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A WITT THEOREM FOR NON-DEFECTIVE LATTICES
KARL A, MORIN-STROM

In [10], Witt laid the foundation for the study of quadratic forms over
fields. Suppose Q is a quadratic form defined on a finite dimensional vector
space 1" over a field of characteristic not equal to 2. Witt showed that non-
zero vectors x and y in I satisfying Q(x) = Q(v) can be mapped into each
other via an isometry of the vector space 1. More generally, if 7 : W — W' is
an isometry between subspaces of 17, then 7 extends to an isometry ¢ of 17
In this paper we are concerned with analogous results for modules over discrete
valuation rings. A module with a quadratic form on it is called a /lattice. Cor-
responding to Witt's main theorem for spaces, a fundamental problem in the
study of lattices is to determine necessary and sufficient conditions for an
isometry between two sublattices to extend to an isometry of the whole lattice.

In this paper we use a result of Kneser [6] to obtain the general Witt theorem
for non-defective lattices over discrete valuation rings. Non-defective lattices
include all lattices over non-dyadic rings as well as lattices which are ‘‘nice”’,
in a well-defined sense, over dyadic rings and rings of characteristic 2.

1. Introduction. Throughout this paper, £ is a discrete valuation ring
with prime ideal p = 7L generated by the element 7. £ is contained in its quo-
tient field, K, and £/p is the residue field. 11 = £ — p is the multiplicative
group of units. An element x in K has order k if x = 7*u where « € 1l. O is
non-dyadicif 2 7 p, Oisdyadicif 2 € p,and T is 2-«dicif p = 2.

L will always be a finitely generated free £-module. A quadratic form on L
is a map Q : L — K such that for all x € L, for all « € £, Q(ax) = a?Q(x)
and such that the associated map

(1.1) Bx,y) = Qx +y) — Q) — Q)

is bilinear. The module L, with Q and B, is called a luttice. L is always assumed
to be regular, meaning for any non-zero vector x, B(x, L) # 0. An isomelry
of L is an isomorphism ¢ : L. — L such that Q(x) = Q(¢(x)) forall x. O(L) is
the group of isometries of L. x and y are associated (written x ~ v) if o(x) = ¥
for some ¢ in O(L). An isometry between lattices is an isomorphism which
preserves the quadratic form on them.

If M and N are sublattices of L and x a vector in L, then the ideals B (x, 1),
B(M, N), and the lattices p*Al = 7%}, M + N are defined in the obvious way.
M @ N denotes a direct sum of lattices (i.e. M M N = {0}) while M 1L N
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means the orthogonal sum of lattices, which includes the additional require-
ment that B(M, N) = 0. A vector x is primitive in L if x ¢ L, x ¢ =L. The
lattice L is y*-modulur if B(L, L) C " and det(m=*B(x;, x;)) is a unit where
ix;} is a basis for L. Equivalently, L is p*-modular if for all primitive x in L,
B(x, L) = v*. A unimodular lattice is one which is £-modular.

()'Neara's text |7] is a general source for terminologies and results on the
arithmetic theory of quadratic forms, including lattices. Instead of the bilinear
form defined in (1.1), O'Nleara uses x-y = 3B (x, y), which has the advantage
that Q(x) = x2 Ilowever this precludes the possibility of having characteristic
2. We have adopted definition (1.1) so that the characteristic 2 case can be
included in a consistent approach.

It is easily shown that a lattice L has an orthogonal splitting

(1.2) L =110,
r

where for each k, U, is a p*-modular lattice. This is called a Jordan decom posi-
tion of L. It is an essential element of traditional approaches to lattices.

Most previous Witt-type results have been done for lattices over the ring
of integers in a local number field, requiring £ be complete and £/ be finite.
IFor non-dyadic rings, Rosenzweig |8] found necessary and sufficient condi-
tions for vectors to be associated, then Band [1] completed the Witt theorem
for sublattices. In the case of dyadic rings, the conditions for vectors to he
associated have been found in a number of special situations by Trojan [9]
and Ilsia [3; 4]. Unfortunately, their invariants and techniques were quite
cumbersome because of heavy reliance on the Jordan decomposition of a
lattice.

