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Abstract
Determining accurate capital requirements is a central activity across the life insurance industry. This is
computationally challenging and often involves the acceptance of proxy errors that directly impact capital
requirements. Within simulation-based capital models, where proxies are being used, capital estimates are
approximations that contain both statistical and proxy errors. Here, we show how basic error analysis
combined with targeted exact computation can entirely eliminate proxy errors from the capital estimate.
Consideration of the possible ordering of losses, combined with knowledge of their error bounds, identifies
an important subset of scenarios.When these scenarios are calculated exactly, the resulting capital estimate
can be made devoid of proxy errors. Advances in the handling of proxy errors improve the accuracy of
capital requirements.
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1. Proxy Errors in Capital Estimates
Determining capital requirements accurately for life insurance firms is important both from the
perspective of the policyholder and from the perspective of the business. For internal model firms,
the Solvency Capital Requirement (SCR) is determined based on a 99.5% value-at-risk (VaR) of
assets less liabilities over a one-year period1.

Important risk factors, or variables linked to changes in prices and expected cashflows, are
identified, and their joint distribution is estimated. Asset and liability values are considered as
functions of these risk factors, and the loss distribution is then defined as the composition of
assets less liabilities with the risk factor distribution.

Simple analytic expressions for the loss percentiles are not typically available due to the
complexity of the calculation of asset and liability values under risk factor scenarios. In simulation-
based capital models, a Monte Carlo approach is used to infer properties of the loss distribution
from random samples. It may however be infeasible to compute the large number of simula-
tions required to reduce the Monte Carlo noise to acceptable levels. The underlying calculation
complexity may arise from the requirement to process valuations and cashflow projections over
a large number of policyholder benefit definitions and assets; complexity may be further com-
pounded when the underlying valuations or cashflow projections are computed with a stochastic
model resulting in the well-known problem of nested-stochastics. Hursey et al. (2014) use the term

1For UK-based insurers, see for example the policy statement in section 3.3, Appendix 1 of Prudential Regulation
Authority (2015) arising from EU and UK legislation (European Parliament and of the Council, 2009, 2021; UK Parliament,
2019 and 2020).
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“Heavy models” to refer to calculations required to form the unstressed parts of a firm’s balance
sheet.

In this paper, we explore the setting where full Monte Carlo simulation with heavy models is
computationally intractable. Alternative approaches must therefore be considered.

Within the life insurance industry, it is common practice to replace the asset and liability func-
tions of risk factors with simpler and faster-to-calculate approximations called proxy models or
simply “proxies” (Robinson & Elliott, 2014). Androschuck et al. (2017) discuss several approxi-
mation techniques that have been motivated by their practical usefulness, including curve fitting,
replicating portfolios, and Least Squares Monte Carlo.

Internal model firms are also required to forecast the loss distribution across all percentiles
and not only at the 99.5th percentile determining the SCR (Article2 228.). Proportionality and
simplification requirements (Article 56) ensure that firms using simulation-based capital models
with proxies accept that the forecasted distribution is approximate and accept that the error may
vary across regions of the loss distribution depending on firm’s risk management use cases. For
example, the accuracy of proxies in the gain portion of the distribution, or extreme tails, may not
affect capital requirements or change use cases, and therefore, a lower accuracy may be acceptable.

Approximation errors do however enter the loss distribution in areas that are both important
for capital and other use cases. Outputs of the internal model, including the 99.5th percentile
determining the SCR, must be adjusted wherever possible to account for model errors (Article
229(g)). This paper sets out a method that may be used to assess errors propagating into a certain
class of percentile estimators and therefore may be directly applicable to actuaries adjusting such
model outputs for errors.

The UK’s Prudential Regulation Authority (PRA) reported that firms continue to invest
in improving proxy modelling and validation (David Rule, Executive Director of Insurance
Supervision, 2019):

In May 2018, the PRA issued a survey to a number of life insurers with a proxy model. The
responses revealed that over the previous couple of years, some insurers had improved the
quality of their proxy modelling considerably. Others had not made the same investment.
Standards of validation also varied.
The best firms had increased the number of validation tests by improving the speed of

valuation models, were placing the validation tests at points carefully selected to challenge
the proxy model calibration and were conducting more validation after the reporting date.

The main challenge in the introduction and use of proxy models is in demonstrating that they
reflect the loss distribution and the capital requirements accurately. Androschuck et al. (2017)
discuss that this is a design, validation and communication challenge. They highlight the impor-
tance of resolving whether fitting errors resulting from the use of proxy models are material and
the importance of making suitable adjustments to mitigate the effects of these errors in the capital
modelling. The lack of formal proof of the accuracy of quantile estimates was also highlighted:

A proxy model will never replicate a heavy model exactly and so may produce some large
errors on particular individual scenarios. However, it can still produce sufficiently accu-
rate quantile estimates as long as individual errors are free from systematic misstatements.
Hursey et al. (2014) provided empirical evidence of this; however, the authors of this paper
are not aware of a formal proof.3

2Articles cited in section 1 refer to Delegated Regulation of the European Parliament and of the Council (2021).
3See p. 308, Table 15, Androschuck et al. (2017), Understanding the potential error around the true result.
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Within this paper, formal proof is given that proxy errors can be removed from the capital esti-
mate in circumstances where, for any given risk factor scenario, proxy errors are within known
bounds. This is achieved by a basic analysis of how proxy errors corrupt our knowledge of sce-
nario ordering, allowing the identification of a subset of scenarios that could influence the capital
estimate. It is by performing targeted exact computation on the identified subset of scenarios
that proxy errors are then eliminated from the capital estimate. The capital estimate remains an
estimate due to statistical error, but is devoid of errors arising from the use of proxies. The com-
putational advantage of the approach is measured by comparing the number of targeted scenarios
requiring exact calculation to the number of theMonte Carlo scenarios used with the proxymodel.

Note that the approach has applicability whenever percentiles of risk distributions are being
estimated with proxies. A wide range of actuarial and non-actuarial applications exist where the
elimination of proxy errors in quantile estimates may be useful. Applications include the risk
assessment of petroleum fields (Schiozer et al., 2008; Risso et al., 2008; Polizel et al., 2017; Azad
et al., 2013) and flood risk modelling (Paquier et al., 2015). An actuarial example of approxi-
mating distributions include Dowd et al. (2011), where approximations are used to estimate the
distribution of annuity values.

The elimination of proxy errors from capital estimates allows actuarial practitioners to state
capital requirements as a direct consequence of financial assumptions, model design, and calibra-
tions. Communication of capital requirements may also be simplified when potential errors in the
capital estimate, arising from the use of proxies, have been removed.

An important limitation of the approach outlined is that it does not remove the need for val-
idation. Rather, it provides two avenues for practitioners involved in proxy validation. Either
the elimination method can be seen as formalising a validation requirement to that of showing
an error bound criterion is satisfied, or the method can be used to give insight into the proxy
validation process itself by providing a direct linkage between proxy errors and their possible
propagation into capital estimates. Full elimination of proxy errors in the capital estimate relies
on the proxy error bound being satisfied, and the targeted exact computations being performed.

2. The Proxy Error Elimination Approach
In practice, the underlying loss distributions under consideration are not known analytically and
therefore must be studied empirically, in our case, through proxies and Monte Carlo sampling.
Our aim is to remove proxy errors from statistical estimates of chosen quantiles, especially the
99.5% value-at-risk corresponding to the Solvency Capital Requirement. Two important questions
arise when using proxies to approximate exact losses:

• How accurate is the quantile estimator when using proxies?
• Can proxy errors be eliminated from the quantile and standard error estimates?

The elimination of proxy errors from estimates of the standard error is of interest as it
may enhance the validation of model stability and may improve evidence of effective statistical
processes (Article 124 of European Parliament and of the Council, 2009).

