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Abstract. The history of the cosmological constant and the Lemaitre models is reviewed briefly. Using 
recent cosmological observations, it is found that the cosmological constant if non-zero must be in absolute 
value less than 2 x 1 0 " 5 6 c m - 2 . The predictions of the Lemaitre models are compared with modern ob­
servations. It is shown that Lemaitre models without evolution fail to reproduce the observed radio 
source counts. The existence of quasars with large redshift (z>2 .5) is shown to be strong evidence against 
the Lemaitre models. 

1. Introduction 

Ever since its introduction by Einstein in 1917, the cosmological constant has been in 
and out of fashion; like an odd piece of plumbing pipe it has been found to be a useful 
cosmological tool on various occasions. Aside from numerous discussions pro and 
con the cosmological constant based primarily on philosophical arguments, there have 
been three occasions when it was introduced to explain some observational fact 
thought to be true at the time. As we shall see below, on all of these occasions sub­
sequent observations have changed (or have been contrary to) the original observa­
tion and sent the cosmological constant back to the shelf waiting for its next appearance. 

In the next section I shall discuss the meaning and consequences of the cosmological 
constant and also review some of its history. The limits that can be set on the value of 
the cosmological constant will be discussed in Section 3. In section 41 shall review the 
properties of the Lemaitre models. These models, because of their quasi-static period, 
are the only models whose observational characteristics are drastically different from 
the rest of the general relativistic models. Therefore they provide the strongest motiva­
tion for retaining the cosmological constant in the Einstein field equations. In Section 
4 I shall first re-examine the motivation for the introduction of these models by 
Lemaitre in the 1930's, then the reason for its re-introduction by Salpeter, Szekeres 
and myself in 1967 and discuss them in the light of present day observations. The results 
and conclusions are summarized in Section 5. 

2. The Meaning of the Cosmological Constant 

2.1. FIELD EQUATIONS OF GENERAL RELATIVITY 

Einstein's field equations, as proposed in 1915 are 

C (1) 

Tafi = uaufi{e + p) + pgafh 
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where R^ gafi and Tap are the Ricci, the metric and the stress-energy tensors, respec­
tively, R=gafiRap, and ua, s and p are the four velocity, energy density and pressure of 
the matter. The validity of these equations has been tested in the solar system. Whether 
they remain the correct description of gravitational phenomena remains to be seen. 
We may therefore consider them valid only for dimensions / (or corresponding energy 
densities e = c^/(SnGl2)) such that 

where / m a x and l m i n are much larger and smaller than a few astronomical units, respec­
tively. One task for future investigation is to determine whether such limits exist, what 
their values are, and if / m i n ^ 0 and / m a x ^ oo how the field equations should be modified 
beyond these limits. 

In this report I am not concerned with the lower end of the scale which must be 
greater than or equal to the fundamental length lg = yfGh/c3 = 1.6 x 1 0 " 3 3 cm below 
which quantum effects become important (cf. Ginzburg, 1971). On the high end of the 
scale, observations could reveal the presence of a limit if this limit is smaller than the 
characteristic length of the observable universe (about a few thousand Mpc). One 
modification of the field equations which accounts for such a large scale effect was 
given by Einstein in 1917 when he introduced the cosmological constant A: 

Note that A has the dimensions of inverse length squared, so that we can write 
A = /~a

2

x. The motivation for the cosmological term AgaP was to obtain a static universe. 
But when it was discovered that the Universe is expanding, Einstein regretted the 
introduction of the cosmological constant and was in favor of dropping it from the 
field equations. Other cosmologists, however, were unwilling to abandon the more 
general field Equation (3). Eddington and Lemaitre even claimed a logical necessity 
for the cosmological constant (the early history of the cosmological constant is 
reviewed by North (1965)). Although Einstein considered the cosmological constant 
'the greatest mistake of his life' and 'detrimental to the formal beauty of his theory', 
Lemaitre considered it to be one of the more important contributions of Einstein. 