Professor N. C. Ankeny has suggested that rather than the Jordan decom-
position, one should look at the invariant sublattices of L given by the fol-
lowing definition:

Ly ={x ¢ L|B(x, L) Cy,
L) =1{x e L, | Qx) ¢ v},
These lattices, defined for every integer k, are invariant under isometries of

and satisfy L, D L,y1, ML, = {0}. Note that if L = 1 U; is a Jordan
decomposition of 1., then

(1.3)

L/; = ... _L TI'ZL’Y/;_‘J_ J_ ™ L’v/\vfl J_ l/‘v/.- _L L’/‘-Vl J_ “ e e

If £ is non-dyadic (2 a unit), then L, and L, are the same lattice bhecause
Qx) = 3B(x, x). In [2], Cohen examines the L, in the non-dyadic case.

In this paper, we prove the general Witt theorem for any lattice L over a
discrete valuation ring which satisfies L, = L,’ for all k. Such a lattice is called
non-defective. In the literature, it is also called lotally improper. For such
lattices, we find the necessary and sufficient conditions for an isometry of
sublattices to extend to the whole lattice. The proof uses a new simpler tech-
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nique based on a recent theorem of M. Kneser [6]. The invariants of vectors
turn out to be much simpler when expressed in terms of the L, than they had
been in terms of a Jordan decomposition.

2. Kneser’s theorem. L is a lattice, regular as always, over a discrete
valuation ring £, with quadratic form Q and associated bilinear form B. If
u € L satisfies B(u, L) C Q(u)L, then the map o, : L — L such that

(21) oulx) = x — (B(u,x)/Qw))u,

is easily verified to be an isometry of L. We call o, the reflection about u«. Such
reflections are the main tool for constructing isometries.

LemMa 2.1. Suppose H is a sublattice of L such that H C Ly'. (i.e. for all
x € H, B(x, L) CD, Q) € Q.) Let v, w ¢ L satisfy Q@) = Q(w) and h =
w—v € H.

@) If Qh) € U (= O — ), then 0,(v) = w.

(b) If Q(h) ¢ W and there exists u € H such that Q(u), B(u, v) and B (u, w)
are in \1, then, letting z = h + (B(u, v)/Q))u € H, we have o,(s,(v)) = w.

In both cases, v and w are associated.

Proof. (a) : op(v) =v — (B(v, h)/Q(k))h = v + h = w because Q(h) =
Q@) + Qw) — B, w) = 2Q(@) — B(v,w) = B(v,v — w) = —B(v, k).

b)) :ou®) =v — (B, v)/Qu))u = v+ h—3=w—2z Then o,(c,(v)) =
w— 3 — (B(w — z 2)/Q(2))z = w if we can show that B(s,(v), 2) = —Q(2).
But w = 2 + ¢,(v) implies that

Qw) = Q(2) + B(z, 0u(v)) + Q(ou(®)).
Since Q(ou(v)) = Q@) = Q(w), we get B(z, 0u(v)) = —Q(2).

Definitions. Hom (M, K) is the group of homomorphisms from the lattice 1/
into the field K. Similarly, we have Hom (M, ©) and Hom (A, p*). If M is a
sublattice of L, then Ay : L — Hom (M, K) is the map such that Ay (x) (y) =
B(x,y) forallx € L,y ¢ M.

THEOREM 2.2 (M. Kneser). Assume M, N, and H are sublattices of L such that
H s a sublattice of Ly, and M and N satisfy

(2.2) Ay(H) = Hom (M, ©), Ay(H) = Hom (N, D).

Let v : M — N be an isometry such that

(2.3) 7(x) = x (mod H) forallx ¢ M.

Then 7 can be extended to an isometry ¢ € O(L) which satisfies
(2.4) ¢(x) = x (mod H) forallx € L.

Moreover, ¢ can be expressed as o product of reflections o), where h € H, provided
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cither of the following hold:

(2.5) |/ # 2, and there exists ¢ € H such that Q(g) € 1, or

(2.6) |</n| = 2, and there exists g € H such that Q(g) € Wand B(g, H) Cp.
Proof. We prove this theorem via several cases.

