
1
Bridging Continuous and Discrete Optimization

A large part of algorithm design is concerned with problems that optimize or
enumerate over discrete structures such as paths, trees, cuts, flows, and match-
ings in objects such as graphs. Important examples include the following:

(i) Given a graph G = (V ,E), a source s ∈ V , a sink t ∈ V , find a flow on
the edges of G of maximum value from s to t while ensuring that each
edge has at most one unit flow going through it.

(ii) Given a graph G = (V ,E), find a matching of maximum size in G.
(iii) Given a graph G = (V ,E), count the number of spanning trees in G.

Algorithms for these fundamental problems have been sought for more than
a century due to their numerous applications. Traditionally, such algorithms
are discrete in nature, leverage the rich theory of duality and integrality,
and are studied in the areas of algorithms and combinatorial optimization;
see the books by Dasgupta et al. (2006), Kleinberg and Tardos (2005), and
Schrijver (2002a). However, classic algorithms for these problems have not
always turned out to be fast enough to handle the rapidly increasing input sizes
of modern-day problems.

An alternative, continuous approach for designing faster algorithms for
discrete problems has emerged. At a very high level, the approach is to first
formulate the problem as a convex program and then develop continuous
algorithms such as gradient descent, the interior point method, or the ellipsoid
method to solve it. The innovative use of convex optimization formulations
coupled with algorithms that move in geometric spaces and leverage linear
solvers has led to faster algorithms for many discrete problems. This pursuit
has also significantly improved the state of the art of algorithms for convex
optimization. For these improvements to be possible, it is often crucial to aban-
don an entirely combinatorial viewpoint; simultaneously, fast convergence of
continuous algorithms often leverage the underlying combinatorial structure.

1

https://doi.org/10.1017/9781108699211.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108699211.003

2 1 Bridging Continuous and Discrete Optimization

1.1 An Example: The Maximum Flow Problem

We illustrate the interplay between continuous and discrete optimization
through the s − t-maximum flow problem on undirected graphs.

The maximum flow problem. Given an undirected graph G= (V ,E) with
n� |V | and m� |E|, we first define the vertex-edge incidence matrix
B ∈Rn×m associated to it. Direct each edge i ∈ E arbitrarily and let i+ denote
the head vertex of i and i− denote its tail vertex. For every edge i, the matrix
B contains a column bi � ei+ − ei− ∈ Rn, where {ej }j∈[n] are the standard
basis vectors for Rn.

Given s � t ∈V , an s−t-flow in G is an assignment x : E→ R that satisfies
the following conservation of flow property: For all vertices j ∈ V \ {s,t}, we
require that the incoming flow is equal to the outgoing flow, i.e.,

〈ej,Bx〉 = 0.

An s − t-flow is said to be feasible if

|xi | ≤ 1

for all i ∈ E, i.e., the magnitude of the flow in each edge respects its capacity
(1 here). The objective of the s− t-maximum flow problem is to find a feasible
s − t-flow in G that maximizes the flow out of s, i.e., the value

〈es,Bx〉.
The s − t-maximum flow problem was not only used to encode various real-
world routing and scheduling problems; also many fundamental combinatorial
problems such as finding a maximum matching in bipartite graph were shown
to be its special cases; see Schrijver (2002a,b) for an extensive discussion.

Combinatorial algorithms for the maximum flow problem. An important
fact about the s − t-maximum flow problem is that there always exists an
integral flow that maximizes the objective function. As it will be explained
later in this book, this is a consequence of the fact that the matrix B is totally
unimodular: Every square submatrix of B has determinant 0, 1, or −1. Thus,
we can restrict

xi ∈ {−1,0,1}
for each i ∈ E, making the search space for the optimal s − t-maximum
flow discrete. Because of this, the problem has been traditionally viewed as a
combinatorial optimization problem.

https://doi.org/10.1017/9781108699211.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108699211.003

1.1 An Example: The Maximum Flow Problem 3

One of the first combinatorial algorithms for the s − t-maximum flow
problem was presented in the seminal work by Ford and Fulkerson (1956).
Roughly speaking, the Ford-Fulkerson method starts by setting xi = 0 for
all edges i and checks if there is a path from s to t such that the capacity of
each edge on it is 1. If there is such a path, the method adds 1 to the flow
value of the edges that point (from head to tail) in the direction of this path and
subtracts 1 from the flow values of edges that point in the opposite direction.
Given the new flow value on each edge, it constructs a residual graph where
the capacity of each edge is updated to reflect how much additional flow
can still be pushed through it, and the algorithm repeats. If there is no path
left between s and t in the residual graph, it stops and outputs the current
flow values.