2.2. ENERGY DENSITY OF A VACUUM 

A major argument against the cosmological constant has been that it implies a 
non-zero space-time curvature even in the absence of a real stress-energy tensor 
(for Tafi=0 Equation (3) reduces to Rafi = Agafi)*. Since, according to general relativity, 
curvature is produced by a stress-energy tensor, this then implies that there is a 
stress-energy tensor associated with a vacuum. This can be demonstrated if we define 
an energy density and pressure for a vacuum as 

' m a x > (2) 

(3) 

ev = — Pv — C*A/$7ZG. (4) 
* For the Robertson-Walker metric this equation leads to the empty, expanding de Sitter universe, where 
test particles recede from each other at a rate proportional to exp{c / ( / l /3 ) 1 / 2 } . 
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Equation (3) then reduces to Equation (1) if we replace the stress energy tensor Tafi 

by faP where 

~ _ c*A 
Tap - Taf} - gap (5) 

which is identical to replacing s and p in Equation (1) by 

s = s + £v, P = P + Pv (6) 

This property of the cosmological constant was already recognized by Eddington 
(1939) who argued in favor of it. But many others were in favor of rejecting the Agafi 

term because of this property. 
Whether the vacuum has such a gravitational property can be settled only by ob­

servations. More recent interest in the cosmological constant has led to the speculation 
(cf. Zel'dovich 1968 and references cited therein) that vacuum polarization may lead 
to such a property. For example, as argued by Zel'dovich (1967), if a vacuum is filled 
with virtual pairs of particles of mass m and density n~(mc/fi) 3, then the energy density 
due to the gravitational interaction of these pairs is e ~ Gm2/(h/mc)4. This then implies 
that the upper limit lmax = A~1/2 on the range of validity of field Equation (1) is 

L ^ ^ o 3 ' 2 ' , (7) 

where a G = Gm2/hc is the so called gravitational fine structure constant. For m equal 
to the proton mass / m a x ~ 1 Mpc. As we shall see such a small value for / m a x (or the 
corresponding large value of A) is not compatible with observations. However, 
additional dimensionless parameters could be introduced in this analysis to bring 
the numerical value of the cosmological constant expected from vacuum fluctuations 
within an acceptable range. 

2.3. THE GRAVITATIONAL FORCE AND THE COSMOLOGICAL CONSTANT 

With the cosmological constant the Schwarzschild metric around a body of mass m 
is modified to* (cf. for example Rindler, 1969) 

('--Sr-*"") « 
In the weak field limit (GM/rc2 1) and at distances r <̂  A 1 / 2 this implies modification 
of the Newtonian gravitational potential and the gravitational attraction force per 

* Note that the metric in Equation (8) with m = 0 has a coordinate singularity at r-y/3/A. This is very 
similar to the coordinate singularity at Schwarzschild radius rs = IGMjc2 and implies the presence of event 

horizon at r = ^J3/A 
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unit mass: 

F GM 
-Uc2r. (9) 

Thus a positive (or negative) cosmological constant causes particles to repel (or attract) 
each other; the value of this force increases with increasing separation between 
particles! 

Since the validity of the Schwarzschild metric without the cosmological constant 
has been verified in the solar system, one can set firm limits on the value of the cos­
mological constant. It turns out that the geodesies of zero rest-mass particles are un­
affected by the A jterm in Equation (8). But planetary orbits are modified. For example, 
the A terms cause additional advance of the perihelion of Mercury equal to A/(3 x 
x 10" 4 2 cm" 2 ) seconds of arc per century (Rindler, 1969). Assuming that the observed 

motion of the perihelion of Mercury agrees with the A = 0 case within 0.3", we obtain 
the limit | y4 |<10" 4 2 c m " 2 . 

This, however, is not a useful limit. If A were as large as this, the Newtonian equa­
tions would break down at distances of about one kpc from any body. This is contrary 
to observation of the dynamics of our Galaxy. The largest known system where 
Newtonian gravitational laws seem to be approximately valid are clusters of galaxies 
with dimensions of about one Mpc and densities of 1 0 " 2 8 to 1 0 " 2 9 g cm" 3 . For the 
cosmological term not to dominate * the dynamics of clusters of galaxies the value of 
QV = SV/C2 must be less than the matter density in clusters; QV< 1 0 " 2 8 g c m " 3 or \A\< 
6 x 1 0 " 5 5 c m " 2 . This limit also is larger than the values allowed from cosmological 
considerations, which are discussed in the next section. 