Recall that the proxy loss values for given risk factors are not the actual losses. The actual
losses are unknown unless an exact scenario calculation is performed. When using proxies, both
the quantile estimator and estimations of its statistical error may deviate from true values due to
proxy errors. The elimination of proxy errors relies on the assumption that every loss scenario can
be approximated within known error bounds (section 2.5). The error bound may be large or small
and may vary by risk factor (Assumption 1). It is through analysis of the upper and lower bounds
that important risk factor scenarios are identified. Outside of these the actual proxy may fit poorly
but can be ignored since these risk factor scenarios have no impact on the capital estimate.
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Under this assumption, it is established that proxy errors can be eliminated from quantile esti-
mators when the losses for a specific set of risk factor scenarios are calculated exactly (Theorem 1).
Furthermore, an approximation is proposed for the bootstrap estimation of the standard error
which can be calculated without proxy errors when the losses for another set of risk factor sce-
narios are calculated exactly (section 2.8). To aid understanding of the theoretical statements, an
explanatory example with step-by-step calculations is given (section 3).

The results follow from an elementary observation of how the error bounds behave under
sorting (Lemma 1). This observation, along with the assumption that proxy error bounds exist,
allows the value of the quantile devoid of proxy errors to be known within calculable error bounds
(Lemma 2). It is by measuring the possible error within the capital estimate that the error can be
shown to be removed.

Without computational restrictions, there would be no need for proxies, and quantiles could be
estimated with their standard errors without further approximation error. However, the number
of exact loss calculations is in practice restricted (section 2.6). Computational requirements are
explored through the consideration of a realistic loss distribution indicating that elimination of
proxy errors from capital estimates may be feasible for some firms (section 4).

Initially, notation is set-out to avoid possible confusion between symbols for proxy models
and probabilities (section 2.2). The concepts of statistical error and asymptotic convergence are
then introduced by looking at the central limit theorem. A family of quantile estimators, called
L-estimators, are defined (section 2.3) whose simple linear form plays an important role in the
theoretical steps. Estimation of their statistical error is discussed in the context of a technique
called the bootstrap (section 2.4) that allows practitioners to estimate statistical errors through
resampling of the loss distribution, avoiding the computationally expensive generation of further
exact loss scenarios.

2.1 Notational preliminaries
Let the random variable X represent the change in assets less liabilities over a one-year horizon4.
Negative values of X will represent losses and positive values will represent gains. The 1 in 200 loss
is given by the 0.5th percentile of the distribution. The capital requirement is the amount required
to be held by the firm to cover this potential loss.

The internal model associates a given risk factor r ∈R
m with a loss x(r) ∈R. We call x(r) the

exact loss calculation since it contains no proxy error. The risk factor is considered as a random
variable, denoted R, distributed according to a known multivariate distribution, so that the loss X
satisfies the composition relationship:

X ∼ x(R). (1)

Here the notation A∼ B means A and B have equal distribution. A proxy function for x is a
function p of the risk factor space that is inexpensive to evaluate. Where lower and upper error
bounds on the exact loss are known, they can be considered as functions of the risk factor space
satisfying:

l(r)≤ x(r)≤ u(r). (2)

The distribution function of X is denoted by F and its density function by f , if it exists, so that

F(s)= P(X ≤ s)=
∫ s

−∞
f (t) dt, −∞ < s< ∞. (3)

4An introduction to random variables, including related definitions of probability density and distribution function can
be found in Chapter 7 of Stirzaker (2003).
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The function F is called the loss distribution. For a given percentile α ∈ (0, 1), the quantile ξα of
the loss distribution is defined by the generalised inverse of F:

ξα = F−1(α) := inf{s:F(s)≥ α}, 0< α < 1. (4)

To avoid notational confusion, note that the symbol p is used only to refer to the proxy, whereas
probability percentiles are given the symbol α.

The capital requirement is defined as the one in two hundred loss given by −ξ0.005. Note that
a minus sign has been introduced so that the capital requirement is stated as a positive number.
The value ξα is not easily calculable since f and F are not known precisely. Estimation techniques
are therefore required. In the following, statistical estimation techniques involving Monte Carlo
sampling are introduced.

2.2 Basic estimation
Distributional parameters of a random variable can be estimated from empirical samples.
Estimators can target parameters such as the mean, variance, and quantiles. They are designed
to converge to the parameter’s value as the sample size is taken ever larger. Moreover, it is a com-
mon phenomenon that the distribution of the error between the estimator and the parameter,
when suitably scaled, converges towards normal for large sample sizes5. An elementary example
of this is the central limit theorem (Chapter 8 of Stirzaker, 2003) where under mild conditions on
the independent identically distributed random variables Xi with mean μ and variance σ 2:

P

(
1

σ
√
n

n∑
i=1

(Xi − μ)≤ s

)
→ �(s) :=

∫ s

−∞
1√
2π

e−
1
2 t

2
dt, as n→ ∞. (5)

Equivalently, it may be said that the error between the estimator n−1∑n
i=1 Xi and parameter μ is

approximately normal and, when suitably scaled, converges in distribution6, written

√
n

(
1
n

n∑
i=1

Xi − μ

)
d−→N

(
0, σ 2) , as n→ ∞. (6)

When the distribution of the estimator (suitably scaled) converges to normal, it is said that the
estimator is asymptotically normal. The difference between the estimator and the parameter is
called statistical error. The standard deviation of the statistical error is called the standard error7.
We discuss the estimation of statistical error in section 2.4. These quantities are of interest since
they allow for the construction of confidence intervals for the parameter.

For a given sample size n, the kth largest sample is called the kth order statistic. Given n inde-
pendent identically distributed random variables Xi, the kth largest is denoted by Xk:n. Order
statistics are important for our framework since they are very closely related to the quantiles of
the distribution. A simple case of asymptotic normality of order statistics is given by Corollary B,
section 2.3.3 of Serfling (2009), where it is shown that if F possesses a positive density f in a
neighbourhood of ξα , and f is continuous at ξα , then

√
n
(
X�αn�:n − ξα

) d−→N
(
0,

α(1− α)
f 2(ξα)

)
, as n→ ∞. (7)

5See, for example, the discussion on p. 266 of Serfling (2009).
6A sequence of random variables Xi converges in distribution to X, written Xi

d−→ X, if Fn(x)→ F(x) at all points xwhere
F is continuous, see for example section 1.2.4 of Serfling (2009) or section 5.9 of Stirzaker (2003).

7See, for example, p. 60 of Efron & Tibshirani (1994).
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Estimators taking the form of a weighted sum of ordinals are referred to as L-estimators8 and
can be written

Tn =
n∑
i=1

ciXi:n (8)

where ci are constants dependent on the percentile α and the number of scenarios n and vary
according to the chosen estimator. Depending on the choice of weights, L-estimators can target
different parameters of the distribution. An elementary example of estimating the mean μ of X.
By placing ci = 1/n in (8) and applying (6), noting that the sum of the ordinals is equal to the sum
of the sample, we have

√
n (Tn − μ)

d−→N(0, σ 2).
When the underlying distribution of X is known, the distribution and density functions of Xk:n

can be derived through elementary probability9:

FXk:n(s)=
n∑
i=k

(
n
i

)
F(s)i(1− F(s))n−i, −∞ < s< ∞, (9)

fXk:n(s)=
n!

(n− k)!(k− 1)! f (s)F(s)
k−1(1− F(s))n−k. (10)

The expected value of the kth order statistic is given by

E [Xk:n]= 1
B(k, n− k− 1)

∫ 1

0
F−1(t)tk−1(1− t)n−k dt (11)

where B(x,y) is defined in (16c).
Next we consider a special case of L-estimators designed to target quantiles. This is of particular

interest since capital requirements are determined by quantile estimates.