The fact that the algorithm always outputs a maximum s − t-flow is
nontrivial and a consequence of duality – in particular, of the max-flow
min-cut theorem that states that the maximum amount of flow that can be
pushed from s to t is equal to the minimum number of edges in G whose
deletion leads to disconnecting s from t . This latter problem is referred to as
the s − t-minimum cut problem and is the dual of the s − t-maximum flow
problem. Duality gives a way to certify that we are at an optimal solution and,
if not, suggests a way to improve the current solution.

It is not hard to see that the Ford-Fulkerson method generalizes to the setting
of nonnegative and integral capacities: Now the flow values are

xi ∈ {−U, . . . , − 1,0,1, . . . ,U}
for some U ∈ Z≥0. However, the running time of the Ford-Fulkerson method
in this general capacity case depends linearly on U . As the number of bits
required to specify U is roughly log U , this is not a polynomial time algorithm.

Following the work of Ford and Fulkerson (1956), a host of combinatorial
algorithms for the s − t-maximum flow problem were developed. Roughly,
each of them augments the flow in the graph iteratively in an increasingly
faster, but combinatorial, manner. The first polynomial time algorithms were
by Dinic (1970) and by Edmonds and Karp (1972), who used breadth-first
search to augment flows. This line of work culminated in an algorithm by
Goldberg and Rao (1998) that runs in Õ

(
m min

{
n2/3,m1/2

}
log U

)
time. Note

that unlike the Ford-Fulkerson method, these latter combinatorial algorithms
are polynomial time: They find the exact solution to the problem and run in
time that depends polynomially on the number of bits required to describe the
input. However, since the result of Goldberg and Rao (1998), there was no real
progress on improving the running times for algorithms for the s− t-maximum
flow problem until 2011.

https://doi.org/10.1017/9781108699211.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108699211.003

4 1 Bridging Continuous and Discrete Optimization

Convex programming-based algorithms. Starting with the paper by Chris-
tiano et al. (2011), the last decade has seen striking progress on the s − t-
maximum flow problem. One of the keys to this success has been to abandon
combinatorial approaches and view the s − t-maximum flow problem through
the lens of continuous optimization. At a very high level, these approaches still
maintain a vector x ∈ Rm which is updated in every iteration, but this update
is dictated by continuous and geometric quantities associated to the graph and
is not constrained to be a feasible s − t-flow in the intermediate steps of the
algorithm. Here, we outline one such approach for the s − t-maximum flow
problem from the paper by Lee et al. (2013).

For this discussion, assume that we are also given a value F and that we
would like to find a feasible s− t-flow of value F .1 Lee et al. (2013) start with
the observation that the problem of checking if there is a feasible s − t-flow of
value F in G is equivalent to determining if the intersection of the sets

{x ∈ Rm : Bx = F(es − et)} ∩ {x ∈ Rm : |xi | ≤ 1, ∀i ∈ [m]} (1.1)

is nonempty. Moreover, finding a feasible s − t-flow of value F is equivalent
to finding a point in this intersection. Note that the first set in Equation (1.1)
is the set of all s − t-flows (a linear space) and the second set is the set of all
vectors that satisfy the capacity constraints, in this case the �∞-ball of radius
one, denoted by B∞, which is a polytope.

