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A NOTE ON CONVEX CONES

IN TOPOLOGICAL VECTOR SPACES

ALICIA STERNA-KARWAT

The aim of the present note is an independent study of a class of

convex cones, which is the largest possible with regard to existence

of cone-maximal points in abstract vector optimization problems.

1. Introduction

This paper is motivated by results obtained in [S,9] for abstract

vector maximisation problems. Let AT be a Hausdorff topological vector

space (t.v.s.l, let C be a convex cone in X , that is a convex nonempty

subset which is closed under nonnegative scalar multiplication and let B

be a nonempty subset in X . We say that e e B is i-maximal (maximal up

to indifference with respect to C ) in B , and write e e EQ(B) , if

e - b e C whenever b - e e C and b e B . The elements of

also called nondominated, efficient or Pareto optimals (see the references

in [£]). We shall not use notions of maximality different from the above

one, so we shall call an i-maximal element simply maximal. See also [7,7]

and the references therein for a study of maximal points in connection with

multicriteria optimization problems.
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Hartley [3] proved that in a finite dimensional t.v.s. Eg(B) =J= 0

for every convex cone C and for every C - compact subset B of X

(C-compct means B (\ (x + C) is nonempty and compact for some x e X ) .

Here and subsequently the bar means the closure in the topology of X .

Borwein [2] showed that E^(.B) = 0 in the infinite dimensional case if C

is closed and B is C-compact (see also [4]) . The class C of convex

cones defined by the author in [S] is the largest possible with respect to

the existence of maximal points. A convex cone C belongs to the class

C if the following condition holds:

for every closed vector subspace L of X C n L is a vector subspace

whenever C n L is a vector subspace.

It was observed in [8] that (*) is equivalent to the apparently

weaker condition where L is assumed to be a closed subspace of

~C n (-O .

The class C contains each of the following classes of convex cones

C :

(i) C is contained in a finite dimensional space; or more generally

(ii) C n (-C) is a finite dimensional space; in particular, if the

closure of C is pointed, that is C n (-C) = {o} then C e C ;

(iii) C is closed;

(iv) C (o) is open; or more generally

(v) C admits a continuous C - positive functional f , that is

f e X* , the topological dual of X , / (x) ̂  0 for every

x e C and / (x) > 0 if x i C n (-C) .

The above facts (i) - (v) are easy to prove using the definition of

the class C and separation arguments. However, in every normed space,

there exist convex cones with nonempty interior which do not belong to C

The following existence results are known regarding the class C :

(i) Cg] Csufficient condition) If C £ X and C e C then ^(S) + 0

for every C-compact subset B of X .
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(ii) [S] (necessary conditionl Let C £ X be such, that C n (-C) is a

metrisable linear space. If E^CBl = P for every nonempty compact

subset B of X then C e C .

(iii) [9] If X is locally convex then ff^CS) 4= 0 for every weakly

C-compact (that is C-compact in the weak topology of X ) subset

B of X and every C e C .

The only results previously known which covered the existence of

maximal points for non-closed cones were the following:

(1) Maximal points always exist in C-compact sets if there exists a

continuous C-positive functional on X Csee for example [2] ).

(2]_ Maximal points always exist in C-compact sets if C is pointed.

The latter is a straightforward consequence of the existence result

for closed cones since in the case when C is pointed we have that

E (S) c E {B) .
C ~ C

Moreover the following generalisation of the Krein-Milman theorem

was proved in [9] :

if X is a locally convex t.v.s. and B is a nonempty convex weakly

compact subset of X then E^,(B) contains an extreme point of B

whenever C c_X and C e C . This result was proved by Borwein [2] for

the class of weakly closed convex cones.

Thus an independent study of convex cones satisfying (*) is clearly

of interest. The aim of this paper is to describe the geometrical and

topological structure for such cones in arbitrary topological vector spaces.

Obviously, a convex cone C which is dense in the vector space, yet

is not itself a vector subspace, does not satisfy condition (*). However,

cones which fail to satisfy (*) follow a similar pattern. Namely, we shall

show (Theorem 2.1) that every convex cone C can be written in the form

C = C^ + C2 (even stronger, C = C. u C_) where C. and C are convex

cones such that C is a linear subspace, C_ is pointed, C_ e C , and
1 2 2

https://doi.org/10.1017/S0004972700013071 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700013071


1 0 0 A l i c i a Sterna-Karwat

C, n C~ = {0} . Moreover, C e C if and only if C. above is a linear

subspace.