Cuse 1. Dim (M) = 1 and either (2.5) or (2.6) holds.

Suppose M = Lv, N = Qw, where 7(v) = w =0 4 i, for some h € H.
If Q(h) € 11, we are done by Lemma 2.1 (a). So assume Q (k) ¢ 1. Because
Q) = Q(w), we see that Q(h) = —B(v, h) = B(w, h) € p. Let I' =
if ¢ H|B(v,[f) € U, B(w, f) € 1}. If there exists f € F such that Q(f) € 1,
we are done by Lemma 2.1 (b).

Otherwise, Q(F) C p. If |O/p| = 3, F contains more elements than any
proper sublattice of H, so I must span H. If f € I' and A = w — v, then
I+ f € F must satisfy Q(h + f) € v. Since Q(k) and Q(f) are in p, B(h, f)
must also be in p, so B(k, F) C p, hence B(h, H) C » under condition (2.5).

If f € ["and g is given by (2.5) or (2.6), for some « € L, the vector 1 =
¢+ of will satisfy u € F and Q(u) € U, because B(w, u) — B(v, u) =
B(h, 1) € . Since this contradicts Q(F) C p, we are done. Condition (2.4) is
immediately verified.

Case 2. Dim(M) = r > 1 and either (2.5) or (2.6) holds.
The proof is by induction on r. Let g be given by (2.5) or (2.6). Suppose

lvy,...,2,} is a basis of M over L. Reordering, we can assume B(g, v;) ¢
B(g, v1)L for all . Changing v; tov; — (B(g, v;)/B(g, v1))v;, we can assume
B(g, M") = 0 where /" = Cv, @ ... ® Lv,. By induction, 7 restricted to 1’

extends to an isometry ¢ € O(L) which is a product of reflections ¢, & € I1.
Because of (2.4), ¢(H) = H and conditions (2.2) and (2.3) still hold with 1/
replaced by ¢(17). We can now assume that 7(v;) = v;forall z > 1.

By (2.2), there exist &, ' ¢ H such that B(v,, h) = B(r(vy), #') =1,
Bv;, ) = B, ') = 0 for all 1 > 1. Define H" = {h ¢ H|B(h, M) = 0},
M = Luy, N = Cr(v1). We wish to apply Case 1 to the restriction of 7
to M". Conditions (2.2) and either (2.5) or (2.6) hold because g, h, and /" are
in H'". (2.3) holds because for all 7 > 1 :

B(r(v) — vi,00) = B(r(v), v:) — B(vy, vy)
= B(r(v1), 7(v:)) — B(vi,2) =0
since 7 1s an isometry on M. By Case 1,7 : v; — 7(v;) extends to an isometry
¢ of the lattice L which is a product of reflections o, with & ¢ H''. Because
B(M', H”) = 0, we see from (2.1) that ¢(v;) = v; = 7(v;) for all i > 1.
Hence ¢ extends 7 on all of A7.
Case 3. (2.5) and (2.6) do not hold.

We enlarge the lattice L so that (2.5) or (2.6) will hold. Define L* =
L1 (O:t®On) where Q) = Q) =0, B¢ ») =1, and let I* =
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M 1 Ly N¥=N1 Ly, H*=H 1 (¢4 n). Define 7*: M* - N* to bhe
7 on M and the identity on On. Let ¢ = £ 4+ n. Then Q(g) = B(, 1) =
1€ W If|Q/n] = 2, then 2 € p, so B(g, H*) C B(g, 2)O C 29 C ». So either
(2.5) or (2.6) holds. By Case 1 or 2, 7* extends to an isometry ¢* of L* which is
a product of reflections o, with &1 € H*.

Since B(¢ — 1, H*) =0, we must have 7*(¢ — n) = ¢ — n. Because
¢*(n) = () = n, ¢* is the identity on O ¢ @ O . Because L is the orthog-
onal complement of O ¢ @ L 7, ¢* must satisfy ¢*(L) = L. Letting ¢ be the
restriction of ¢* to L, ¢ is an isometry of L which extends 7.