2.3 Quantile L-estimators
In our application, we are concerned with the special case of L-estimators that target quantiles ξα ,
and importantly the special case of α = 0.005 representing the 1 in 200 year loss. We call these
quantile L-estimators and write their general form as

ξ̂α =
n∑

i=1
ciXi:n (12)

where we use the hat notation ξ̂α to highlight that the estimator is targeting ξα . For a given
empirical sample {xi}Ni=1 from x(R), write the ordered values by {x(i)}Ni=1 so that x(i) ≤ x(i+1) for
i= 1, . . . ,N − 1 and the value of the statistic for the sample is written

∑n
i=1 cix(i).

We give here two basic examples of quantile L-estimators. In practice, the choice of the esti-
mator involves considerations of bias and variance, as well as the number of non-zero weights
involved in its calculation.

2.3.1 Basic L-estimator
To understand the form of quantile L-estimators, consider a basic example where the quantile is
approximated by a single order statistic:

ξ̂α = X�αn�:n. (13)

8Chapter 8 of Serfling (2009).
9See Example 11, section 8.7 of Stirzaker (2003).

https://doi.org/10.1017/S1748499522000161 Published online by Cambridge University Press

https://doi.org/10.1017/S1748499522000161


Annals of Actuarial Science 225

This can be seen as having the form of the L-estimator (12) by setting
ci = δi,�αn�, (14)

where δi,j is the Kronecker delta notation satisfying δi,j = 0 whenever i 
= j and δi,i = 1. From (7),
we see that under mild assumptions the estimator converges to the quantile with asymptotically
normal statistical error:

√
n
(
ξ̂α − ξα

) d−→N
(
0,

α(1− α)
f 2(ξα)

)
as n→ ∞. (15)

One reason to use the basic estimator is its simplicity. However, estimators with lower standard
error may be preferred. An example is the following.

2.3.2 Harrell-Davis L-estimator
Harrell & Davis (1982) introduced the quantile estimator that weights ordinals according to the
target percentile α in a neighbourhood around the nα-th ordinal. It is given by

ξ̂α =
n∑

i=1
wiXi:n (16a)

with coefficients wi dependent on n and α given by
wi = Ii/n(α(n+ 1), (n+ 1)(1− α))− I(i−1)/n(α(n+ 1), (n+ 1)(1− α)) (16b)

where Ix(a, b) denotes the incomplete-Beta function

Ix(a, b)= B(x; a, b)
B(1; a, b)

, B(x; a, b)=
∫ x

0
ta−1(1− t)b−1dt, x> 0 (16c)

formed from the Beta function B(x; a, b). When x= 1, write B(x, y)≡ B(1; x, y).
Asymptotic normality of the Harrell-Davis estimator was established by Falk (1985) under

general conditions on the distribution involving smoothness of F and positivity of f . A rate of
convergence was also derived under somewhat stronger conditions. Numerical properties of the
estimator were investigated by Harrell & Davis (1982).

2.4 Bootstrap estimation of statistical error
Estimators with low statistical errors are desirable due to them yielding small statistical error
bounds on capital estimates. In section 2.3.1, it is shown that in the case of the estimator using
a single order statistic, the standard error is approximately

√
α(1−α)
nf 2(ξα)

. This analytic expression for
the standard error requires knowledge of f (ξα), the density of the loss distribution at the quan-
tile ξα . In practical examples, f is not known analytically at any quantile. We therefore need a
method of approximating the statistical error of estimators.

Efron (1979) introduced a technique called the bootstrap10 that can be used in practical
situations to investigate the distribution of statistical errors when sampling from unknown dis-
tributions. This allows, for example, the standard error to be approximated, for example, the
parameter σ in (6), and the expression

√
α(1−α)
nf 2(ξα)

in (15).

Suppose there is a sample {xi}ni=1 from an unknown distribution F. A statistic, say ξ̂α , has been
calculated on the basis of the sample, and the question is how representative is it of ξα?

Calculating many such samples from F to analyse statistical errors may be prohibitively
expensive or even not possible in real-life empirical settings. The bootstrap technique instead
uses resampling with replacement to mimic new independent samples. The technique involves

10See for example Efron (1992) and Efron & Tibshirani (1994) for expanded discussions of the bootstrap.
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drawing an independent sample of size n from {xi}ni=1 with replacement, denoted with star nota-
tion

{
x∗
i
}n
i=1. Resampling from {xi}ni=1 is computationally cheap and so this can be repeated many

times. Each of our new samples gives a realisation of the estimator ξ̂∗
α , and we combine these to

form an empirical distribution, from which the variance (and other properties) can be estimated.
In applications, the bootstrap variance var

(
ξ̂∗
α

)
is often considered an estimator for the original

variance var(ξ̂α).
An algorithm for calculating the bootstrap estimate of standard errors in described in

Algorithm 6.1 of Efron & Tibshirani (1994). Analytical expressions for the bootstrap sample
means, variances and covariances were established by Hutson & Ernst (2000). They show that
the bootstrap sample is equivalent to generating a random sample of size n drawn from the uni-
form distribution U(0,1) with order statistics (U1:n, . . . ,Un:n) and applying the sample quantile
function F−1

n defined by

F−1
n (u)= x(k) where (k− 1)/n< u≤ k/n, k ∈N. (17)

Denote the mean and variance of the ordinal Xk:n by μk and σk respectively, so that
μk =E(Xk:n), (18)

σ 2
k = var (Xk:n) . (19)

Theorem 1 of Hutson & Ernst (2000) establishes that the bootstrap estimators of μk and σk
denoted μ∗

k and σ ∗
k are given by

μ∗
k =E

(
F−1
n (Uk:n)

)=
n∑

i=1
wi(k)x(i), where (20a)

wi(k) := Ii/n(k, n− k+ 1)− I(i−1)/n(k, n− k+ 1), (20b)
and Ix(a, b) denotes the incomplete-Beta function defined in (16c). From (10) and the form of Fn,
we see that when α(n+ 1)= k, the Harrell-Davis weights wi, defined in (16b), exactly coincide
with the bootstrap weights wi(k) defined in (20b).

The bootstrap variance σ ∗2
k is established in Theorem 2 of Hutson & Ernst (2000):

σ ∗2
k := var

(
F−1
n (Uk:n)

)=
n∑
i=1

wi(k)
(
x(i) − μ∗

k
)2 (21)

where wi(k) is given by (20b).
An interpretation of (2.4) is that for a given loss scenario, the relative chance (in the sense of

the bootstrap) amongst all ordinals that the i-th ordinal represents the true quantile (α = k/n) is
given by the weight wi.

2.5 Assumption on proxy errors
The term proxy error refers to approximations introduced by the use of proxies. For a given risk
factor scenario r, we denote the output of a proxy model by p(r) and the exact loss calculation
x(r). Fundamental to our analysis is the following assumption regarding knowledge of proxy error
bounds.
Assumption 1. The proxy model is calculated with known proxy error bounds: given a risk factor
scenario r, the (possibly unknown) exact loss scenario x(r) satisfies

l(r)≤ x(r)≤ u(r) (22)
for some known values l(r),u(r).
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In practical applications, Assumption 1 can be satisfied by choosing prudent error bounds, as
may be found as part of the design and validation of the proxy model. Proxy design within life
insurance capital applications is discussed in Caroll & Hursey (2011), Hursey (2012), and Hursey
et al. (2014). Androschuck et al. (2017) suggest during design and validation to consider, amongst
other measures, the maximum absolute error amongst in and out-of-sample testing across the
whole distribution. Under this approach, prudent choices of error bounds are larger than the
maximum error observed.