The paper is organized as follows. The main results, concerning the

structure of convex cones in an arbitrary t.v.s., are proved in Section 2.

Some additional facts on the existence of maximal elements are given in

Section 3.

2. On the structure of convex cones

The results of this section hold for an arbitrary t.v.s. X , not

necessarily Hausdorff. C denotes any convex cone in X , and by HO

we shall denote the greatest vector subspace of X contained in C ; that

is HO = C n (-C) . Let K be the set of all convex cones in X .

Define the operation T -. K •*• K by T(C) = C n I (C) . For every ordinal

a put l^LC) =T cra"1(C)) if a-1 exists and /'(C) = J) TB(C)

otherwise. It is easy to see that I**LC) = C n SL (T01" (C)) whenever a-1

exists and T (C) = C n n I (JT CO) for a a limit ordinal. Moreover,
p<ot

since the transfinite sequence of vector subspaces I CJ^tO) is non-

increasing, it must terminate and so also does the transfinite sequence

{T tO) . Hence there must exist an ordinal a(C) such that

^(C) {C) = 2^(C) for every a > aCC) .

Observe that always X,(C) £ Ta( } (C) £ C . Thus C is pointed, that

is HO = {0} if and only if T"( J (C) is pointed. If C is closed then

(C) = A(C) . We shall see (Proposition 2.1) that the latter is a

characteristic property of convex cones from the class C .

The convex cone T (C) has the following properties.

LEMMA 2.1. (i.) Ta(C) (C) is a vector subspace.

(U) Ta(C)(C) = C n Ta(C)(C).

(iii) If L is a vector subspace such that C n L is a vector subspace

then C n L = Ta(C) n L for every ordinal a ond in particular
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C n L = •f^ (C) n L.

(iv) If Jft(C) (C) is a vector subepaae then Ta(C) CO = l(C) .

Proof. Since ^iC) {C) =Ifx{C)+1(.C) = C n I (T*{C) (C)) we

obtain that T*^ (C) c 1^{C) (C)) c / 1 ^ 1 (C) , whence

(.C) = *(T™(C) (C)) , which proves the first two assertions. For (iii)

take a vector subspace L of X such that C n L is a vector space.

Then C n L £ £(C) and C n i c C n C n i c f n [(f) = r(C) . Using

transfinite induction we can actually show that C n L c T (C) for every

ordinal a . Thus C n L £ T (C) n L ^ C n L for every a , which proves

(iii). Assume now that T (C) is a vector space. As was observed,

£(C) £ 7 tC) and, since £(.C) is the greatest vector subspace contained

in C , we must have that SL CO = T (.C) , which completes the proof of

the lemma. D

Note that (ii) in Lemma 2.1 is a particular case of (iii) in view of

(i). Moreover, there exists a pointed convex cone C such that

f-(C) (C) = C and Ta(C) (C) = X. [5, p.9].

PROPOSITION 2.1. Let C be a convex cone in a t.v.s. X . Then

the following conditions are equivalent.

(i) C e C .

(ii) ~f-(C) (C) = KC).

Proof. Assume that C e C Applying Lemma 2.1 (i) and (ii) we

obtain that C n <f-(U) (C) = f"'6' (C) is a vector space. Since C e C we

must actually have, by (*) , that T 0 1 ^ (C) = C n T 0 ^ ' (C) is a vector

space. Thus, by Lemma 2.1 (iv) , l/x{C) (C) = l(C) .

Conversely, assume that T (C) = i.(C) . Take any vector subspace

L of X such that C (\ L is a vector space. By Lemma 2.1 (iii)
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C n L = if* CO n L = l(C) n L , and this is a vector space, which means

that C e C . D

As one can see from the above proof the condition (*) implies,

unexpectedly, the apparently stronger condition in which we do not impose

the assumption of closure on the vector space L of X . Let us summarise

the equivalent statements to the condition C*) in the following remark.

Remark 2.1. Let C be a convex cone in a t.v.s. X . Then the

following conditions are equivalent:

(i) C e C .

(ii) LSI For every closed subspace L of I(C) if C n L is a linear

space then so is C n L

(iii) For every subspace L of X if C n L is a linear space then so

is C n L .