Our use of Kneser's theorem will be via the following corollary to Theorem
2.2.

THEOREM 2.3. Assume M and N are sublattices of L satisfying
(2.7) Me(Ly) = Hom (M, v*), Iy(Li") = Hom (N, p¥),
where k 1s fixed. Let 7 : M — N be an isometry such that
(2.8) 7(x) =x (L) forallx € M.

Then T extends to an 1sometry ¢ € O(L) such that
(2.9) o) =x (L)) forallx € L.

Proof. If 7(x) —x =y € L;, then Q(r(x)) = Qx) 4+ Q(v) + B(x, v)
implies Q(v) = —B(x, y) € v*, so y € L,’. Therefore L, can be changed to
L, in condition (2.8). With H = L,’, this theorem is a direct corollary to
Theorem 2.2 if we scale Q and B by = *.

3. Modular version of Kneser’s results. Here we present modular ver-
sions of the results of the last section. They will be derived from the following
lemma.

LemMa 3.1, Suppose H is « sublattice of L such that H C Ly'. If v, w € L
satisfy Q) = Q(w) V") and h = w — v € H, then the following hold.

@) If Q(h) € U, then o,(v) = w (z"H).

(b) If Q(h) ¢ W and there exists u € H such that Q(u), B(u, v) and B(u, w)
aren W, then o,(c,(v)) = w (v"H) wherez = h + (B(u,v)/Q(u))u € H.

Proof. This lemma is proved in exactly the same way as Lemma 2.1.

We say that an isomorphism 7 : M — N of sublattices of L is an isometry
modulo y" if

3.1) Q(r(x)) = Q(x) (p") forall x € M.

The following modular version of Kneser's Theorem says that an isometry
modulo p” of sublattices satisfying the conditions of Theorem 2.2 can be
extended modulo 7"H to an isometry of the whole lattice L.
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TuroreMm 3.2, Assume M, N, and H are sublattices of L such that H is a sub-
lattice of Ly . With r « positive integer, assume v : M — N is an isometry modulo
p". Suppose M, N and 7 satisfy (2.2) and (2.3). Then there exists an isometry
¢ € O(L) which satisfies

3.2) o) =71() («’H) for allx ¢ M, and
(3.3) o) =«x (H) forall x ¢ L.

In particular, ¢ extends T modulo L, :

(34) ¢x) =71(x) (L)) for all x € M.

Moreover, ¢ cun be expressed us a prod:ict of reflections oy, h € H, provided either
(2.5) or (2.6) hold.

Proof. This theorem can be proved by the same cases as in the proof of
Theorem 2.2. Cases 1 and 2 hold identically here remembering that all equa-
tions involving Q and B only hold modulo p’, while all equations between
vectors hold modulo #7H. In Case 3 we get an isometry ¢* of L* which extends
™ modulo 7#"H* and is the identity on £ ¢ @ £ n modulo #"H*. Let 11" =
CE@Cn, N/ =M, H' = 7#7M"”, and 77 : M — N” be the restric-
tion of ¢*. Applying Theorem 2.2 with Q and B scaled by 7", there is an isom-
etry ¢’ which extends ¢* on I/’" and satisfies ¢’ (x) = x (#’M"") for all x € L.
Then ¢"”"~¢* is an isometry which is the identity on 1. Taking ¢ to be its
restriction to L, ¢ is an isometry of L which satisfies the requirements of the
theorem.

As a direct corollary to Theorem 3.2 we have the following useful theorem.

THEOREM 3.3. Let 7 : M — N be an isomorphism of sublattices of L. With k
and v fixed integers, v > 0, suppose the following conditions hold :

(3.5) QO(x) Q(r(x)) W7y for all x ¢ M,
(3.6) 7(x) =x (L,) Jorallx ¢ M,
(3.7) Ny (L)) = Hom (M, p*), Iyv(L,) = Hom (N, p*).