3. Limits on A from Cosmological Observations 

With the cosmological constant one obtains numerous isotropic and homogeneous 
cosmological models which are known as the Friedmann-Lemaitre models. These 
models are classified in all textbooks on cosmology. We shall follow here the classifica­
tion scheme described by Petrosian and Salpeter (1968). Briefly when A = 0 one has 
three kinds of models; flat, open and closed. The first two expand forever while the 
last possesses a high enough matter density such that its gravitational attraction is 
sufficiently strong to halt the expansion arid cause collapse of the Universe. If A is 
negative, the added attractive force due to it causes all three types of models to collapse 
into a singular state. For A large and positive the repulsion due to it dominates the 
dynamics of the Universe so that it eventually expands like the empty de Sitter model, 
for which the expansion parameter goes as a(r)ocexp{ct(/ l /3) 1 / 2 }. This is also true 
for the flat and open models even for small (but positive) values of A . For closed world 

* There is of course the problem of 'missing-mass' with clusters of galaxies. In fact a negative value of A 
such that \QV\ X (volume of cluster) = (missing-mass) could provide the additional binding force to stabilize 
the clusters. The required value of A which provides sufficient binding is larger (in absolute value) than 
that allowed from cosmological considerations. 
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models, the repulsion due to a positive cosmological constant can overcome the 
gravitational attraction of the matter in the Universe only if its value is greater than a 
critical value Ac. For 0<A <AC one obtains oscillating universes. For A=AC one ob­
tains either the static model of Einstein, or the model which expands from a singularity 
to the static models, or the Eddington-Lemaitre model which expands beginning 
from the Einstein static state. The Lemaitre models, which we shall discuss in the 
next section in more detail, have A greater than but very nearly equal to Ac. For these 
models the expansion begins from a singularity until it reaches the Einstein state 
where, because of near cancellation of the gravitational attraction force of the matter in 
the Universe and the repulsion force due to A, the expansion is slowed down almost 
to a standstill. This is called the quasi-static period. But eventually the cosmological 
repulsion begins to dominate and the Universe begins to expand with an ever in­
creasing rate. Because of this peculiar behavior, the Lemaitre model (and the limiting 
Eddington-Lemaitre model) have drastically different observational characters from 
the rest of the models. 

Thus, when confronted with observation, one's first task should be to determine 
whether the Universe behaves like Lemaitre models or like more conventional models 
with A-0 (or those with A<0 and those with A>§ but A^AC which are not very 
different from A = 0 models). This will be discussed in the next section. Here we discuss 
the limits which the cosmological observations set on the value of the cosmological 
constant. We first consider the limit for negative values of the cosmological constant. 

As stated above, a negative value of A gives rise to models oscillating between sin­
gular points. Consequently the age of the model must exceed the age of the known 
constituents of the Universe. In particular, the age t0 of the Universe must exceed the 
age of the Galaxy tGal > 1 0 1 0 yr (for the relevant equations see Petrosian and Salpeter, 
1968). Inspection of the equations shows that the age t0 is largest for models with 
zero matter density (<r0-»0) for which 

with the firm limit - A < 3n2/(2tGalc)2. However, the observed redshift-magnitude 
relation of the brightest galaxies in clusters indicates (Sandage, 1972a) that the de­
celeration parameter q0 is near unity. Assuming a generous upper limit of q0<3 
Equation (10) gives 

For positive values of A the limits from age considerations are not very useful 
since the Lemaitre models can have a large value of A without violating the limit 

is the deceleration parameter. Thus, the condition t0 > r G a l implies that 

(10) 

-A<3x l ( r 5 6 c m - 2 ( r G a l / 1 0 1 0 y r ) - 2 
(11) 
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set on the age of the Universe from galactic evolution. In order to set limits on pos­
itive values of A let us consider the equation 

2QV_AC2

 3 Xal 

^~3FK~ 0<T°~2-3ka0 + lal' { U ) 

Here a0 and a0 are dimensionless expansion and density parameters, X = A/AC, and 
Qc = Wl/4nG. 

For open and flat (k= — 1,0) models the maximum of this quantity is unity; 

/ l < 3 ( t f 0 / c ) 2 = 0 . 9 x l O - ^ c m - ^ H o / S O k m s - 1 M p c " 1 ) 2 - ( 1 3 ) 

But for closed (k= +1) models the maximum of the quantity on the right hand side 
of Equation (12) occurs for a 0 = 1 (CTQ 1 = s = A — 1, X=A/AC) and is 

Ac2 X 
2<-=Xo0. (13) 

Thus large values of A are possible only for Lemaitre models (e<^\) with the present 
value of the expansion parameter a0 near unity. This, however, means that we are 
living not far from the quasi-static period and that the matter density Q0 = QC/S is very 
large. Furthermore, this also implies that the redshift zs = a0 — 1 of the quasi-static 
period is very small. In Lemaitre models one expects many bright sources with red-
shifts near zs (cf. Section 4.4) and very few sources with larger redshifts. Therefore, a 
small value of zs is contrary to observation of galaxies and quasars (if the redshifts 
of these objects are cosmological in origin). If we assume z s ^ 1 (which implies a 0 ^ 2 , 
a0 ^ 0.25) we then obtain 

A <6(H0/c)2 = 2 x 1 0 " 5 6 cm " 2 x (Ho/50 km s " 1 M p c " l ) 2 , 

Q v < Q c = 0.94 x 1 0 " 2 9 g c m " 3 x (H o /50 km s " 1 M p c " l ) 2 . 