On the other hand, it is not true that if C n L is a vector space

for some vector subspace L in X , then C n L is also a vector subspace,

although C n L and C n L may both be vector subspaces. A simple

example can be provided, if we take a vector subspace L in X which is not

closed. Put C = L + {t x -. t a 0} for some x e L \ L . Then C is a

convex cone such that C = L and Cr\L = L,CnL = L, C n 1 = 1 are

vector spaces but C n L = C is not a vector space.

LEMMA 2.2. let a:r xg e C. 1/ x^ + x£ e H
fx(C) (C) then

Proof. Since T (O is a linear space (Lemma 2.1(i)) and

x = x, + x, £ !T̂  (O we must have that - x e T CO . Thus for

i + 3. -t.3 = 1/2, - x. = -x+ x. £ 2^(C> (C) + C c C + C c C ,
*• <7

which proves that x, , x, £ C n £(C) = 2*CO and again writing

- x. = - x + x • e lfi{C) (C) + TLC) c T«7) we obtain that x, , x. e

Using transfinite induction one can show that x,, x~ € ZO^iC)) for every
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ordinal a . Hence x,, x_ e C n T" (C) = 2 ^ (C) by Lemma 2.1

(i) and (ii) . D

The proof of the following lemma is straightforward.

LEMMA 2.3. Let D and C be convex cones such that D c_C . Then

On the other hand, we cannot conclude that D e C whenever C e C ,

t/-t\

unless T (C) is finite dimensional (take C = X and D any convex

cone with D & C) .

The next theorem gives a decomposition of an arbitrary convex cone

C as a union and a sum of T* (C) and some pointed convex cone

D e C , with fl{C) (C) n D = {0} .

THEOREM 2.1. Let C be a convex cone in a t.v.s. X .

Then D = (C \ T* (O) u {0} is a pointed convex cone satisfying (*)

and C = r fC] u J is a disjoint union; in particular T^ (D) = {0}.

Moreover, C = ̂ ^ (C) + D , and ifx(C) (C) n D = {0} .

Proof. Since Ta (C) (C) n C = 7° (C) (C) (Lemma 2.1 (ii)) we must

have that C \ 21"{C) (C) = C \ 'f{C) (C) . It is clear that D is closed

under nonnegative scalar multiplication. If x~, a;_ e D and

x1 + x2 $ D then ^ + i2 e / (C) , and by Lemma 2.2 ,

x,, x_ e T (C) , which is a contradiction. Hence D is a convex cone.

By Lemma 2.3, -f{D) (D) c_ <f-(C) (C) (\ D = {0} . Therefore, f{D) (0) is a

vector subspace, so by Lemma 2.1, (iv) IW) = {0} ,- thus D is pointed

and Proposition 2.1 gives D e C . Moreover, it is easy to see that

C = f1^ (C) + D . 0

Let us observe that Theorem 2.1 gives a decomposition of the identity

map Id : K •*• K as a sum of two orthogonal idempotents. Indeed, let
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K : K •*• K and R : K •*• K be maps defined by K(O = 21°'( (O and

i?(O = D respectively, for C e K . Then we have K^iC) (O) = T " ^ (C)

and R{D) = D , which shows that K and R are idempotents. Moreover

K R(C) = R K(O = {0} for every C e C and (£ + i?) (C) = K(C) + R{C)

= 2^(C ) (C) + 2? = C by Theorem 2.1. Hence we have K2 = R2 = Id, KR = RK

= 0 and K + R = Id .

The next corollary gives a necessary condition for a convex cone

to be in the class C .

COROLLARY 2.1. If C e C then there is a pointed cone CQ e C

such that i(C) n span CQ = {0} and C = l(C) + CQ , where span CQ

denotes the vector subspace generated by C~ .

The proof is straightforward using Theorem 2.1, Proposition 2.1

and verifying that C-, = D n X_ , where X~ is an algebraic complement

to SL(C) in X and D is the convex cone defined in Theorem 2.1. D

However, the conditions on C given in Corollary 2.1 are not

sufficient to ensure C e C . Indeed, if L is any dense, proper vector

subspace of X and X 4 L , then the convex cone C E L + {tx : t £ 0)

fulfills the conditions in Corollary 2.1, that is C_ exists with the

stated properties, yet C does not have (*) . The converse to Corollary

2.1 holds under additional assumptions. The following proposition

provides a sufficient condition for a convex cone to belong to C

PROPOSITION 2.2. Let C be a convex cone in a t.v.s. X, such that

l(C) is a closed subspace with a topological complement XQ in X .