Then there is an isometry ¢ ¢ O(L) satisfying
(3.8) ¢x) =x (L)) forullx ¢ L
such that ¢ extends T modulo L, , i.c. the following holds:

(3.9) ¢x) =7) (Lyy,) forall x ¢ M.

4. Some general lemmas on lattices. Recall that a vector z ¢ L is primi-
tive if 2 ¢ wL. We say that z ¢ L is primitive modulo L, if = ¢ =L + L.

LEMMA 4.1. 2 15 primitive mod L1 if and only if B(z, L;) = p’.
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Proof. (=) Let k be minimal such that z is primitive mod L, ;. So k < j.
Co nsider a modular decomposition of L. The minimality of k& implies z
7L+ Liy1, 2 € 7L + L. Then the component of z in the pf-modular com-
ponent of L must be primitive. Therefore B(z, L;) = p* and B(z, #/~*L,) =
p’. Since #*=*L, C L;, we have B(z, L;) = p’.

(=) If z is not primitive mod L 11, then z € 7L + L4, so that B(z, L;) C
p]"H'

The bilinear form B(x, y) via the map Ay (L) yields a decomposition of the

sublattice M into a direct sum of two lattices, one of which has all the homo-
morphisms into p*, and another which maps into p**!, as in the following lemma.

1 A

LEMMA 4.2, Let M be « sublattice of L and k fixed. Then
(a) M has a decomposition M = M, @ M, such that

(4.1) Ny, (Ly) = Hom (M, %) and  B(My, L;) C p*th

(b) Given this decomposition, there is « sublattice M, of L and « linear trans-
formation v from M onto M, @ wM,' such that v is the identity on My and v
maps My onto My with v(y) = v (Ly1) for all y € 1.

Proof. (a) Assume M, is a sublattice of M with maximal dimension such
that Ny, (L;) = Hom (M), p*). Say {xy, ..., x,} is a basis of 1/;. Then there
exist wy, ..., w, € L, which satisfy B(x;, w;) =6, for all 7, j. Then M =
M, ® M, where M, can be adjusted so that B(M,., w;) = 0 for all 7. If
B(Ny, L) T v**1, choose y € M,, w € L, such that B(y, w) = =*. Modifying
w by multiples of the w,;, we can assume B (x;, w) = 0for all 7. Also B(y, w;) =
0 for all 7 because y € M,. Letting M ,* = M, ® Ly, we see that N\y,«(L;) =
Hom (M*, v*) and dim (1,*) > dim (M), contradicting the maximality of
dim (M;). Hence B(M,, L) C p*tt.

(b) Let {xi1,...,x,} and {y1, ..., y,} be bases for I/, and 1M, respectively.
Because B(M,, L) C ¥, Lemma 4.1 implies that the y, are not primitive
mod L, .. Hence for all 7, there exists z; ¢ L such that y, = m2; (Li41).

Changing the 3, by vectors in L;, we can assure that {xi, ..., Xn 21, -« ., 2,
are linearly independent over £. Define My = Tz, @ ... @ Lz, and ~v :

M — M, ® 7M. such that y(x;) = x4 v(y;) = 7z, This is the desired map.

LemMma 4.3, If M s « subluttice of L, then Ny (L) = Hom (M, p*) if and only
if, for any z which is primitive in M, z 1s primitive mod L.

Proof. (=) Let {x;,...,x,} be a basis for M and let w; € L, satisfy
B(x;, w;) = 6,7 for all 4, 7. If 5 = > ax; is primitive in M, then a; ¢ p for
some 1, so B(z, w;) = ax" £ 0 (p*1). By Lemma 4.1, z is primitive mod
Lyy1.

‘(<) Consider the decomposition M = M @ M, given by Lemma 4.2, If
M, # 0, let z be primitive in M,. By hypothesis z is primitive mod L4, so
B(z, L) = y*, contradicting B (M., L,) C p*'. Hence M = M, and we are
done.
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Definition. The exponent modulo L, of a vector x € L is the greatest integer
! = I(x, k) such thatx ¢ 'L + L,. If x ¢ L,, wesayt = 4.