For a given sample of risk factors {ri}ni=1, the associated error sample, also called the residu-
als, is given by {p(ri)− x(ri)}ni=1. The residuals may also be considered as a random sample from
p(R)− x(R). The case when the error is bounded is covered by our framework. Suppose the
residual, considered as a random variable, is bounded by some � > 0:

p(R)− x(R)∼ E, |E| ≤ �. (23)

Then by placing l(r)= p(r)− � and u(r)= p(r)+ �, the conditions of Assumption 1 are satisfied.
Assumption 1 asserts no distributional properties on the error sample other than that the resid-

uals are bounded for a given risk factor by known values. Assumption 1 is also trivially satisfied in
the situation where a proxy function p has a constant error bound � > 0 so that

p(r)− � ≤ x(r)≤ p(r)+ �. (24)

Similar to case (23), this can be seen by setting l(r)= p(r)− � and u(r)= p(r)+ �. Assumption 1
is however much more general since it allows the error interval to be arbitrarily large and to vary
with risk factor.

Hursey et al. (2014) describe an error function, formed from fitting a function from the risk
factor space to the residuals, to inform the design of the proxy function. This error curve cannot
be used directly to form upper and lower error bounds since it is formed from least-squares fitting,
and therefore represents an averaged error. However, Cardiel (2009) shows how least-squared
fitting can be adapted to create regressions of the upper and lower boundaries of data sets. In this
application, a regression of the upper boundary of the residuals could be used to propose an upper
bound function u(r). Similarly, a regression of the lower boundary of the residuals can be used to
propose a lower bound function l(r).

Whatever technique is used to pose error bound functions, it is still necessary to appropriately
validate the functions before use in capital requirement modelling.

In the analysis of Murphy & Radun (2021), an assumption that the error term is normally
distributed is made so that

p(R)− x(R)∼N(μ, σ ), μ ∈R, σ > 0. (25)

This setting is excluded from our framework since it is not possible to assert any finite lower and
upper bounds on the proxy error, and therefore requirement (22) of Assumption 1 is not satisfied.
We note that deconvolution techniques may be applicable when an unbounded error model is
assumed; see for example Ghatak & Roy (2018).

2.6 Assumptions on computational feasibility
Practical computational considerations motivate the use of approximation methods in capi-
tal requirement modelling. To reflect this, computational restrictions are introduced into the
framework. By doing so, practical limitations faced by firms on the volume of computations
they can perform are captured. Such limitations may arise for example through time con-
straints, computational budgets or practical considerations arising from the use of third party
systems.
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Assumption 2. The following are feasible computations for n, N where n�N:

(1) creation of a large number of independent risk factor samples {ri}Ni=1,
(2) evaluation of the proxy, and lower and upper proxy error bounds on a large number of risk

factor scenarios {p(ri)}Ni=1, {l(ri)}Ni=1, {u(ri)}Ni=1, and
(3) calculation of exact losses for a small risk factor scenario set represented by {x(ri)}ni=1.

It is infeasible to evaluate the exact losses for all the risk factor scenarios {x(ri)}Ni=1.

The notation n�N is used to mean that N may be several orders of magnitude bigger
than n. Androschuck et al. (2017) cite a 2014 survey by Deloitte showing life insurance firms
using between 20 and 1,000 exact loss calculations for calibration purposes. From this, we infer
the likely number of feasible exact computations n for UK based life insurance firms to be at least
in the range 20–1,000 and likely much higher given advances in computing capacity since 2014.
They also state that to create a credible distribution of profit and loss, firms would expect to run
hundreds of thousands, or even millions of scenarios, leading us to infer that N is of the order of
one million. For our exposition, we consider n= 1, 000 and N = 1, 000, 000 to be realistic values
for some firms. Firms interested in understanding how proxy errors enter their capital estimates
can adjust error bounds, n and N to their circumstances.

A consequence of Assumption 2 is that the residual error sets of the form {p(ri)− x(ri)}mi=1,
considered in section 2.5, are feasible to compute form= n but infeasible form=N.

Next, we consider the construction of computationally feasible bounds on quantile
L-estimators.

2.7 Estimating quantiles of the loss distribution
Our interest is to estimate a quantile ξα , and especially ξ0.005, of the loss distribution without
the presence of proxy errors. With a lemma about ordered sequences, we will apply quantile
L-estimators to computable quantities to create lower and upper bounds on the L-estimator.
Lemma 1. Let {ai}Ni=1 ⊂R and {bi}Ni=1 ⊂R be arbitrary and unordered sequences of real numbers
of length N satisfying the component-wise inequality:

ai ≤ bi for i= 1, . . . ,N. (26)
Denote the ordered sequences by {a(i)}Ni=1 and {b(i)}Ni=1 so that a(i) ≤ a(i+1) and b(i) ≤ b(i+1) for
i= 1, . . . ,N − 1. Then, the following inequality holds between the ordinals:

a(i) ≤ b(i) for i= 1, . . . ,N. (27)
Note that the permutation that sorts the two sequences is not assumed to be equal.

Proof. Suppose for a contradiction that a(j) > b(j) for some j. Therefore, there exists j distinct
indices {i1, . . . , ij} ⊂ {1, . . . ,N} with bik < a(j) for k= 1, . . . , j. By (26), it follows that aik ≤ bik for
k= 1, . . . , j. Therefore, aik ≤ bik < a(j) for k= 1, . . . , j. Hence, a(j) is not the jth smallest value.
This contradiction establishes Lemma 1. �

Lemma 1, along with assumptions on the existence of proxy error bounds (Assumption 1),
establishes upper and lower bounds on L-estimators.
Lemma 2. Suppose there exists functions of the risk factor space l, x, u : Rm �→R satisfying

l(r)≤ x(r)≤ u(r) (28)
for all r ∈R

m (that is, we suppose Assumption 1 holds). Let {ri}Ni=1 be an independent sample from
the risk factor distribution R and write xi := x(ri), li := l(ri) and ui := u(ri) for i= 1, . . . ,N. Then,
whenever ci ≥ 0 for i= 1, . . . ,N, the value of the L-statistic ξ̂α given by
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ξ̂α :=
N∑
i=1

cix(i) (29)

satisfies
N∑
i=1

cil(i) ≤ ξ̂α ≤
N∑
i=1

ciu(i) (30)

where {x(i)}Ni=1 is the ordered sequence of {xi}Ni=1 so that x(i) ≤ x(i+1) for all i= 1, . . .N − 1, and
similarly, {l(i)}Ni=1 is the ordered sequence of {li}Ni=1, and {u(i)}Ni=1 is the ordered sequence of {ui}Ni=1.

Under Assumption 2, the computation of the lower and upper bounds on ξ̂α in (30) is feasible.

Proof. By definition, li = l(ri) and xi = x(ri), and by (28) it follows that
li = l(ri)≤ x(ri)= xi. (31)

Therefore by writing ai := li and bi := xi, we observe ai ≤ bi and so the conditions of Lemma 1
are satisfied to give

l(i) ≤ x(i). (32)
Similarly, with ai := xi and bi := ui, it follows that ai ≤ bi by (28). Then, a direct application of
Lemma 1 gives

x(i) ≤ u(i). (33)
Since inequalities are preserved under multiplication of non-negative numbers, from (32) and
(33) it follows that

N∑
i=1

cil(i) ≤
N∑
i=1

cix(i) ≤
N∑
i=1

ciu(i). (34)

The result now follows trivially from the definition of the L-statistic ξ̂α in (29). �

If the upper and lower bound proxies have a constant error bound � > 0, so that p(r)− � ≤
x(r)≤ p(r)+ � for all risk factor scenarios r, and we assume the common case of the quantile
L-estimator weights summing to one,

∑
i ci = 1, then a trivial consequence of Lemma 2 is that for

a given risk factor scenario set {ri}Ni=1 with pi := p(ri), we have∣∣∣∣∣
N∑
i=1

cip(i) − ξ̂α

∣∣∣∣∣≤ �. (35)

For both the Basic and Harrell-Davis estimators, the weights ci sum to 1, therefore in either of
these cases the value of the exact statistic lies within ±� of the statistic calculated with proxies:∑

i cip(i).
The assumption that the coefficients of the L-estimator are non-negative in Lemma 2, ci ≥ 0,

can be removed at the cost of accounting for how the sign impacts the upper and lower bounds:

cili
ciui

}
≤ cix(ri)≤

{
ciui, ci ≥ 0,
cili, ci ≤ 0.