Equations (11) and (14) give the range of possible values for the cosmological con­
stant. It is clear that the cosmological constant, if non-zero, will play a minor role 
in the dynamics of regions of the Universe smaller than 2500 Mpc or regions with 
matter densities larger than 1 0 " 2 9 g e m - 3 . In spite of these limitations, there are 
many models with non-zero values of the cosmological constant which agree with 
known observations. In the next section we compare the Lemaitre models (which 
require the largest value of the cosmological constant and have quite different ob­
servational properties from the conventional models) with observations. 

4. Comparison of the Lemaitre Models with Observations 

In this section we review the properties of Lemaitre models with long quasi-static 
periods and compare them with observation. These models are discussed in detail 
by Petrosian and Salpeter (1968). We shall follow the parametrization of these models 
as given in that article. We (Petrosian and Salpeter, 1970) have also reviewed briefly 
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some observational consequences of these models. I shall re-examine here these 
aspects of the models in light of more recent observations. We shall concentrate on 
four observational aspects of these models: 

(A) Age of the models and formation of galaxies. 
(B) Magnitude-redshift relation. 
(C) Radio source counts. 
(D) Observations related to quasars. 

To summarize the properties of these models, I have plotted on Figure 1 the vari­
ation of the expansion parameter a(t) (in units of its present value a0 = a(t0), where 
t0 is the present age of the Universe) vs the age. As shown by the upper and right 
hand side coordinates, this could also be considered as a plot of the co-moving co­
ordinate u of sources vs their redshifts z. The value of the redshift corresponding to 
the quasi-static period is zs = a0 — 1. For models with long quasistatic periods an ob­
server can see sources at his antipode u = n, at his own position u = 2n, at its antipode 
again, u = 3rc, etc. This allows an observer to see his own image. For example, if the 
Andromeda galaxy existed at the time corresponding tou = 2n we should see another 
image, a ghost image, of it in a direction diametrically opposite its actual position 
in the sky. This, however, is unlikely because the light travel time from u = 2n to 
u = 0 (a few Hubble times) is longer than the age of ordinary galaxies. When the 
Lemaitre models were proposed to explain the preponderance of quasars near red-
shift 2 (Petrosian et a/., 1967), an excess of pairs of radio sources in diametrically 
opposite directions was searched for. There have been claims (Solheim, 1968) that 

COMOVING COORDINATE, U / T T 

AGE, t 
Fig. 1. Variation of expansion parameter or the redshift with time or the co-moving coordinate u in a 
Lemaitre model. u/n = i, i = 1, 2 , n are the antipodes of the model. The length of the quasistatic period 
(dashed line) can be made arbitrarily large by choosing a cosmological constant arbitrarily near the critical 

value Ac. Note for all ghost images (u = in), except the last one (i = n), the redshift zgA~zs. 
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such image pairs have been observed. But a larger sample of radio sources were 
examined for this effect with negative results (Petrosian and Ekers, 1969). These re­
sults, however, -are still consistent with the Lemaitre models because (i) this effect 
should be masked by the motion and finite lifetime of sources, and (ii) inhomogeneities 
in the intervening medium (galaxies and cluster of galaxies) deflect the ghost images 
and split them into many weaker images (for details cf., Petrosian and Salpeter, 1968). 

The general relations between the co-moving coordinate, the redshifts of ghost im­
ages (sources at u = nn, n = 1,2,...) and the age of the models are given in our paper for 
general Lemaitre models. We shall be concerned primarily with models for which 
the redshift of the quasi-static period is z s = 2 (i.e., models with <r0 = 0.05, a0 = 3) for 
which we obtain 

where uH = u(z = co) is the co-moving coordinate of the horizon. Furthermore, we 
find that for this model the redshifts of the ghost images, if not too different from 
z s , are 

z , > n = 2.00 + 0.29£ enn. 

Note that as long as e ein<^l, zgti&zs, but since en&23t> 1 only one ghost image (the 
last one) could have a redshift substantially different from z s. 