Note that the exponent mod L, of a vector is invariant under isometries of
L,ie. x~vy=1t(x, k) = t(y, k) for all k.

Lemma 4.4, Assume 7: M — N is a surjective linear transformation of sub-
modules of L which satisfies the following:

(4.2) for all x ¢ M, x and 7(x) have the sume exponent mod L4,
(4.3) Ny (L) = Hom (M, p¥).

Then r 1s injective and Ny (L) = Hom (N, p*).

Proof. Suppose 7(x) = 0 for some non-zero x ¢ 1, which we can assume is
primitive in /. By Lemma 4.3, x is primitive mod L;;1. Then by (4.2), x and
7(x) have exponent 0 mod L, 1, contradicting 7(x) = 0. Hence 7 is injective.

Assume 7(x) is primitive in N. Then x must be primitive in J/. By Lemma
4.3 and condition (4.2) we see that 7(x) must be primitive mod L;;;. Then
Lemma 4.3 implies Ay (L) = Hom (N, p*).

5. Invariants in non-defective lattices. Henceforth L is a non-defective
lattice, i.e. L, = L,/ for all k.

[f x is a vector in L, we've seen that its exponent modulo L, t = t(x, k), is
invariant under isometries of L. Recall that ¢ is the greatest integer such that
x € 7'L + L,. Another invariant of x is its length Q(x). A stronger length con-
dition is found by looking at a vector x; such that x = 7'x, (L,).

Consider two vectors x,, x,” ¢ L which satisfy & = n'x, = 7'x,’ (L;). Then
X, — x, € Ly, so that

Q(»‘(‘/;/) = Q(‘/) + Qx) — x3) + Bxy, v/ — xp)

Qxy) (1),

where we used the fact that L,_, = L,/ implies Q(x,” — x;) is in Y*='. Hence
Q(x;) modulo p*~' is an invariant of x where x, is a vector of L satisfying

x = 7'y, (L;). For vectors x and y to be associated, they must satisfy the
following partial length condition:

(B.1) v =7l y = aly (L) = Q) = Qy) (7).

We intend to show that these partial length conditions along with equality
of exponents are sufficient for the associativity of vectors in a non-defective
lattice.

‘
Il

6. A lifting theorem. The following theorem is the most important step
in the proof of the general Witt theorem. Given a map 7 : M — N of sublattices
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of L and an isometry ¢ ¢ O(L) such that ¢ = 7(L;) on 1, this theorem will
enable us to lift ¢ to an isometry ¢’ € O(L) such that ¢’ = 7 (L, 11).

THEOREM 6.1. Given a non-defective lattcie L, k € Z, let v : M — N be a lincar
iransformation of sublattices of L such that for all x in M the following hold:

6.1) 7(x) =x (Ly);

(6.2) x and 7(x) have the same exponent mod L1, say 1,

63) x =7 7(x) =7 (L) = Q&) = Q@) ().
Then there 1s an isometry ¢ ¢ O(L) such that for all x € M:

(6.4) ) =r1() Lis).

Proof. By induction on k. For some sufficiently small k*, L = L;«, so there
is nothing to prove for & < k*. Now assume that the theorem is true for all
k' < k and any M, N, and 7.

Let My, M., My, and v : M — M, @ =My be given by Lemma 4.2. Then
M = M, @ M, where
(6.5) N, (Ly) = Hom (My, p*) and  B(M,, L) C
Also v is the identity on M, and maps M, onto wM." with
(6.6) v(x) =x (L) forallx € M.

We lift 7 first on M, then on AM;.

Let M’ = M, ® M,'. Define a map 7" on M’ such that 7 = 7 on M and
for any z € MY, 7'(z) € L satisfies
(6.7) 7w7'(z) = vy (m2)) (Lysr).

This is possible because y~'(wz) € Ms, so 7(y~'(x3)) has exponent = 1 mod
Liy1. After defining 7' on a basis of M.’ to satisfy (6.7), extend it to 1/,'.
Note that (6.7) holds for any 5 in M’ because y~! is the identity on ;.