If C = l(C) + CQ , where CQ e C is a pointed convex cone in XQ then

C e C .

Proof. Using transfinite induction we show that, under the

assumptions of Proposition 2.2 , 2?ic) = HC) + 3^(C_) for every ordinal

a (here we use the result that X is a topological sum of SL(C) and

XQ) . Since CQ is pointed and satisfies (*) we have that if1 0 (.CQ)
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= {0} by Proposition 2.1. Thus 2** CO = SL(C\ and again applying

Proposition 2.1 one obtains that C e C .

It is easy to show that, in the above proposition, C\~ must be

actually equal to D n XQ , where D is the cone defined in Theorem 2.1.

Simple examples in the Euclidean plane show that the assumptions of

Proposition 2.2 do not imply that C_ is pointed (take any pointed

convex cone C £ Jf such that C is not pointed).

Corollary 2.1 and Proposition 2.2 delimit the class C . We know

by Lemma 2.1 (i) that X (C) is a linear space for every convex cone

C . Hence we are tempted to verify whether C = 7 ° ( C ) + D n XQ if

r (C) has a topological commplement XQ in X However, Example

2.1 shows that the answer is negative.

EXAMPLE 2.1. Let if be a t.v.s. space with nontrivial topological

dual and let X^ be a closed vector subspace of codimension 1 in X

Then any algebraic complement to X is also a topological complement and

we can write X = X ® JRXQ for some XQ $ X^ . Let L be a dense

proper vector subspace of X. . Define the convex cone C = L +

(tl : t > 0} . Then T{C) = 2^ } (C) = L is a vector space, which

means that C e C . Moreover, 2^ (C) = X has a topological complement.

Put XQ = J? (XQ + x,) for any x, e X \ L . Then we must have that

X = X. 9 XQ = T (C) ® i?_ is a topological sum. It is easy to check

that C + 2A(C'> (C) + D n XQ = L + D n XQ since £ n XQ = C n ̂  = {0} . Q

This example shows also that if C e C and £(C) (s T01 ( (C) in this

case) has a topological complement XQ then it is not necessarily true

that C = HCl + D n XQ . On the other hand, by Corollary 2.1

C = HC) + D n X for every algebraic complement XQ of £(C) in X .
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3. Remarks on existence of maximal points

Using the notion of the cone r (C) we can improve some existence

results from [8]. In this section we shall assume that X is a Hausdorff

t.v.s. We say that a cone is finite dimensional if it is contained in a

finite dimensional vector space. Let us recall (see the introduction) that

a subset B of X is C-compact if B n (ar + C) is nonempty and compact

for some x c X

PROPOSITION 3.1. Let M be a vector subspace of X euah that the

oone 'f' (C) n M is finite dimensional. Then EJB) + 0 for every

C-aompaat subset B c_M , in particular for every nonempty compact subset

B c_M .

Proof. Let B <= M be a C-compact subset and let L be a vector

subspace of X such that (C n M) n L is a vector subspace. Then by

Lemma 2.1 (iii) C n (M n L) = 2A(C') (C) n t f n l c / 1 " ^ (C)n M . Since the

latter cone is finite dimensional so is C n M n L . Therefore its closure

cannot be a vector subspace unless C n M n L is itself a vector subspace.

This shows that C n M e. C . Using the existence result proved in [S] and

recalled in the introduction we have that En ,AB) + 0 . Since S c M
COM —

we obtain that En M(B) c En(B) , which completes the proof. D

The above proposition was proved in [S] with l(C) instead of

x (C) , which can now be seen to be far too strong a requirement.

Observe that even the assumption "T (C) n M is finite dimensional" is

too strong. Indeed, let X~ be a vector subspace which is dense in X

and of infinite codimension (see for instance [6]) . Take a convex cone

C ĉ  X with l(.C) = {0} such that XQ is the set of linearly accessible

points from C (see [5, p.9]) . Then / ^ ( O = C and T*^ (C) = XQ = X .

