L) — bi(L(=x)).

By Lemma 3.3, for any £,£ €Pic®* '(C) the image of the map |L£|x
|£'| — |£® L| of summation of divisors is not contained in any hyperplane in
|£ ® L'|. Then a sum of a general divisor in |£| and a general divisor in |£| is a gen-
eral divisor in the linear system |£ ® £'|, so one has

bi(L® L) = bi(L) + bi(L),
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and therefore, for any sheaf £, of degree zero one has
bl(ﬁ/) +bi(LoRL)Y=bi(L)Y+b1(Lo® E/),

50 ba(Lo) := (Lo ® L) — bi(L): Pic’(C) — Z(l) does not depend on L. It is easy to
see that b, is a homomorphism, which therefore should be zero, since Pic’(C) is a
divisible group. From this we conclude that 5;(£) = b;(degL), and finally,
J(x) = bo(L)ox uc) + b3(L) is a o-function on C(k), i.e., corresponds to a point of
C, or to a decomposition subgroup in Uib. O

4. Automorphisms of Subgroups between G° and G
LEMMA 4.1.

(1) Suppose that for a subgroup H in G containing G° (the restriction to G° of) a
homomorphism A: H— G induces the identity map of the set §§ of compact open
subgroups in G. Then . = id.

(2) The centralizer of G° in Gpq is trivial.

Proof. For any ¢ € H and any open compact subgroup U one has
cUc™' = WoUs™") = Ao)A(U)A0)™" = Mo)Ul(o) ™",

so 6~'A(o) belongs to the normalizer of each U.

For a variety X of dimension n over k without birational automorphisms and any
x € F — k there is a subfield L, C F containing x isomorphic to the function field of
X. Then the normalizer of U;_ coincides with Uy, and the intersection of all Uy_ is
{1}, so 67'J(0) = 1. On the other hand, if t € G/ normalizes Ui, poy2y for all
polynomials P over k, then t € Gy and therefore, T = 1.

Let §§ be the set of compact open subgroups in G°, and let Q(y) be the quotient of
the free Abelian group generated by § by the relations [U] =[U : U] - [U'] for all
U’ C U. As the intersection of a pair of a compact open subgroups in G is a subgroup
of finite index in both of them, Q(y) is a one-dimensional Q-vector space. The group
G acts on it by the conjugations. Let y be the character of this representation of G.

One can get an explicit formula for y as follows. Fix a subfield L of F finitely gen-
erated and of transcendence degree n over k. Then for any ¢ € G one has

(Ul =[Lo(L): L]-[Uroy] and  [Ugr)l = [Lo(L) : o(L)] - [Urswyl,

and therefore, y(o) = [Lo(L) : o(L)]/[Lo(L) : L]. This implies that y: G — Q7 is sur-
jective, and its restriction to G° is trivial.
For a subgroup H in G let Ng,(H) be its normalizer in Gpq.

THEOREM 4.2. Let n=1, H be a subgroup in G containing G°. Then
NG,,o(H) € NG, (G) = {automorphisms of F preserving k}, and the adjoint action of
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NG,,o(H) on H induces an isomorphism from N, (H) to the group of continuous open
automorphisms of H.

If H 2 ker y then Ng,o(H) = Ng,,,(G°).

Proof. For each U € § let Div{; be the free Abelian semi-group, whose generators
are decomposition subgroups in U*?, and for each integer d > 2 let

G = (U, D U|UL: Ul =d, L= k(D)} C J.

For a smooth projective model C of FU the set (Sir(g)
union of Zariski-open subsets in Grassmannians:

11 (Gr(l,lﬁl)— U Gr(l,x+|£(—x)|)>.

LePic!(C) xeC(k)

is in bijection with the disjoint

One can define

— an ‘invertible sheaf of degree d without base points’ L, as a subset of (551‘(5) c®
consisting of elements equivalent under the relation generated by U, ~y U, if
there are decomposition subgroups D, C U® and D, C U3 such that their pre-
images in U*® contain the same collections of decomposition subgroups with the
same indices of their images in D, and Dp;

— the ‘linear system’ |L|, as the set of maximal collections of elements of £ ‘inter-
secting at a single point’, i.e., as the subset of the free Abelian semi-group Divy;

—a ‘line presented in L in |L]|, as an element of £ C (Sjr(g), considered as a subset in
[L];

—an arbitrary ‘/ine’ in |£|, as a subset in |£| of type D + /, where D € Div}, and /s
a line presented in the sheaf £(—D) without base points;

— an ‘s-subspace’ in |L]|, as the union of all lines passing through a given point in
|£| and intersecting a given ‘(s — 1)-subspace’ in |L].

Now we remark that for any sufficiently big d and any sheaf £ C (5r({,l) the set Cy
of decomposition subgroups in U*" can be canonically identified with the subset of
|L]Y consisting of those hyperplanes in |£]| that each line on each of them is ‘absent
in £’. As |£|¥ has a canonical structure of a projective space (but not of a projective
space over k), this gives us a canonical structure of a scheme on Cy. Let xy be the
function field of Cy.

Clearly, A(G°) =G° and the restriction of A to G° induces a bijection
Grl? = (Sﬁri‘?w for each d>2, and for any sheaf £ c ®r\? it induces a map
|L] —> |A(L)| which transforms subspaces into subspaces (of the same dimension),
i.e., a collineation. As 2 induces a collineation |£|Y — |A(£)|", the fundamental the-
orem of projective geometry (see, e.g., [1]) implies that such /4 induces an isomorph-
ism Cy — Cjv) of schemes over Q. This isomorphism does not depend on d and L,
since it determines the collineations |£'| —> |A(£)| for all £’ C @r(g’). Denote by oy
the induced isomorphism ) —> Kp.
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For each subgroup U’ of finite index in U the natural map Cyr —> Cy is a morph-
ism of schemes, and in particular, iy is naturally embedded into «». The group G°
acts on the field lim,, _, xy. By Lemma 4.1 (2), the centralizer if G° in Gp/q is trivial,
and therefore, there is a unique isomorphism lim, _, xy — F commuting with the
G°-action. Since the diagram

CU/ — C).(U’)

} -

CU —> C/l(U)

commutes, the restriction of g to ky coincides with ¢y, and finally, we get an auto-
morphism ¢ of Finduced by 1. As k is the only maximal algebraically closed subfield
in its arbitrary finitely generated extension, ¢ induces an automorphism of k, and
therefore, normalizes G°.

Then the restriction to G° of ad(o) o 4 acts trivially on all of (Sr({]l) As any open
compact subgroup is an intersection of elements of @r([f,) for d big enough and U
small enough, ad(c) o 4 acts on § also trivially. By Lemma 4.1 (1), this implies that
/. =ad(e™"). ]

Remark. 1If k is countable then the inverse of any continuous automorphism as in
the statement of Theorem 4.2 is automatically continuous:

LEMMA 4.3. If'k is countable, and U N U’ is a continuous surjective homomorphism
of open subgroups in G and G then the image in U’ of an open subset in U is open.

Proof. Let Uy C U be an open compact subgroup. Then U/U is a countable set
surjecting onto the set U’/A(U). By Proposition 2.1, for the subfield L' = F*U) one
has L’ = F. If A(U;) is not open then L’ is not finitely generated over k', and
therefore, U’'/A(U}) is not countable. O
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