4.1. AGE AND FORMATION OF GALAXIES 

As can be seen from Equation (15) the age of the Lemaitre models can be made ar­
bitrarily large by choosing an arbitrarily small value for e; the smaller the value of e 
the larger the duration of the quasi-static period. Prior to recalibration of the period-
luminosity relation of Cepheid variables, the value of the Hubble constant was 
thought to be about 500 km s " 1 Mpc" \ which meant an age of less than two billion 
years for all Friedmann-Lemaitre models except for the models with long quasi-static 
periods. This was a strong motivation for considering the latter models seriously. 
These models have come to be known as Lemaitre models since he was the strongest 
advocate of these models. Since then, however, the value of the Hubble constant has 
been steadily decreasing. The modern value of J / 0 « 5 0 k m s " 1 M p c " 1 (Sandage, 
1972b) increases the age of the conventional models to 20 b. y., in agreement with 
the age of the oldest stars in our Galaxy (Iben and Faulkner, 1968). 

Another reason for considering the Lemaitre models seriously had to do with the 
formation of galaxies. In an expanding universe the rate of growth of condensation 
with time is proportional to some power of time. This is not rapid enough to allow 
formation of condensations from statistical fluctuations. In Lemaitre models the 
condensations could grow exponentially during the quasi-static period (cf. for ex-

1 / ^ = 4.13 —lne, 

t0H0 = 1 .57-0.5 In e, 
(15) 

= 1.89 + 7.2 £ 

= 1.99 + 155£ (16) 
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ample Bonnor, 1957; Brecher and Silk, 1969). However, in order for condensations 
to form from statistical fluctuations, the quasi-static period must have exceedingly 
long duration, e < 1 0 " 1 5 . 

Models with such a long quasi-static period, like the Einstein static model, may 
be unstable to the formation of condensations. The stability of the static models was 
examined by various authors during the period 1930 to 1950 which is reviewed by 
North (1965). Most of the investigations during this period were concerned with 
stability against the formation of condensations without considering the most im­
portant effect, namely the changes in the equation of state during the formation of 
these condensations. Lemaitre (1931), however, did consider this effect. He argued 
that during the formation of condensations from a gas with temperature T, the pres­
sure is reduced from nkT to zero if all matter is locked in the condensations. Since 
in the theory of general relativity, pressure contributes to the gravitational attraction, 
Lemaitre showed that the reduction of pressure would give rise to a reduction of the 
attractive forces and consequently lead to expansion of the static model leading to 
the Eddington-Lemaitre model. This result is not correct because it ignores the 
pressure due to radiation which must accompany the formation of bound condensa­
tions. The amount of energy radiated away must equal the final binding energy of 
the condensations. For galaxies the energy radiated per unit rest mass is approxi­
mately equal to (vr/c)2 ^ 10" 5 where vr is the average rotational velocity of the Galaxy. 
Thus, when galaxies are formed the increase in pressure per unit rest mass is about 
10" 5 , while the reduction in pressure due to the process suggested by Lemaitre cannot 
exceed kT/mc2~ T /10 1 3 K for a gas consisting of protons. Thus, unless the original 
gas temperature exceeded 10 8 K the formation of condensations increases the pressure 
increasing the gravitational attraction which leads to the collapse of the static model. 
(Note that the density of energy including the rest mass energy is unchanged during 
the formation of condensations.) 

For Lemaitre models with long quasi-static periods, the added attraction due to 
radiated binding energy of the condensations slows down the rate of the expansion 
and it may even lead to collapse of these models. Whether or not the latter possibility 
will take place depends on the length of the quasi-static period and the rate of the 
formation and the binding energy of the condensations. Brecher and Silk (1969) have 
shown that if most galaxies were formed during the quasi-static period and if this 
period is very long, e < 10" 8 , then these models also collapse back into a singularity. 
It can be concluded then that although formation of galaxies is easier in Lemaitre 
models as compared to the conventional models, the formation of galaxies from 
statistical fluctuations is unlikely. 

4.2. THE REDSHIFT-MAGNITUDE RELATION 

For small redshifts the magnitude-redshift relation can be approximated as 

m = const + 5 logz—1.08(q 0 — 1) z. 