Claim. (v', M’, 7' (M'")) satisfies the conditions of the theorem for & — 1.
Proof of clatm. For any z in M’ :

(v (r2)) (Lit1) by (6.7)
v~ (wz) (L) Dby (6.1)

= 7z (Lyy1) by (6.6).
Hence 7/(2) = 2z (L,-1) for all z € M’, so (6.1) holds. Proving (6.2) and (6.3)
for z and 7’/ (3) at k — 1 is equivalent to proving them for 7z and w7’ (z) at k.
Because y~1(7rz) € M, these conditions hold for y~!(7z) and 7(y~!(xz)). (6.6)
and (6.7) imply 7z = vy~ '(x3), 77'(z) = 7(y"(7rz)) (Liy1). Hence (6.2) and
(6.3) also hold for 7z and 77’ (z), proving the claim.

7' (2)

I

i
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Applying the induction hypothesis, there exists ¢’ € O(L) such that
(6.8) ¢ (x) =7"(x) (I;) forallx ¢ M.
Given x € 1M, suppose v(x) = wz where z € M. Then
) = ¢ (1) (Lusr) by (6.6)
= w¢'(z) Dbecause v(x) = =z
= 77'(z) (Lyy1) Dby (6.8)
= 7(x) (Leg1) Dby (6.7).

Forx € My, r(x) = 7/(x) = ¢ (x) (L) by (6.8). Replacing M by ¢’ (M), con-
ditions (6.1), (6.2), and (6.3) still hold, and we may assume M = M; ® M,
satisfies (6.5) with
6.9 7(x) =x (Lyy1) forallx € M,

By Lemma4.4,7: .\, —7(1,)isinjectiveand X,y (L) = Hom (7 (My),p,).
Since primitive vectors in 1/ have exponent 0 mod L, 1, (6.3) implies

Q(r(x)) = Qx) (W) forall x € M.
Applying Theorem 3.3 with » = 1, recalling L, = L,’, there is an isometry
¢ =1 (L,) such that ¢(x) = 7(x) (L;1) for all x in M. If x ¢ M, satisfies
X = 7z (Lyy1) where z € L, then (6.9) and (3.8) imply

e(¥) = ¢(m2) =z =x = 7(x) (L)

Therefore ¢(x) = 7(x) (L 41) forall x ¢ M, completing the proof.

7. The main theorem. With the lifting of Theorem 6.1, we can now prove
the general Witt theorem for non-defective lattices.

Turores 7.1. Let 7: M — N be an isomorphism of sublattices of « non-
defective lattice L. Then 7 extends to an isometry ¢ © O(L) if und only if the
Jollowing hold for «ll x ¢ M and y = 7(x):

(7.1)  x and y have the same exponent mod L., say t = i(x, k),
(7.2) x =7y, y =xy (L) = Q) = Q) ().

Proof. The necessity of these conditions was shown ecarlier. If v = #/a'
where x € 1/, &' ¢ L, define 7(x") = =~ r(x). Then x and 7(x) satisfy (7.1)
and (7.2) if and only if ¥ and 7(x’) satisfy them. Ilence we can assume that
every vector which is primitive in A/ is also primitive in L.

Claim. For a sufficiently large K, Ny, (Lg) = lom (3, p¥).

Proof of clutm. Take K to be the order of the highest component of a
Jordan decomposition of L. Then Lg,; = w'Lg for all 2 > 0. By Lemma 4.2,
M has a decomposition M = M; @ M, where Ny, (Lx) = Hom (M, p¥) and
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B(M,, Lg) C ¥ Suppose x is a primitive vector in .. Then Lemma 4.1
implies

RY G 7r[4 + [‘K+1 = 7|'L + TI'LK = 7rL.

Since this contradicts our assumption that vectors primitive in M are also
primitive in L, we have M = Iy, proving the claim.