Their main idea is to reduce this nonemptiness testing problem to a convex
optimization problem. To motivate their idea, suppose that we have convex sets
K1 and K2 and the goal is to find a point in their intersection (or assert that
there is none). One way to formulate this problem as a convex optimization
problem is as follows: Find a point x ∈ K1 that minimizes the distance to K2.
As K1 is convex, for this formulation to be a convex optimization problem,
we need to find a convex function that captures the distance of a point x to
K2. It can be checked that the squared Euclidean distance has this property.
Alternatively, one could consider the convex optimization problem where we
switch the roles of K1 and K2: Find a point x ∈ K2 that minimizes the distance
to K1. Note here that, while the squared Euclidean distance to a set is a convex
function, it is nonlinear. Thus, at this point it may seem like we are heading
in the wrong direction. We started off with a combinatorial problem that is a
special type of a linear programming problem, and here we are with a nonlinear
optimization formulation for it.

1
Using a solution to this problem, we could solve the s − t-maximum flow problem by
performing a binary search over F .

https://doi.org/10.1017/9781108699211.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108699211.003

1.1 An Example: The Maximum Flow Problem 5

Thus the following questions arise: Which formulation should we choose?
And why should this convex optimization approach lead us to faster
algorithms?

Lee et al. (2013) considered the following convex optimization formulation
for the s − t-maximum flow problem:

min
x∈Rm

dist2(x,B∞)

such that Bx = F(es − et),
(1.2)

where dist(x,B∞) is the Euclidean distance of x to the set B∞� {y ∈Rm :
‖y‖∞ ≤ 1}. As the optimization problem above minimizes a convex function
over a convex set, it is indeed a convex program. The choice of this formu-
lation, however, comes with a foresight that relies on an understanding of
algorithms for convex optimization.

A basic method to minimize a convex function is gradient descent, which
is an iterative algorithm that, in each iteration, takes a step in the direction of
the negative gradient of the function it is supposed to minimize. While gradient
descent does so in an attempt to optimize the function locally, the convexity of
the objective function implies that a local minimum of a convex function is
also its global minimum. Gradient descent only requires oracle access to the
gradient, or first derivative of the objective function and is, thus, called a first-
order method. It is really a meta-algorithm and, to instantiate it, one has to fix
its parameters such as the step-size and must specify a starting point. These
parameters, in turn, depend on various properties of the program including
estimates of smoothness of the objective function and those of the closeness of
the starting point to the optimal point.

For the convex program in Equation (1.2), the objective function has an
easy-to-compute first-order oracle. This follows from the observation that it
decomposes into a sum of squared-distances, one for each coordinate, and each
of these functions is quadratic. Moreover, the objective function is smooth:
The change in its gradient is bounded by a constant times the change in its
argument; one can visually inspect this in Figure 1.1.

One problem with the application of gradient descent is that the convex
program in (1.2) has constraints {x ∈ Rm : Bx = F(es − et)} and, hence, the
direction gradient descent asks us to move can take us out of this set. A way
to get around this is to project the gradient of the objective function onto the
subspace {x ∈ Rm : Bx = 0} at every step and move in the direction of the
projected gradient. However, this projection step requires solving a least
squares problem that, in turn, reduces to the numerical problem of solving a
linear system of equations. While one can appeal to the Gaussian elimination

https://doi.org/10.1017/9781108699211.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108699211.003

6 1 Bridging Continuous and Discrete Optimization

z
1−1

Figure 1.1 The function dist2(z,[−1,1]).

method for this latter task, it is not fast enough to warrant improvements over
combinatorial algorithms mentioned earlier. Here, a major result discovered
by Spielman and Teng (2004) implies that such a projection can, in fact, be
computed in time Õ(m). This is achieved by noting that the linear system
that arises when projecting a vector onto the subspace {x ∈ Rm : Bx = 0} is
the same as solving Laplacian systems that are of the form BB�y= a (for a
given vector a), where B is a vertex-edge incidence matrix of the given graph.
Such a result is not known for general linear systems and (implicitly) relies on
the combinatorial structure of the graph that gets encoded in the matrix B.

Thus, roughly speaking, in each iteration the projected gradient descent
algorithm takes a point xt in the space of all s − t-flows of value F , moves
toward the set B∞ along the negative gradient of the objective function, and
then projects the new point back to the linear space; see Figure 1.2 for an
illustration. While each iterate is an s − t-flow, it is not a feasible flow.