After the quasi-static period Lemaitre models expand with acceleration and when 
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the density of matter Q0<QV

 t r i e deceleration parameter is close to q0& — 1. The ob­
served redshift-visual magnitude relation for bright members of clusters of galaxies 
indicates models with deceleration parameters q0& 0.03 ± 0 . 4 (Peach, 1972). This 
would be consistent with Lemaitre models if the difference Am/Az& —1.1 mag. (be­
tween q0& - 1 models and observed q0&0) can be attributed to evolution of the 
galaxies. With / / 0 = 50km s " 1 Mpc" 1 this requires dimming of the galaxies by 0.05 
mag. yr~ 9 . Evidently such an evolution is possible for the galaxies under consider­
ation (Tinsley, 1972). 

4.3. RADIO SOURCE COUNTS 

Since the reintroduction of the Lemaitre models by Petrosian et al. (1967), various 
investigators have examined the radio source counts in these models (Kardashev, 
1968; McVittie and Stabell, 1968; Rowan-Robinson, 1968; Petrosian, 1969; Longair 
and Scheuer, 1970). In the 1969 paper I analyzed the cumulative source counts 
and showed that although for the Lemaitre models the slope of the log N log S relation 
can be steeper than that in conventional models, the slope cannot exceed the value 
—1.5 expected from the Euclidean (flat, static) model. It was found that mild evolution 
(co-moving density of sources increasing as ( 1 + z ) 1 , 5 ) was necessary to obtain the 
observed log AT logS relation of the Cambridge catalogues. Similar results were 
obtained by Longair and Scheuer (1970). 

In view of recent interest in differential counts, I will here compare the observed 
differential counts with the predictions of Lemaitre models. The results are summa­
rized on Figure 2 where I present the variation with flux density of the ratio of the 
differential count n(S) to the count n0ocS~2'5 expected from the Euclidean model. 
The observed points are taken from the review paper by Kellermann (1972). The thin 
solid line is the differential count expected from uniformly distributed sources with 
radio luminosity at 408 MHz of F(408)» 1 0 2 9 4 W H z " 1 in a Lemaitre model with 
X = 1.02 and z s = 2. This curve reproduces the observed feature at high flux densities. 
However, when the contribution from sources with different radio luminosities are 
added, the narrow feature extending one decade (from 5 to 50 flux units) is washed 
out by the large dispersion in the radio luminosity of the sources. This is shown by 
the heavy solid line which has been obtained by integrating the distribution shown 
by the thin line over all luminosities assuming a radio luminosity function Y(F)ocF~2 

for 1 0 2 5 W H z " 1 < F < 1 0 2 9 W H z " 1 , and ^(F) = 0, otherwise. As is evident from 
Figure 2 this model predicts twice as many sources as observed at flux densities 
where the cumulative count of sources is about 10 sr" 1 (see the top coordinate). This 
discrepancy amounts to the absence of 5 sources sr" 1 (or in total 60 sources) with 
flux densities S 4 0 8 > 10 flux units. In fact, for this model to agree with observation 
it is only necessary to assume the absence of sources with low luminosities in a local 
region extending to a redshift of less than unity. This is equivalent to a radio lumi­
nosity function which was steeper in the past. Or alternatively, as suggested before, 
mild density evolution, !F(F, z)oc(l + z ) 3 / 2 , for redshifts less than the redshift of the 
quasi-static period can account for the discrepancy. The need for such evolution 
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CUMULATIVE NUMBER OF SOURCES PER STERADIAN 

0.01 0.02 0.05 0.1 02 0.5 I 2 5 10 20 50 100 

S 4 0 8 F L U X U N I T S 

Fig. 2. The differential count of radio sources in units of the counts ( « 0 o c S ~ 2 5 ) expected in Euclidean 
universe. The points are taken from Kellermann (1972); # at 75 cm, O at 20 cm, A a * 11 cm and x at 6 cm. 
The solid lines are for the Lemaitre model with # = 1 . 0 2 and zs = 2; the thin line is for standard candles 
with luminosity 1 0 2 9 4 w H z " 1 x (50 km s~l Mpc~V#o) at 408 MHz, and the solid line for the radio 
luminosity function described in the text. The dashed line is the expected count in the model with A = 0 

and q0=i with a similar luminosity function. 

detracts from the Lemaitre models but cannot be taken as evidence against them. 
As is well known, the discrepancy between the conventional cosmological models 
without evolution and observation is much greater. The dashed line in Figure 2, 
which shows the expected differential count in the Einstein-de Sitter model (A = 0, 
<70=̂ ) with a similar luminosity function, begins to deviate from observation at flux 
densities where the cumulative count is about 100 sr" 1 . There are ten times more 
sources missing in this model as compared with the Lemaitre model. 