Given K by the claim, Lemma 4.4 implies 7 is injective and Ay(Lg) =
Hom (V, p¥). If x is primitive in .}/, its exponent {(x, k) is 0 for all & > K, so
taking x, = x, y, = 7(x) in (7.2), we have Q(x) = Q(r(x)) (»*). Since
N v = {0}, we sec that Q(x) = Q(r(x)) forall x € M,sor: M — N isan
isometry. If the additional condition:

(7.3) 1(x) =x (Lg) forallx ¢ M

held, then by Theorem 2.3, 7 extends to an isometry ¢ ¢ O(L), and we would
be done.

For K’ sufficiently small, 7(x) = & (Lg/) for all ¥ ¢ ). For example, if K’
is the order of the lowest component of a Jordan decomposition of L, then
L = Lg, so this is true trivially. Suppose that for a j such that K’ < j < K,
there is an isometry ¢; ¢ O(L) such that ¢;(x) = 7(x) (L;) for all x ¢ .
Then the map ¢, ' satisfies ¢, !7(x) = x (L;) for all x € 1. Theorem 6.1
gives a lifting ¢’ ¢ O(L) such that

o' (x) = ¢ 7 (x) (Lyp1) forallx ¢ AL
Letting ¢;11 = ¢,;¢', ¢;41 1S an isometry satisfying
el = 7(x) (L;y1) forall x € AL

Taking ¢k to be the identity, after at most K — K’ such liftings, we obtain
an isometry ¢x € O(L) such that (7.3) holds with 7 replaced by ¢x~'7. As
noted above, there is an isometry ¢ of L which extends ¢x~'7. Then the isom-
etry ¢xe extends 7 on M, so the proof is complete.

Letting M = Lx, as an immediate corollary to Theorem 7.1, we can give
necessary and sufficient conditions for vectors to be associated in a non-
defective lattice.

THEOREM 7.2. Tectors x and y in « non-defective luttice L are associated if and
only if conditions (7.1) and (7.2) hold for all k.

8. Remarks. A) Conditions (7.1) and (7.2) of Theorem 7.1 need only he
verified for primitive vectors in 3 in order to assure that r extends to an
isometry of L.

B) The exponents of vectors satisfy ¢(x, k) = {(x, k + 1) for all x, k. If K’
is the order of the lowest component of a Jordan decomposition of L, then
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L = Ly, so t(x, K') = 4 o for all x. Hence conditions (7.1) and (7.2) need
only be considered for & > K'.

C) If K is the order of the highest component of a Jordan decomposition of L,
then Lgy, = wlg. If xis primitive in L, thenx ¢ 7L 4+ Lg, 1, s0t(x, K+ 1) = 0.
If one assumes that 7 is an isometry, i.e. Q(x) = Q(r(x)) for all x, then
condition (7.2) is only needed when (x, k) > 0. Hence if x and y are primitive
with Q(x) = Q(y), then x ~ y if conditions (7.1) and (7.2) hold for & such
that K’ < k < K. This gives an effective method of determining if two
vectors are associated.

D) Theorem 7.1 yields an effective method of determining whether an
isometry 7 : M — N extends to an isometry of L. Assume K’ and K are as in
B) and ), and assume that every vector which is primitive in M is also
primitive in L. Then Ny (Lx) = Hom (M, p¥) and for K’ < j < K, M has a
decomposition M = @ ;z¢ M;; ® M * where M * C L;;; and

(8.1) Ny, (L;—y) = Hom (M4, »7) for all 4.

The following conditions are necessary and sufficient for 7 to extend to an
isometry ¢ ¢ O(L):

(8.2) Ny(Lg) = llom (N, pX),
(83) Mo, (Ly—y)= Tom (r(M;;), »?), and

(8.4) if {x;ul1 =0 = dim (M)} is a basis for M ;; and if
o= wixgy, m(80) = wly’ (Lia), then for all 7, ¢ such
that 7 > 0,7 < 4, and for all 4, I/,
QW) = Qi) By xjin’) = By’ yiew’) (7H77).

There arc only a finite number of conditions in (8.3) and (8.4) because we only
consider j such that A’ £ j < K. Conditions (8.2) and (8.3) assure that x
and 7(x) have the same exponent modulo L;,;. Condition (8.4) assures con-
dition (7.2) holds when ¢(x, k) > 0.
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