A final issue is that such a method may not lead to an exact solution but
only an approximate solution. Moreover, in general, the number of iterations
depends inverse polynomially on the quality of the desired approximation. Lee
et al. (2013) proved the following result: There is an algorithm that, given
an ε > 0, can compute a feasible s − t-flow of value (1 − ε)F in time
Õ(mn1/3ε−2/3). If we ignore the ε in their bound, this improved the result
of Goldberg and Rao (1998) mentioned earlier.

We point out that the combinatorial algorithm of Goldberg and Rao (1998)
has the same running time even when the input graph is directed. It is not clear
how to generalize the gradient descent–based algorithm for the s−t-maximum
flow problem presented above to run for directed graphs.

The results of Christiano et al. (2011) and Lee et al. (2013) were further
improved using increasingly sophisticated ideas from continuous optimiza-
tion and finally led to a nearly linear time algorithm for the undirected
s − t-maximum flow problem in a sequence of work by Sherman (2013),
Kelner et al. (2014), and Peng (2016). Remarkably, while these improvements

https://doi.org/10.1017/9781108699211.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108699211.003

1.1 An Example: The Maximum Flow Problem 7

xt+1xt
{x : Bx = F(es − et)}

B∞

Figure 1.2 An illustration of one step of the projected gradient descent in the
algorithm by Lee et al. (2013).

abandoned discrete approaches and used algorithms for convex optimization,
beating the running times of combinatorial algorithms leveraged the underly-
ing combinatorial structure of the s − t-maximum flow problem.

The goal of this book is to enable a reader to gain an in-depth understanding
of algorithms for convex optimization in a manner that allows them to apply
these algorithms in domains such as combinatorial optimization, algorithm
design, and machine learning. The emphasis is to derive various convex
optimization methods in a principled manner and to establish precise running
time bounds in terms of the input length (and not just on the number of
iterations). The book also contains several examples, such as the one of s − t-
maximum flow presented earlier, that illustrate the bridge between continuous
and discrete optimization. Laplacian solvers are not discussed in this book. The
reader is referred to the monograph by Vishnoi (2013) for more on that topic.

The focus of Chapters 3–5 is on basics of convexity, computational models,
and duality. Chapters 6–8 present three different first-order methods: gradi-
ent descent, mirror descent and multiplicative weights update method, and
accelerated gradient descent. In particular, the discussion here is presented
in detail as an application in Chapter 6. In fact, the fastest version of the
method of Lee et al. (2013) uses the accelerated gradient method. Chapter 7
also draws a connection between mirror descent and the multiplicative
weights update method and shows how the latter can be used to design a
fast (approximate) algorithm for the bipartite maximum matching problem. We

https://doi.org/10.1017/9781108699211.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108699211.003

8 1 Bridging Continuous and Discrete Optimization

remark that the algorithm of Christiano et al. (2011) relies on the multiplicative
weights update method.

Beyond approximate algorithms? The combinatorial algorithms for the
s−t-maximum flow problem, unlike the first-order convex optimization–based
algorithms described above, are exact. One can convert the latter approximate
algorithms to exact ones, but it may require setting a very small value of ε

making the overall running time non-polynomial. The remainder of the book
is dedicated to developing algorithms for convex optimization – interior point
and ellipsoid – whose number of iterations depend poly-logarithmically on
ε−1 as opposed to polynomially on ε−1. Thus, if we use such algorithms, we
can set ε to be small enough to recover exact algorithms for combinatorial
problems at hand. These algorithms use deeper mathematical structures and
more sophisticated strategies (as explained later). The advantage in learning
these algorithms is that they work more generally – for linear programs
and even convex programs in a very general form. Chapters 9–13 develop
these methods, their variants, and exhibit applications to a variety of discrete
optimization and counting problems.

1.2 Linear Programming

The s − t-maximum flow problem on undirected graphs is a type of linear
program: a convex optimization problem where the objective function is a
linear function and all the constraints are either linear equalities or inequalities.
In fact, the objective function is to maximize the flow value F ≥ 0 constrained
to the set of feasible s − t-flows of value F ; see Equation (1.1).

A linear program can be written in many different ways and we consider
its standard form, where one is given a matrix A∈Rn×m, a constraint vector
b∈Rm, and a cost vector c∈Rn, and the goal is to solve the following opti-
mization problem:

max
x∈Rm
〈c,x〉

such that Ax = b,

x ≥ 0.