However, for the Lemaitre model to be correct, it should also agree with the red-
shift distribution of the sources. According to this model, most of the sources with 
flux densities S 4 0 8 < 2 x 1 0 " 2 6 W m " 2 H z " 1 should have redshift greater than 1.5 and 
a fair fraction should have redshift about 2. There do not exist sufficient data to de­
termine whether this is true or not. For example, of all quasi-stellar radio sources in 
the catalogue of Deveny et al. (1971) with S 4 0 8 < 5 x 1 0 " 2 6 W m " 2 H z " \ 75% have 
redshifts greater than 1.4 with about 30% having redshifts 2.1 ±0.2 . Since this sample 
is not a complete sample and since radio galaxies are not included in it, no firm 
conclusions can be reached from it. 

4.4. REDSHIFT DISTRIBUTION OF QUASARS 

Lemaitre models were re-introduced in 1967 (Petrosian et al, 1967) when the pre­
ponderance of quasars with redshifts near 2 was reported (Burbidge and Burbidge, 
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1967). At that time two anomalies seemed to be present in the redshift distribution 
of quasars. One was the presence of a narrow spike in the redshift (both emission 
and absorption) distribution of the quasars near z = 1.95. Shklovsky (1967) and 
Kardashev (1968) attempted to explain this feature as absorption of quasar light by 
intervening galaxies during the quasi-static period. A long quasi-static period was 
necessary to explain the narrow feature. Subsequent observations have failed to 
support the reality of the z = 1.95 feature. There are now few sources with redshift 
larger than 2 without an absorption redshift near 1.95. We shall not discuss this 
effect here. 

The other anomaly was the presence of a mild hump in the redshift distribution 
of quasars at z ~ 2 (with a rapid cutoff beyond it) which prompted us to consider a 
Lemaitre model with fairly short quasi-static period. The present observational sit­
uation in this case is the same as at the time of the previous review of this subject 
(Petrosian and Salpeter, 1970), except that now there are sources with redshifts larger 
than z s ~ 2 . As we shall see below this is strong evidence against the Lemaitre models. 

Instead of comparing the number distribution of the redshifts of quasars, we com­
pare, as before, the sum of intensities £ / of sources at a given redshift vs redshift. 
The reason for this is twofold: first, both the intensity and number of sources at red-
shifts around the antipodes (u&nn) behave anomalously. For homogeneous models 
the intensity diverges and the differential (with respect to u) number of sources tends 
to zero at u->nn. The inhomogeneities, due to their gravitational lens effect, modify 
the intensity of the sources and give rise to multiple (but weaker) images of a source 
near the antipode. The extent of both of these effects depends on the uncertain param­
eters which characterize the inhomogeneities. However, the total intensity due to 
multiple images is equal to the intensity of the sources as if the inhomogeneities were 
absent. Thus, the expected integrated £ / is independent of the degree of inhomo-
geneity and is a well behaved function of redshift; the function Fa(z) is given by 

^ H T T T ^ T T ^ . (18) 
1 du 

( l + z ) 1 + a d ? 

The second reason for considering £ / instead of number of sources has to do with 
the selection effects. The observed distributions are affected by selection effects. For 
the variation of the number of sources with redshift, the selection effects depend 
strongly on the luminosity function (since this function in general decreases rapidly 
with luminosity) and become uncertain when the sample is not complete to a limiting 
observed magnitude or flux density. On the other hand the distribution of £ / de­
pends more weakly on the luminosity function and the lack of completeness of the 
sample does not effect the brighter objects which are the major contributors to £ /. 
Furthermore, we will be interested in the distribution near z = z s where because of 
the brightening of the objects the selection effects become negligible, while it is ex­
actly here that the distribution of the numbers behaves anomalously. 

Figures 3 and 4 summarize the results. In Figure 3 we compare the observed his­
togram of £ J (obtained from the list of Deveny et al, 1971) with the prediction of 
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Fig. 3. Comparison of the integrated optical intensity of sources in the Deveny et al. (1971) catalog 
(the histogram) with the prediction of the Lemaitre models with z s = 2. The lines represent Fa (z) <j> (z) 

discussed in the text. The numbers on the curves give the value of X = A\AC. 