(36)

The consideration of signs in (36) allows for estimators with negative weights, such as those
targeting the inter-quartile range, to be considered.

Next, the question of how quantile estimates can be improved by targeted exact computation
is considered.
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2.8 Targeted exact losses
As the use of the heavy model to create exact loss scenarios over a large set of risk factors
is assumed infeasible, we introduce the term targeted exact computation to emphasise when
computations are performed with the heavy model on only a selected subset.

When exact computations are performed, the knowledge of the lower and upper proxy bounds
can be updated. Consider a set of risk factor scenarios {ri}Ni=1 with lower and upper proxy bounds
satisfying

l(ri)≤ x(ri)≤ u(ri). (37)

Suppose an exact calculation is performed for a subsect of scenariosA⊂ {1, 2, . . . ,N}. Then, writ-
ing xi := x(ri), li := l(ri) and ui := u(ri) for i= 1, . . . ,N, updated knowledge of lower and upper
bounds can be indicated with a prime notation so that

li ≤ l′i = xi = u′
i ≤ ui if i ∈A, (38a)

li = l′i ≤ xi ≤ u′
i = ui if i 
∈A. (38b)

targeted exact computations improve our knowledge by removing proxy errors from the
selected scenarios. By Assumption 2, it is possible to perform targeted exact computations on a set
of risk factor scenarios {ri}ni=1 whenever n is feasibly small. After a targeted exact computation has
been performed, the updated ordered lower and upper bounds are denoted by {l′(i)}Ni=1, {u′

(i)}Ni=1.
In some circumstances, performing exact computations on arbitrary scenarios may not help

improve our knowledge of specific loss scenarios. Consider, for example, the objective to find the
value of the (unknown) kth largest loss scenario x(k). Suppose there exists an upper bound ui with
ui < l(k). Then, the scenario xi cannot correspond to the kth largest scenario since xi ≤ ui < l(k) ≤
x(k). Therefore, if ui < l(k) then xi 
= x(k). Similarly, if u(k) < li then xi 
= x(k). Therefore, the index
ik of the scenario xik corresponding to x(k) must satisfy

ik ∈Ak := {1, 2, . . . ,N} \ {j : uj < l(k) or u(k) < lj, 1≤ j≤N}. (39)

Note that

uj < l(k) or u(k) < lj ⇐⇒ lj ≤ uj < l(k) or u(k) < lj ≤ uj (40a)

⇐⇒ [lj, uj]∩ [l(k), u(k)]= ∅ (40b)

and so equivalently

ik ∈Ak = {
j:[lj, uj]∩ [l(k), u(k)] 
= ∅, 1≤ j≤N

}
. (41)

The indices j ∈Ak therefore have corresponding intervals [lj, uj] that must overlap, or touch, the
interval [l(k), u(k)]. At least one of these intervals must contain x(k). If |Ak| = 1, then Ak = {ik}
and the kth loss scenario has been identified. Otherwise, it is not known which intervals contain
the kth loss scenario since the intervals are not necessarily pairwise disjoint, and so there may be
many possible orderings of the exact losses.

An exact calculation of a scenario outside of this set does not provide any information about
x(k). This motivates the study of the set Ak in the context of targeted computation. The following
result shows exactly how targeted exact loss computation over the set Ak can be used to remove
proxy errors from basic quantile estimators.
Theorem 1. LetAk be the set of indices j for which the interval [lj, uj] of lower and upper proxy error
bounds intersects the interval [l(k), u(k)]:

Ak :=
{
j:[lj, uj]∩ [l(k), u(k)] 
= ∅, 1≤ j≤N

}
. (42)

https://doi.org/10.1017/S1748499522000161 Published online by Cambridge University Press

https://doi.org/10.1017/S1748499522000161


Annals of Actuarial Science 231

Suppose the exact loss xj is calculated for each j ∈Ak and denote the updated knowledge of the lower
and upper bounds of {xi}Ni=1 by {l′i}Ni=1 and {u′

i}Ni=1. Denote the sorted updated bounds by {l′(i)}Ni=1
and {u′

(i)}Ni=1. Then, the kth value of the sorted bounds are equal, and the kth exact loss (without
proxy errors) x(k) is given by

x(k) = l′(k) = u′
(k). (43)

Assumption 2 implies that the computation of the exact losses is feasible if |Ak| ≤ n.

Proof. Suppose li ≤ xi ≤ ui for i= 1, 2, . . . ,N, and let ik be an index satisfying xik = x(k).
Following the equivalent formulation ofAk from (39), define the sets of indices

I := {1, 2, . . . ,N}, (44)

Lk := {i ∈ I : ui < l(k)}, (45)

Rk := {i ∈ I : u(k) < li}, (46)

Ak := I \ (Lk ∪Rk). (47)

Note that ik ∈Ak. Suppose that the exact value of xi is calculated for each i ∈Ak. Then, denoting
the updated knowledge of upper and lower bounds with the prime notation, we have

li ≤ l′i = xi = u′
i ≤ ui whenever i ∈Ak (48a)

li = l′i ≤ xi ≤ u′
i = ui whenever i 
∈Ak. (48b)

By Lemma 1 and (48) it follows that

l′(i) ≤ x(i) ≤ u′
(i) for all i ∈ I . (49)

We wish to show that (49) holds with equality when i= k. Consider first the inequality l′(k) ≤ x(k)
and suppose for a contradiction that l′(k) < x(k).

If l′(k) < x(k) then there exists k distinct indices {i1, . . . , ik} ⊂ I with l′ik < x(k). However, by the
definition of x(k), there exists at most k− 1 distinct indices {j1, . . . , jk−1} ⊂ I with xjk < x(k). Since
l′i ≤ xi for any i, we have {j1, . . . , jk−1} ⊂ {i1, . . . , ik}, and so there exists an index i ∈ {i1, . . . , ik} \
{j1, . . . , jk−1} satisfying l′i < x(k) ≤ xi ≤ u′

i.
In particular, i is such that l(k) ≤ l′(k) < x(k) ≤ u′

i, and so i 
∈Lk. Also, l′i < x(k) ≤ u′
(k) ≤ u(k), hence

i /∈Rk. Therefore i ∈Ak, and by (48a) we have l′i = xi = u′
i. This contradiction, along with (49),

proves l′(k) = x(k).
Finally, by similar logic it holds that x(k) = u′

(k). �

Theorem 1 establishes that we can identify loss ordinals exactly and therefore remove proxy
errors from the basic quantile estimator whenever the computation is feasible.

It is a straightforward consequence that proxy errors can be removed from general
L-estimators, when all non-zero weighted loss ordinals have been calculated exactly. To see this,
consider a general L-estimator of the form (29):

ξ̂α :=
N∑
i=1

cix(i) (50)
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and define the set

B :=
⋃
j:cj>0

Aj. (51)

Theorem 1 shows that if the exact loss xi is calculated for every i ∈Aj, then x(j) is known (without
proxy errors). Clearly then, if the exact losses xi are calculated for all i ∈ B then x(j) is known
exactly sinceAj ⊆ B.