Typically we assume n ≤ m and, hence, the rank of A is at most n. Analogous
to the s − t-maximum flow problem, linear programming has a rich duality
theory, and in particular the following is the dual of the above linear program:

https://doi.org/10.1017/9781108699211.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108699211.003

1.2 Linear Programming 9

min
y∈Rn
〈b,y〉

such that A�y ≥ c.

Note that the dual is also a linear program and has n variables.
Linear programming duality asserts that if there is a feasible solution to

both the linear program and its dual, then the optimal values of these two linear
programs are the same. Moreover, it is often enough to solve the dual if one
wants to solve the primal and vice versa. While duality has been known for
linear programming for a very long time (see Farkas [1902]), a polynomial
time algorithm for linear programming was discovered much later. What was
special about the s − t-maximum flow problem that led to a polynomial time
algorithm for it before linear programming?

As mentioned earlier, one crucial property that underlies the s−t-maximum
flow problem is integrality. If one encodes the s − t-maximum flow problem
as a linear program in the standard form, the matrix A turns out to be totally
unimodular: Determinants of all square submatrices of A are 0,1, or −1. In
fact, in the case of the s − t-maximum flow problem, A is just the vertex-edge
incidence matrix of the graph G (which we denoted by B) that can be shown
to be totally unimodular. Because of linearity, one can always assume without
loss of generality that the optimal solution is an extreme point, i.e., a vertex
of the polyhedra of constraints (not to be confused with the vertex of a graph).
Every such vertex arises as a solution to a system of linear equations involving
a subset of rows of the matrix A. The total unimodularity of A, then, along with
Cramer’s rule from linear algebra, implies that each vertex of the polyhedra of
constraints has integral coordinates.

While duality and integrality do not directly imply a polynomial time
algorithm for the s − t-maximum flow problem, the mathematical structure
that enables these properties is relevant to the design of efficient algorithms
for this problem. It is worth mentioning that these ideas were generalized in a
major way by Edmonds (1965a,b) who figured out an integral polyhedral rep-
resentation for the matching problem and gave a polynomial time algorithm
for optimizing linear functions over this polyhedron.

For general linear programs, however, integrality does not hold. The reason
is that for a general matrix A, the determinants of submatrices that show up in
the denominator of the vertices of the associated polyhedra may not be 1 or−1.
However, for A with integer entries, these determinants cannot be more than
poly(n,L) in magnitude, where L is the number of bits required to encode
A, b and c. This is a consequence of the fact that determinant of a matrix
with integer entries bounded by 2L is no more than n! 2nL. While there was a

https://doi.org/10.1017/9781108699211.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108699211.003

10 1 Bridging Continuous and Discrete Optimization

K

xt

H

Et+1

Et

Figure 1.3 Illustration of one step of the ellipsoid method for the polytope K .

combinatorial algorithm for linear programming, e.g., the simplex method of
Dantzig (1990) that moved from one vertex to another, none was known to run
in polynomial time (in the bit complexity) in the worst case.

Ellipsoid method. In the late 1970s, a breakthrough occurred and a polyno-
mial time algorithm for linear programming was discovered by Khachiyan
(1979, 1980). The ellipsoid method is a geometric algorithm that checks if
a given linear program is feasible or not. As in the case of the s − t-maximum
flow problem, solving this feasibility problem implies an algorithm to optimize
a linear function via a binary search argument.

In iteration t , the ellipsoid method approximates the feasible region of
the linear program with an ellipsoid Et and outputs the center (xt) of this
ellipsoid as its guess for a feasible point. If this guess is incorrect, it requires a
certificate – a hyperplane H that separates the center from the feasible region.
It uses this separating hyperplane to find a new ellipsoid (Et+1) that encloses
the intersection of Et and the halfspace of H in which the feasible region lies;
see Figure 1.3. The key point is that the update ensures that the volume of the
ellipsoid reduces at a fast enough rate and only requires solving a linear system
of equations to find the new ellipsoid from the previous one. If the volume of
the ellipsoid becomes so small that it cannot contain any feasible point, we can
safely assert the infeasibility of the linear program.