REDSHIFT 
Fig. 4. Expanded version of Figure 3 near and beyond the redshift of the quasistatic period. The top solid 
line neglects selection effects. The lower solid lines include the selection effects as described in the text. 
The dashed lines around z = 2.8 and 3.5 would result if these redshifts correspond to an antipode u = in, 
i = 2, 3 , A s explained in the text, the presence of only one such antipode is possible beyond the red-

shift of the quasistatic period. 
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Lemaitre models with quasi-static period redshift zs = 2. What is plotted here is the 
function Fa(z)0(z) [for a = 0.7], where (f>(z) accounts for the selection effects, and 
depends on the luminosity function and the assumed limiting magnitude of the 
sample. These effects are most important around redshift 0.5 to 1.5. Since the sample 
does not have any well defined radio or optical limit, the exact behavior of (j>(z) is 
not well known. We find, however, if we assume the sample to be complete to a 
408 MHz flux density of 5 x 1 0 " 2 6 W m " 2 H z " 1 and assume the radio luminosity 
function Y(F)ocF~2 then we find it necessary to invoke mild evolution (as in the 
radio source counts) for redshifts less than 1.5 in order to obtain a fit at these red-
shifts. 

Figure 4 shows an expanded version of Figure 3 for redshifts near and beyond the 
quasi-static period. The histogram shows the pronounced brightening of the sources 
near z = 2 which is expected from Lemaitre models and which was, and still is, the 
single most important observation in favor of considering these models seriously. 
However, as is evident from Figure 4, the Lemaitre models predict very few sources 
for redshifts larger than 2.5 especially if the selection effects are included. Recent 
observations have discovered four sources with large redshifts, two of them around 
z ~ 2 . 8 and two near z ~ 3 . 5 . Note that the histogram at these redshifts agrees with 
the Fa(z) curve, i.e., with the expected distribution when selection effects are negli­
gible. Since the selection effects become negligible near an antipode the existence of 
one of these two humps (if they are in fact isolated humps) could be explained by 
assuming that the redshift of the last ghost images (zgi) falls near the center of the 
hump. The dashed lines show the expected distribution in case of such an eventuality. 
However, as mentioned in connection with Equation (16), there could exist only one 
ghost image with a redshift significantly different from zs. For example, the model 
with X = 1.0098 (cf. Equation (16)) has its second (its last) ghost image at z»3 .5 . This 
however leaves the hump at redshift z ~ 2 . 8 unexplained. This, therefore, must be 
considered strong evidence against the Lemaitre models unless, because of the ten­
dency nowadays of publishing only sources with larger redshifts, these humps are 
not as significant as they appear on Figure 4. 

5. Summary and Conclusions 

As mentioned in the introduction the cosmological constant was introduced on three 
occasions to explain some cosmological observations. It was first introduced by 
Einstein to obtain a static universe as was then thought to be the state of our Universe. 
The subsequent discovery of the expansion of the Universe removed this original 
motivation for its introduction. In the period following the discovery of the expansion 
of the Universe, Eddington and Lemaitre argued in favor of the retention of the 
cosmological constant while Einstein and others favored its abandonment. Lemaitre, 
in particular, favored cosmological models with long quasi-static periods (which 
have come to be known as Lemaitre models) because they could explain the fact 
that the Hubble age (HQ1) was smaller than the age of the solar system and because 
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they facilitated the formation of galaxies. Subsequent observations have steadily in­
creased the Hubble age and have again removed this second motivation for con­
sidering models with a non-zero cosmological constant. 

Finally after the discovery of quasars we (with Salpeter and Szekeres) re-introduced 
the cosmological constant and the Lemaitre models in order to explain the prepon­
derance of quasars near redshift 2, without having to invoke arbitrary evolutions 
which are required in conventional models. As shown in Sections 4.3 and 4.4, the 
accumulated observational data since 1968 speak against the Lemaitre models with­
out evolution. In particular the existence of quasars with redshifts larger than 2.5 
provide strong evidence for abandoning the Lemaitre models once again. Since the 
Lemaitre models, because of their drastically different observational character from 
the rest of general relativistic models, provide the only cosmological motivation for 
retention of the cosmological constant this also means abandoning the cosmological 
constant. 

These, however, by no means are evidence either against the Lemaitre models or 
the cosmological constant. Observations only set the limit 

\A\<2x 1 0 " 5 6 c m " 2 

on the cosmological constant. Furthermore, Lemaitre models with evolution are still 
a possibility. We have demanded more from Lemaitre models by requiring them to 
explain observations without evolution while we accept conventional models which 
would need very complicated evolution to explain the pronounced hump near z = 2 
in Figure 4 if it is real. 

But in the absence of strong evidence in favor of Lemaitre models we must once 
again send back the Lemaitre models and along with it the cosmological constant 
to the shelf until their next re-appearance. 
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