However, |B| may be large and the calculation to remove proxy errors from general
L-estimators infeasible. For example, in the case of the Harrell-Davis estimator, ci =wi(k)> 0
for i= 1, . . . ,N, and therefore |B| =N, hence the exact calculation of all scenarios in this set is
infeasible by Assumption 2. In the following, we motivate the introduction of sets Bk,ε ⊆ B, which
are sufficiently small to enable exact losses xi to be calculated for all i ∈ Bk,ε (i.e. |Bk,ε| ≤ n), but are
chosen such that potential proxy errors on losses xi with i /∈ Bk,ε have a small, measurable impact
(controlled by the parameter ε) on approximations to certain calculations, for example, ξ̂α , σ ∗

k .
Consider the case where values required in calculations are of the form wi(k)x(i). By Lemma 1,

the value is bounded: |wi(k)x(i)| ≤wi(k) max (|l(i)|, |u(i)|). If |Ai| ≤ n, the computation to remove
proxy errors from x(i) is feasible (Assumption 2 and Theorem 1) and so wi(k)x(i) can be calculated
exactly. Alternatively, only the bound is known. Since the weights {wi(k)}Ni=1 decay rapidly to zero
away from i= k, we identify the set

Bk,ε :=
⋃

j:wj(k)>ε

Aj (52)

as having potential practical uses. The decay of the weights may enable a choice of ε such that
|Bk,ε| ≤ n making the removal of proxy errors from losses xi with i ∈ Bk,ε feasible and may be
such that the bounds |wi(k)x(i)| ≤ ε max (|l(i)|, |u(i)|) for i /∈ Bk,ε are sufficiently small to support
the applicability of approximations.

In section 4, we show through a prototypical numerical example that in some circumstances
it may be appropriate for practitioners to approximate the bootstrap estimate of standard errors,
(21), using

σ̂ ∗2
k,ε :=

∑
j:wj(k)>ε

wj(k)

⎛
⎝x(j) −

∑
i:wi(k)>ε

wi(k)x(i)

⎞
⎠

2

, (53)

for some ε > 0, where in particular |Bk,ε| is sufficiently small for exact loss calculations to be
performed over the entire set.

Next, an explanatory example is used to present a calculation recipe for removing proxy errors
from loss ordinals.

3. Explanatory Example
The objective is to find, for a given risk factor sample, a particular loss ordinal devoid of proxy
errors. The approach to this, called the proxy error elimination approach, can be summarised by
the following simple recipe, depicted in Figure 1:

(1) Choose a proxy function for the exact loss with prudent lower and upper bound functions.
(2) Sample the risk factor space and evaluate the lower and upper bound proxies for each risk

factor scenario (Panel A of Figure 1).
(3) Sort separately the samples of lower and upper bounds and identify the bounds of the loss

ordinal of interest (Panel B of Figure 1).
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(A) (C)

(B) (D)

Figure 1. Example of the proxy error elimination method applied to finding the 5th largest loss. Panel A: horizontal lines
depict the range of values that a loss scenario can take based on proxy lower and upper bounds. The vertical dotted lines
show the lower and upper bounds for the 5th largest loss. The data for this bound are derived from Panel B. All scenario
intervals overlapping with the interval formed from dashed lines could contain the 5th largest exact loss and are shown in
blue. Panel B: Horizontal lines depict the range of possible values of ordered exact losses. Left most values are ordered lower
bounds and right most are ordered upper bounds. The vertical dashed lines show the range of feasible values for the 5th
largest exact loss scenario as used in Panel A. Panel C: Shown are the data from Panel A updated with the result of targeted
exact computations (circles). Panel D: Sorted updated lower and upper bounds are shown as horizontal lines where proxy
errors may still exist and as circles where there is no proxy error. The 5th largest exact loss is shown (red) with no proxy error.
This and subsequent figures were prepared using Matplotlib (Hunter, 2007) and Python (Van Rossum & Drake, 2009).

(4) Identify the target scenarios as all scenarios whose interval of lower and upper bounds
overlaps with the bounds of the loss ordinal (Panel A of Figure 1).

(5) If feasible, perform exact loss calculations at each target scenario and update the lower and
upper bound information for these scenarios (Panel C of Figure 1).

(6) Read off the exact loss ordinal from the updated and sorted lower or upper bounds, noting
that the bounds coincide at the ordinal of interest since the proxy error has been eliminated
(Panel D of Figure 1).
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Some stages of the approach give information that may be useful during the design, validation
or use of proxies. Bounds on the exact loss ordinal are established in Stage (3), and these may
aid the communication of capital uncertainty resulting from the use of proxies. If the number of
scenarios selected for targeted exact calculation in Stage (4) is computationally infeasible, then
this would suggest that improving the fit of the proxy chosen in Stage (1), along with tightening
of their error bounds, is desirable. Therefore, the approach is not just limited to the removal of
proxy errors, but can also be supplementary to the design of proxies and the communication of
capital uncertainty.

The explanatory example underlying Figure 1 is now discussed. Here, known forms for both the
exact loss and the proxy loss functions are asserted. This enables immediate verification that the
conditions of Assumption 1 are satisfied. A very low number of risk factor simulations is chosen
in order to communicate the approach using both figures and tables.

Suppose the risk factor r is single-valued, and its random variable R is normally distributed
so that R∼N(0, 1). Suppose the exact loss function x, the proxy loss function p, the proxy lower
error bound function l and proxy upper error bound function u are given as functions of the risk
factor scenario by:

x(r)= 10r, (54a)

p(r)= 10r + 2 sin (10πr), (54b)

l(r)= 10r − 2−
{
5, if r ≥ 0.5,
1, if r < 0.5,

(54c)

u(r)= 10r + 2. (54d)

The form of the lower bound (54c) has been chosen to demonstrate that the bounds can vary
by risk factor and do not necessarily have to be small. The intervals [l(r),u(r)] formed from the
lower and upper bounds may also overlap non-trivially. By construction, we have ensured that
Assumption 1 is satisfied:

l(r)≤ x(r)≤ u(r), −∞ < r < ∞. (55)

Recall that the exact loss can be calculated for a risk factor scenario r, but in applications it
is assumed to be prohibitively expensive to calculate exact losses on large sets of scenarios,
and in alignment with their design objectives, the lower and upper proxy bounds are assumed
inexpensive to calculate (Assumption 2).

In this example, we take as an objective to estimate ξ0.3, the 30% value-at-risk measure of x(R),
without any proxy error and without performing exhaustive loss calculations on the full risk factor
sample.

Suppose for our illustration that our Monte Carlo sample of risk factors is 15. We show the
proxy error elimination method with the basic quantile L-estimator defined in (13) with N = 15
and α = 0.3. Since α ×N = 4.5 the estimator takes the simple form

ξ̂0.3 = x(5). (56)

We start by creating a random sample of risk factor scenarios {ri}15i=1 drawn from R∼N(0, 1)
with the calculated corresponding lower and upper bounds {li}15i=1, {ui}15i=1 where li = l(ri) and
ui = u(ri), as shown in Table 1 and Panel A of Figure 1.

We then sort the lower and upper bounds independently of each other, denoted {l(i)}15i=1 and
{u(i)}15i=1. By Lemma 2, we can bound the 5-th loss percentile without doing any exact calculations:

l(5) ≤ x(5) ≤ u(5). (57)
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Table 1. Example numerical values used to illustrate how targets for exact calculation are identified to facilitate
the elimination of proxy errors from estimates of quantiles.

i ri xi pi li ui i ∈A5

1 −0.643717 −6.437168 −8.398331 −11.398331 −6.398331 True
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2 −1.251820 −12.518204 −14.514934 −17.514934 −12.514934 –
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3 −0.563915 −5.639146 −3.827212 −6.827212 −1.827212 True
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4 0.331439 3.314386 1.644893 −1.355107 3.644893 –
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5 1.203907 12.039074 12.283970 5.283970 14.283970 –
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6 0.410914 4.109140 4.781532 1.781532 6.781532 –
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7 1.678242 16.782425 18.045497 11.045497 20.045497 –
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

8 −1.025964 −10.259642 −11.716037 −14.716037 −9.716037 True
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

9 −0.021762 −0.217621 −1.480918 −4.480918 0.519082 –
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