The ellipsoid method belongs to the larger class of cutting plane methods
as, in each step, the current ellipsoid is cut by an affine halfspace and a new
ellipsoid that contains this intersection is determined. The final running time
of Khachiyan’s ellipsoid method was a polynomial in n,L and, importantly, in
log 1

ε
: The algorithm output a point x̂ in the feasible region such that

https://doi.org/10.1017/9781108699211.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108699211.003

1.2 Linear Programming 11

c

K

x�

x0

Figure 1.4 Illustration of the interior point method for the polytope K .

〈c,x̂〉 ≤ 〈c,x�〉 + ε.

This implied that one can handle an error as small as 2−poly(n,L), and this is
all we need for linear programming to be in polynomial time. While this put
linear programming in the complexity class P for the first time, the resulting
algorithm, when specialized for combinatorial problems such as the s − t-
maximum flow problem, was far from competitive in terms of running time.

Interior point methods. In 1984, another continuous polynomial time algo-
rithm to solve linear programs was discovered by Karmarkar (1984): This time
the idea was to move in the interior of the feasible region until one reaches
the optimal solution; see Figure 1.4. Karmarkar’s algorithm had its roots in
the barrier method from nonlinear optimization. The barrier method is one
way to convert a constrained optimization problem to an unconstrained one
by choosing a barrier function for the constraint set. Roughly speaking, a
barrier function for a convex set is a function that is finite only in the interior
of it and increases to infinity as one approaches the boundary of the feasible
region. Once we have a barrier function for a constraint set, we can add it to
the objective function to penalize any violation of the constraints. For such a
function to be algorithmically useful, it is desirable that it is a convex a function
and also has certain smoothness properties (as explained later in this book).

Renegar (1988) combined the barrier approach with Newton’s method for
root finding to improve upon Karmarkar’s method. Unlike gradient descent,
which was based on the first-order approximation of the objective function,
Renegar’s algorithm, following Newton’s method, considered a quadratic

https://doi.org/10.1017/9781108699211.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108699211.003

12 1 Bridging Continuous and Discrete Optimization

approximation to the objective function around the current point and opti-
mized it to find the next point. His method took roughly Õ

(√
m L

)
iterations

to find a solution to the given linear program. Here L is the bit complexity of
the input (A, b, c). Further, each iteration just had to solve a linear system of
equations of size m×m.

While one way to view Newton’s method is as a second-order method, an
equivalent way is to view it as performing steepest descent in a geometric
space where the inner product and the norm change depending on the current
location of the algorithm: At a point x, the inner product between vectors u

and v is defined as u�∇2F(x)v for a barrier function F . As F is convex, this
gives rise to a local norm and is an example of a Riemannian metric.

However, unlike the ellipsoid method that just needs a separating hyper-
plane, interior point methods require the constraints explicitly in order to
compute the Hessian of the barrier function for the constraint set. In Chapter 9,
we derive Newton’s method both as a quadratic approximation and as a
steepest descent on a Riemannian manifold and present its analysis using local
norms. In Chapter 10, we introduce barrier functions and present Renegar’s
path-following interior point method for linear programming.

1.3 Fast and Exact Algorithms via Interior
Point Methods

Despite the remarkable effort that went into improving interior point methods
in the late 1980s, they could still not compete with combinatorial algorithms
for problems such as the s− t-maximum flow problem. A key obstacle was the
fact that solving a linear system of equations (a primitive used at each step of
ellipsoid and interior point method) required roughly O(m2.373) time.

Vaidya (1990) observed that the combinatorial structure of the problem
manifests in the linear systems that arise, and this structure could be used
to speed up certain linear programs. For instance, and as mentioned earlier,
for the s − t-maximum flow problem, the linear systems that arise correspond
to Laplacian systems. Vaidya presented some initial results for such linear
systems that gave hope for improving the per-iteration cost. His program was
completed by Spielman and Teng (2004), who gave an Õ(m) time algorithm
to solve Laplacian systems. And, using this (and a few more ideas), Daitch
and Spielman (2008) gave an exact interior point method for the maximum
flow problem that runs in time Õ(m1.5 log U), matching the performance of
the algorithm by Goldberg and Rao (1998) when m=O(n). In fact, their
method could also solve the more general s − t-minimum cost flow problem

https://doi.org/10.1017/9781108699211.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108699211.003

1.4 Ellipsoid Method beyond Succinct Linear Programs 13

in Õ(m1.5 log U) time and improved upon all prior algorithms by a factor
of about Õ(n/m1/2). This is presented in Chapter 11 and was the first sign
that general-purpose convex optimization methods can be specialized to be
comparable to or even beat combinatorial algorithms.