Let M be any algebraic complement of XQ . Then uf1 (C) n M = {0} and

Proposition 3.1 can be applied. However W o / (C) = M n X = M is not

finite dimensional.
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Let us recall that the convex cone defined in Theorem 2.1 is

D = (C \ 2^(C)(C)) u {0} .

THEOREM 3.1. If C is a convex cone then for every subset B of

Ec (B) = ED CB) n E,f.(C) (C/B)

Proof. The inclusion

ED (B) n E (n (B) c E (B)

is straightforward since by Theorem 2.1 C = D u H^ (C) .

Conversely, let x e E~(B) . If b - x e. D for some b e B then

x - b e C . Hence x - b e D or else x - b 4 0 and x - b e 1^ (C) ,

In the latter case we apply Lemma 2.1 (i) and (ii) and obtain that

b - x e T"VW(C) n C =

This contradiction shows that x - b e D . Thus £•_ (B) £ ff_ fBj .

Now let x e Ec (B) and b - x e ̂
C ) (C) for some b e. B .

Hence x - b e C and since x CO is a vector space we must

actually have that

x - b e 2^(C)(C) n C

(again by Lemma 2.1(ii)). This proves that E^iB) c E ._. (B)
C 2^(C)(C)

too. •

THEOREM 3.2. f i ; If C e C tfcen ^ ( W = ^CBj / o r euerz/ subset

B of X . (ii) If 1?K J (C) is metrisdble then C e C if and

only if EC(B) = E^iB) for every (compact) subset B of X .

Proof. By using Theorem 3.1 and Proposition 2.1 the proof of (i)

is straightforward since then T (C) i s a vector subspace and
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E frs (B) = B for every subset B of X . To prove (ii) suppose
U9KL){C)

that XQ E / ( ) (C) is metrisable and that T01 ( ' (C) is not a vector

subspace. Hence T (C) is a convex cone which does not satisfy (*) .

Using Proposition 2.1 in LSI (see the necessary condition recalled in the

introduction) one can find a compact subset 5 of X~ such that

E (r. (S) = 0 . Applying Theorem 3.2 we obtain that En(B) = 0 .

On the other hand, by Theorem 2.1, D e C and we must have that ^n(S) 4 0

which contradicts that ^(S) = EpiB) . Hence 7° (C) is a vector space

and using Proposition 2.1 we obtain that C e C

Of course, T (C) is metrisable when i(C) is metrisable.

Moreover, let us note that the metrisability of T (C) is essential

for the existence of a compact set B with E .„. (B) =0 in the

above proof. An example can be provided with any vector space X endowed

with i t s strongest locally convex topology and applying Proposition 3.1,

since then every compact subset of X i s finite dimensional (Example 1.1

in [9]).

References

[J] J.M. Borwein, "The geometry of Pareto efficiency over cones".

Math. Operationsforsch. Statist. Ser. Optim. 11 (1980) 235-248.

C2] J.M. Borwein, "On the existence of Pareto efficient points".

Math. Oper. Res. 8 (1983) 64-73.

[3] R. Har t l ey , "On cone-efficiency, cone-convexity and cone-

compactness", SIAM J. Appl. Math. 34 (1978) 211-222.

[4] G.B. Hazen, T.L. Morin, "Optimality conditions in non-conical

multiple objective programming", J. Optim. Theory Appl. 40 (1983)

25 - 60.

[5] R.B. Holmes, Geometric Functional Analysis and Its Applications

(Springer-Verlag, New York, 1975).

L6l Z. Lipecki , "On some dense subspaces of topological linear spaces",

Studia Math. 77 (1984) 413 - 421.

https://doi.org/10.1017/S0004972700013071 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700013071


Convex Cones 1 0 9

[7] J .P . Penot, A. Sterna-Karwat, "Parameterized multicriteria

optimization; continuity and closedness of optimal multifunctions",

J. Math. Anal. Appl. (to appear) .

LSI A. Sterna-Karwat, "On existence of cone-maximal points in real

topological linear spaces", Israel J. Math (to appear).

[9] A. Sterna-Karwat, "A note on cone-maximal and extreme points in

topological vector spaces", Analysis Paper 49, Monash University

(1985), submitted.

Department of Mathematics,

Monash University,

Clayton,

Victoria, 3168

Australia.

https://doi.org/10.1017/S0004972700013071 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700013071