10 0.530480 5.304802 3.669218 −3.330782 5.669218 –
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

11 0.576005 5.760050 4.391183 −2.608817 6.391183 –
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

12 −1.554301 −15.543008 −13.561235 −16.561235 −11.561235 –
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

13 0.135096 1.350960 −0.433784 −3.433784 1.566216 –
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

14 −0.623157 −6.231574 −7.561600 −10.561600 −5.561600 True
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

15 1.427615 14.276149 15.801642 8.801642 17.801642 –

Note: Constructed example scenario data: number of scenarios N= 15; loss ordinal of interest k= 5; risk factor scenario index i; risk
factors ri are a pseudo-random sample from N(0,1); actual losses xi defined as a function of ri by (54a); proxy losses pi defined as a
function of ri by (54b); proxy lower bound li defined by (54c) satisfying li ≤ xi by construction; proxy upper bound li defined by (54d)
satisfying xi ≤ ui by construction; the set of indices targeted for exact calculationA5 defined in (58). The setA5 depends on the 5th
largest values from each of {li}15i=1 and {ui}15i=1, denoted l(5) and u(5), respectively. In application, the loss scenarios xi are expensive
to compute exactly and so are unknown unless specifically targeted for exact calculation. The proxy values li , pi and ui are assumed
inexpensive to compute and risk factors ri inexpensive to generate. Through targeted exact computation, we aim to find the value x(5)
without exhaustive calculation of every xi , since exhaustive exact calculations are not feasible in practical applications. The data are
displayed graphically in Panel A of Figure 1. The pseudo-random generator of Numpy (Harris et al., 2020) is used with fixed seed 5,000
to aid reproducibility.

This result is shown for the numerical example in Table 2 using the data from Table 1. Table 3
shows the calculation of A5, the set of all scenarios whose interval of lower and upper bounds
intersects with the bounds on the 5-th ordinal in (57):

A5 = {
1≤ i≤ 15 : [li, ui]∩ [l(5), u(5)] 
= ∅}= {1, 3, 8, 14}. (58)

Scenarios in A5 are highlighted in Figure 1. Theorem 1 implies that one of the scenario indices
in A5 is the scenario index corresponding to the 5th largest loss x(5). However, we do not know
which index without further calculation.

We calculate scenarios 1,3,8 and 14 exactly and update the lower and upper proxy bounds with
the exact values, denoted {l′i}15i=1, {u′

i}15i=1. We then sort the new lower and upper bounds to give
{l′(i)}15i=1, {u′

(i)}15i=1. Then the 5th entry of either list gives the 5th exact loss. Therefore:

ξ̂0.3 = l′(5) = u′
(5) = −6.231574. (59)

and we have recovered the estimate of the loss percentile without proxy error. In this example, we
used four exact computations from 15 scenarios.

4. Prototypical Example
Here we show through a numerical study that it may be feasible for certain firms to remove
proxy errors from their capital estimates. Even when computational budgets are limited, improve-
ments to error bounds can be made through targeted exact computations. As a foundation, we
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Table 2. Example numerical values used to illustrate that loss ordinals fall within proxy bound ordinals.

(i) i l(i) i x(i) i u(i) l(i) ≤ x(i) ≤ u(i)

1 2 −17.514934 12 −15.543008 2 −12.514934 True
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2 12 −16.561235 2 −12.518204 12 −11.561235 True
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3 8 −14.716037 8 −10.259642 8 −9.716037 True
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4 1 −11.398331 1 −6.437168 1 −6.398331 True
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5 14 −10.561600 14 −6.231574 14 −5.561600 True
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6 3 −6.827212 3 −5.639146 3 −1.827212 True
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7 9 −4.480918 9 −0.217621 9 0.519082 True
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

8 13 −3.433784 13 1.350960 13 1.566216 True
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

9 10 −3.330782 4 3.314386 4 3.644893 True
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

10 11 −2.608817 6 4.109140 10 5.669218 True
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

11 4 −1.355107 10 5.304802 11 6.391183 True
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

12 6 1.781532 11 5.760050 6 6.781532 True
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

13 5 5.283970 5 12.039074 5 14.283970 True
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

14 15 8.801642 15 14.276149 15 17.801642 True
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

15 7 11.045497 7 16.782425 7 20.045497 True

Note: Constructed example scenario data fromTable 1: proxy lower loss bound li ; proxy upper loss bound ui ; actual loss xi ; sorted data
denoted l(i) , u(i) and x(i) ; data satisfies li ≤ xi ≤ ui . In applications, the bounds li , ui are inexpensive to calculate and xi is expensive, xi is
unknown unless a targeted exact computation is performed. The table demonstrates Lemma 1, namely that l(i) ≤ x(i) ≤ u(i) . The data
are displayed graphically in Panel B of Figure 1.

Table 3. Example numerical values used to illustrate how upper and lower bounds are updated after targeted
exact computations.

i l′i u′
i i ∈A5 (i) i l′(i) i u′

(i)

1 −6.437168 −6.437168 True 1 2 −17.514934 2 −12.514934
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2 −17.514934 −12.514934 – 2 12 −16.561235 12 −11.561235
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3 −5.639146 −5.639146 True 3 8 −10.259642 8 −10.259642
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4 −1.355107 3.644893 – 4 1 −6.437168 1 −6.437168
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5 5.283970 14.283970 – 5 14 –6.231574 14 –6.231574
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6 1.781532 6.781532 – 6 3 −5.639146 3 −5.639146
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7 11.045497 20.045497 – 7 9 −4.480918 9 0.519082
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

8 −10.259642 −10.259642 True 8 13 −3.433784 13 1.566216
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

9 −4.480918 0.519082 – 9 10 −3.330782 4 3.644893
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

10 −3.330782 5.669218 – 10 11 −2.608817 10 5.669218
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

11 −2.608817 6.391183 – 11 4 −1.355107 11 6.391183
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

12 −16.561235 −11.561235 – 12 6 1.781532 6 6.781532
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

13 −3.433784 1.566216 – 13 5 5.283970 5 14.283970
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

14 −6.231574 −6.231574 True 14 15 8.801642 15 17.801642
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

15 8.801642 17.801642 – 15 7 11.045497 7 20.045497

Note: Constructed example scenario data from Table 1: proxy lower loss bound l′i ; proxy upper loss bound u′
i . The data are displayed

graphically in Panel C and D of Figure 1. The 5th loss value (bold) is shown to have equal upper and lower bounds, indicating that proxy
errors have been eliminated from this loss ordinal.

propose an analytical distribution as a prototypical loss distribution of internal model firms,
shown in Figure 4, and approximate the 0.5th percentile of the distribution. Its analytical form
allows numerical investigation of computational feasibility in a representative real-life setting.
The distribution is chosen to exhibit fat-tails and skew.
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4.1 Computational assumptions
The capital requirement is assumed to be of the form −x(k) making the evaluation of x(k) the
primary objective of the study. By Theorem 1, it is sufficient to perform |Ak| targeted exact compu-
tations to find the kth loss ordinal x(k) exactly. The secondary objective is to find an approximation
to the bootstrap estimate of standard error of x(k) – the expression σ̂ ∗

k,ε is posed as a candidate for
this. As discussed in section 2.8, it is sufficient to perform |Bk,ε| targeted exact computations to
compute the value σ̂ ∗

k,ε .
In what follows, we study the computational feasibility of eliminating proxy errors over a range

ofN and over a range of proxy error bounds�. In section 2.6, it is established that a plausible value
for the number of proxy loss scenarios N is given by N = 1, 000, 000, and a plausible number of
feasible exact loss calculations n is given by n= 1, 000. Therefore, for demonstration purposes, it
is assumed that it is feasible to perform targeted exact computations of scenarios in the setsAk or
Bk,ε whenever |Ak| ≤ 1, 000 or

∣∣Bk,ε
∣∣≤ 1, 000, respectively.