Beyond log-barrier functions. Meanwhile, in a sequence of papers, Vaidya
(1987, 1989a,b) introduced the volumetric barrier as a generalization of
Karmarkar’s barrier function and obtain modest improvements on the number
of iterations while ensuring that each iteration of his interior point method for
linear programming still just required multiplying two m×m matrices.

Nesterov and Nemirovskii (1994) abstracted the essence of barrier functions
and introduced the notion of self-concordance. They introduced the universal
barrier function and showed that the number of iterations in an interior
point method that uses their universal barrier function is

√
n, where n is the

dimension of the feasible region. They also showed that this bound cannot,
in general, go below

√
n. Computing the barrier function that achieved this,

however, was not easier than solving the linear programming problem itself.
Finally, Lee and Sidford (2014), building upon the ideas of Vaidya, gave a

new barrier function for interior point methods that not only came sensationally
close to the bound of O(

√
n) of Nesterov and Nemirovskii (1994), but

each iteration of their method just solves a small number of linear systems.
Using these ideas, Lee and Sidford (2014) gave an exact algorithm for the
s − t-maximum flow problem that runs in Õ(m

√
n log2 U) time, the first

improvement since Goldberg and Rao (1998). Their method also gave an
algorithm that runs in the same time for the s− t-minimum cost flow problem,
improving upon the results of Daitch and Spielman (2008) and Goldberg
and Tarjan (1987). Chapter 11 outlines the methods of Vaidya, Nesterov-
Nemirovskii, and Lee-Sidford.

1.4 Ellipsoid Method beyond Succinct Linear Programs

As mentioned earlier, an advantage of the ellipsoid method over interior point
methods was the fact that they just needed a separation oracle to the polytope
to optimize a linear function over it. A separation oracle for a convex set is
an algorithm that, given a point, either asserts that the point is in the convex
set or outputs a hyperplane that separates the point from the convex set. This
fact was exploited by Grötschel et al. (1981) to show that the ellipsoid method
can also be used to perform linear optimization over combinatorial polytopes

https://doi.org/10.1017/9781108699211.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108699211.003

14 1 Bridging Continuous and Discrete Optimization

that do not have a succinct linear description. Prominent examples include the
matching polytope for general graphs and various matroid polytopes.

Chapter 12 presents the general framework of cutting plane methods,
derives the ellipsoid method of Khachiyan, and applies it to the problem of
linear optimization over combinatorial 0-1-polytopes for which we only have
a separation oracle. Thus, the ellipsoid method may, sometimes, be the only
way one can obtain polynomial time algorithms for combinatorial problems.

Grötschel et al. (1981, 1988) noticed something more about the ellipsoid
method: It can be extended to general convex programs of the form

min
x∈K

f (x), (1.3)

where both f and K are convex. Their method outputs a point x̂ such that

f (x̂) ≤ min
x∈K

f (x)+ ε

in time, roughly, poly
(
n, log R

ε
,Tf ,TK

)
, where R is such that K is contained in

a ball of radius R, time Tf is required to compute the gradient of f , and time
TK is required to separate a point from K . Thus, this settled the problem of
designing algorithms for convex optimization in its most generality. However,
we emphasize that this result does not imply that any convex program of the
form (1.3) is in P. The reason is that sometimes it may be impossible to get an
efficient gradient oracle for f , an efficient separation oracle for K , or a good
enough bound on R.

In Chapter 13, we present an algorithm to minimize a convex function
over a convex set and prove the guarantee mentioned above. Subsequently,
we show how this can be used to give a polynomial time algorithm for another
combinatorial problem – submodular function minimization – given just an
evaluation oracle to the function. A submodular function f : 2[m] → R has the
diminishing returns property: For sets S ⊆ T ⊆ [m], the marginal gain of
adding an element not in T to S is at least the marginal gain of adding it to T ,
i.e., for all i � T :

f (S ∪ {i})− f (S) ≥ f (T ∪ {i})− f (T).