4.2 Conclusions of numerical experiment
Figures 2 and 3 show example calculations based on the model described in section 4.3. We
conclude that, in the prototypical setting:

• It may be possible to eliminate proxy errors from capital estimates for large N if proxy error
bounds are sufficiently small.

• In this example, proxy errors can be eliminated from the capital estimate when N =
1, 000, 000 if the additive error bound is approximately £ 60m.

• The number of calculations required to approximate the bootstrap estimate of the standard
error of the basic L-estimator to within 0.1% is small relative to N.

• For a fixed number of targeted exact computations, there is a choice of N which minimises
error bounds (proxy plus statistical) around the true loss.

• When the number of targeted exact computations n is computationally limited, increasing the
Monte Carlo sample size N may not improve total error bounds due to the reintroduction of
proxy errors.

In Figure 2 Panel A and in Figure 3 Panel A, the boundary of feasible and infeasible com-
binations of N and � are shown, when the feasible number of exact computations n satisfies
n≤ 1, 000. In both cases, the number of targeted scenarios increases with N and �. Smaller error
bounds achieve both the elimination of proxy errors from capital estimates, and the possibility of
reducing statistical error by increasing the sample size of proxy loss scenarios.

Figure 2 Panel B shows confidence intervals around the true loss from proxy and statisti-
cal errors for a fixed proxy error � = 100 and fixed number of targeted exact computations
n= 1, 000. The dashed vertical line shows that proxy errors are introduced whenN > 600, 000. As
N increases, the proxy error initially grows slower than the statistical error reduces, and so the con-
fidence interval becomes tighter. Past an optimal point of N ≈ 1, 250, 000, the proxy error grows
more quickly and the confidence interval increases. This shows that when the number of possible
targeted exact computations is limited (computationally), it may be sub-optimal to increase the
number of Monte Carlo runs N past a certain value. On the other hand, for a fixed N, the full
number of targeted exact computations |A0.005×N | may not be required to achieve near-optimal
confidence bounds.

Figure 3 Panel B plots the percentage error of using σ̂ ∗
k,ε(N), from (53), to approximate the boot-

strap estimate of the standard error, σ ∗
k,, given in (21), for varyingN. The percentage error is below

0.1% with N = 300, 000 simulations. By comparison with Figure 2 Panel A and Figure 3 Panel A,
in this example it is computationally feasible to eliminate proxy errors from capital estimates and
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(A)

(B)

Figure 2. The method of targeted exact computation is applied to a prototypical loss distribution. Panel A: Number of exact
calculations sufficient to remove proxy errors from 0.5th percentile basic L-estimator statistics, given by |A0.005×N|, with N
proxy scenarios and proxy error bound �. The contours indicate feasible combinations of � and N for a given number of
targeted exact computations n. The region of infeasible combinations for n> 1, 000 is shaded. Panel B: Confidence interval
due to statistical and proxy errors for the true 0.5th percentile loss, plotted for varying N for fixed � = 100 and n= 1, 000.
Dashed line shows maximum N at which proxy errors are removed after 1,000 targeted exact computations. In both panels,
loss is a normal inverse Gaussian (NIG) random variable with parameters a= 0.6/750, b= −0.2/750, δ = 750, andμ = 200.

approximate the bootstrap estimate of the standard error to within 0.065% with a fixed proxy
error � = 100 and fixed maximum number of targeted exact computations n= 1, 000.

4.3 Distributional assumptions
Define the prototypical loss random variable X as being a normal inverse Gaussian (NIG) random
variable, introduced in Barndorff-Nielsen (1997), having a density function given by
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(A)

(B)

Figure 3. Panel A: Sufficient number of exact calculations, given by
∣∣Bk,ε∣∣, to eliminate proxy errors from the bootstrap

approximation of standard error, when the loss is a normal inverse Gaussian (NIG) random variable with parameters
a= 0.6/750, b= −0.2/750, δ = 750, and μ = 200, and the 0.5th percentile is calculated using the basic L-estimator with N
scenarios and proxy error bound �. For a given N we choose ε = ε(N) such that

∑
j:wj (k)>ε(N) wj(k)≥ 0.999. The contours

indicate feasible combinations of � and N for a given number of targeted exact computations n. The region of infeasible
combinations for n> 1, 000 is shaded. Panel B: Percentage error of the approximation of the bootstrap estimate of standard
error, (53), relative to the actual bootstrap estimate (21) given by (σ ∗

k − σ̂ ∗
k,ε)(σ

∗
k )

−1. Parameter ε = ε(N) in (53) is chosen as in
Panel A.

f (t)= a
π
exp

(
δ
√
a2 − b2 + b(x− μ)

) K1

(
aδ
√
1+ (x−μ)2

δ2

)
√
1+ (x−μ)2

δ2

(60)

for a, b, δ,μ, t ∈R, with 0≤ |b| < a, and δ > 0, where K1( · ) is a modified Bessel function defined
by
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(A) (B)

Figure 4. Prototypical loss distribution chosen to exhibit large tails and skew taking the form of a normal inverse Gaussian
(NIG) distribution. The density and distribution functions are shown in Panels A and B, corresponding to NIG parameters:
a= 0.6/750, b= −0.2/750, δ = 750, andμ = 200.

K1(z)= z
∫ ∞

1
e−zt

√
t2 − 1 dt, z > 0. (61)

We choose a= 0.6/750, b= −0.2/750, δ = 750, and μ = 200, so that the 0.5th percentile loss is
ξ0.005 = −4465.22, see Figure 4 for a plot of the distribution.

In order to have lower and upper bounds that satisfy Assumption 1, suppose for any given risk
factor scenario r,

l(r)= x(r)− �, u(r)= x(r)+ �, (62)

for some � > 0 which we choose to vary as part of the numerical investigation. Note, by
construction, l(r)≤ x(r)≤ u(r) for all r.

For a given N, we generate a sample {xi}Ni=1 using the pseudo-random NIG generator of Scipy,
from which we also calculate {li}Ni=1, {ui}Ni=1, {l(i)}Ni=1, and {u(i)}Ni=1. The sufficient number of
calculations required in Theorem 1, |A0.005×N |, is then found for different values of �.

5. Conclusions
As part of an insurer’s permission to use an internal model, detailed methodology and validation
information is disclosed confidentially to the regulator. Where approximations are used, appro-
priate prudence must be demonstrated. The applicability of our approach to a particular firm’s
internal model will depend onmany factors, including whether proxy error bounds exist and have
been validated, and whether pricing and actuarial systems have available the computing capacity
required to perform the exact calculations within times required for business processes.

In this paper, we have focused on simulation-based capital models that utilise proxy functions.
Within this setting, if a firm can find proxy error bounds (Assumption 1) and has the computing
capacity to run a number of exact calculations (Assumption 2), we have shown how proxy errors
can be completely removed from capital estimates, and how an approximation to the bootstrap
estimate of standard error may be calculated devoid of proxy errors.
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An important limitation of our approach is that it does not remove the requirement to validate
proxy models. The approach shifts the validation activity onto posing and validating proxy error
bounds. Also, whilst the approach is somewhat forgiving to badly fitting proxies, the number of
required targeted exact computations may still be infeasibly high if poorly fitting proxies are used
or if error bounds are too large.

Even if the approach is not used as part of the actual derivation of capital, it may have appli-
cations in communicating capital uncertainty, or as a validation tool to further investigate capital
accuracy with findings fed back in to improving the design of proxies.

In the numerical experiment, we made the potentially surprising observation that, for a fixed
computational budget for targeted exact computations, increasing the Monte Carlo sample size
may not be an improvement, since doing so may increase the total error bound due to the
reintroduction of proxy errors.

For future research, it is interesting to understand different approaches to posing and validating
proxy error bounds, including the application of formal methods of error analysis.
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