The ability to minimize submodular set functions allows us to obtain sepa-
ration oracles for matroid polytopes. Submodular functions arose in discrete
optimization and have recently also appeared as objective functions of machine
learning tasks such as data summarization.

Finally, in Chapter 13, we consider convex programs that have been recently
used for designing various counting problems over discrete sets, such as span-
ning trees. Given a graph G= (V ,E), let TG denote the set of spanning trees

https://doi.org/10.1017/9781108699211.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108699211.003

1.4 Ellipsoid Method beyond Succinct Linear Programs 15

θ

v1

v5

v4 v3

v2

max−∑i pi log pi

subject to

∑
i pi = 1,

∑
i pivi = θ ,

∀i, pi ≥ 0.

Figure 1.5 The maximum entropy problem and its convex program.

in G and let PG denote the spanning tree polytope, i.e., the convex hull of
indicator vectors of all the spanning trees in TG. Each vertex of PG corresponds
to a spanning tree in G. The problem that we consider is the following: Given
a point θ ∈ PG, find a way to write θ as a convex combination of the vertices
of the polytope PG so that the probability distribution corresponding to this
convex combination maximizes Shannon entropy; see Figure 1.5. To see what
this problem has to do with counting spanning trees, the reader is encouraged
to check that if we let θ be the average of all the vertex vectors of PG, the value
of this optimization problem is exactly log |TG|.

As stated, this is an optimization problem where there is a variable
corresponding to each vertex of the polytope, the constraints on these variables
are linear, and the objective function maximizes a concave function; see
Figure 1.5. Thus, this is a convex program. Note, however, that |TG| can be
exponential in the number of vertices in G; the complete graph on n vertices
has nn−2 spanning trees. Thus, the number of variables can be exponential in
the input size, and it is not clear how to solve this problem. Interestingly, if
one considers the dual of this convex optimization problem, the number of
variables becomes the number of edges in the graph.

However, there are obstacles to applying the general convex optimization
method to this setting, and this is discussed in detail in Chapter 13. In
particular, Chapter 13 presents a polynomial time algorithm for the maximum
entropy problem over polytopes due to Singh and Vishnoi (2014) and
Straszak and Vishnoi (2019). Such algorithms have been used to design very
general approximate counting algorithms for discrete problems by Anari
and Oveis Gharan (2017) and Straszak and Vishnoi (2017), and have enabled
breakthrough results for the traveling salesman problem by Oveis Gharan
et al. (2011) and Karlin et al. (2020).

Curiously, nature – via evolution – has developed continuous algorithms to
solve discrete problems. An example is the organism Physarum polycephalum,

https://doi.org/10.1017/9781108699211.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108699211.003

16 1 Bridging Continuous and Discrete Optimization

a slime mold, that uses a continuous-time dynamical system to solve the
shortest path problem in a maze; see the papers by Nakagaki et al. (2000) and
Bonifaci et al. (2012). Interestingly, the dynamics of slime mold has served as
an inspiration to new continuous algorithms for the maximum flow problem
and for linear programming; see the papers by Straszak and Vishnoi (2016a,b,
2021) and Exercises 9.11 and 11.8. Another striking example is a work by
Chastain et al. (2014), which argues that the mathematical description of
sexual evolution is equivalent to the multiplicative weight updates algorithm.
Thus, the bridge between continuous and discrete optimization transcends the
artificial world.

In summary, the last few years have seen dramatic progress in approximate
and exact algorithms for discrete problems. This progress is a result of viewing
discrete problems through the powerful lens of continuous methods and has
been fueled by major advances in algorithms for convex optimization. The
examples presented here hint at how continuous formulations allow algorithms
to harness geometric and analytic structures absent in the discrete world.
However, much remains to be done: from discovering even faster algorithms,
to conceptually simplifying the existing ones, to explaining the effectiveness
of continuous methods for discrete problems.

https://doi.org/10.1017/9781108699211.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108699211.003

