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A WITT THEOREM FOR NON-DEFECTIVE LATTICES 

KARL A. MORIN-STROM 

In [10], Wi t t laid the foundation for the s tudy of quadrat ic forms over 
fields. Suppose Q is a quadrat ic form defined on a finite dimensional vector 
space V over a field of characteristic not equal to 2. Wi t t showed tha t non
zero vectors x and y in I" satisfying Q(x) = Q(y) can be mapped into each 
other via an isometry of the vector space T. A lore generally, if r : W —• W' is 
an isometry between subspaces of T, then r extends to an isometry <p of T. 
In this paper we are concerned with analogous results for modules over discrete 
valuation rings. A module with a quadrat ic form on it is called a lattice. Cor
responding to Wi t t ' s main theorem for spaces, a fundamental problem in the 
s tudy of lattices is to determine necessary and sufficient conditions for an 
isometry between two sublattices to extend to an isometry of the whole lattice. 

In this paper we use a result of Kneser [6] to obtain the general Wi t t theorem 
for non-defective lattices over discrete valuation rings. Non-defective lattices 
include all lattices over non-dyadic rings as well as lattices which are "nice" , 
in a well-defined sense, over dyadic rings and rings of characteristic 2. 

1. I n t r o d u c t i o n . Throughout this paper, C is a discrete valuation ring 
with prime ideal p = irO generated by the element w. £) is contained in its quo
tient field, K, and C / p is the residue field. U = O — p is the multiplicative 
group of units. An element x in K has order k if x = TK'U where u G U. D is 
non-dyadic if 2 (/ p, C is dyadic if 2 £ p, and £} is 2-adic if p = 2C. 

L will always be a finitely generated free C-module. A quadratic form on L 
is a map Q : L —» K such tha t for all x G L, for all a Ç £), Q(ax) = <x2Q(x) 
and such tha t the associated map 

(1.1) B(x, y) = Q(x + y) - Q(x) - Q(y) 

is bilinear. The module L, with Q and B, is called a lattice. L is always assumed 
to be regular, meaning for any non-zero vector x, B(x, L) 9e 0. An isometry 
of L is an isomorphism y : L —* L such tha t Q{x) = Q((f(x)) for all x. 0{L) is 
the group of isometries of L. x and y are associated (written x ^ y) if (f(x) = y 
for some <p in 0(L). An isometry between lattices is an isomorphism which 
preserves the quadrat ic form on them. 

If M and N are sublattices of L and x a vector in L, then the ideals B (x, i l / ) , 
B(M, N), and the lattices p W = wkM, M + iV are defined in the obvious way. 
AI © N denotes a direct sum of lattices (i.e. M C\ N = {0}) while M _L N 
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means the orthogonal sum of lattices, which includes the addit ional require
ment t ha t B(M, N) = 0. A vector x is primitive in L if x Ç L, x ? 7rL. The 
lattice L is ^-modular if 73 (L, L) C PA and àet(ir~kB(xu Xj)) is a uni t where 
{Xf} is a basis for L. Equivalent ly, L is ^"-modular if for all primitive x in L, 
B(x, L) = pA'. A unimodular latt ice is one which is C-modular . 

O 'Meara ' s text [7] is a general source for terminologies and results on the 
ar i thmetic theory of quadrat ic forms, including lattices. Instead of the bilinear 
form defined in (1.1), O 'Meara uses x-y = \B(x, y), which has the advan tage 
tha t Q(x) = x2. I Iowever this precludes the possibility of having characterist ic 
2. We have adopted definition (1.1) so tha t the characterist ic 2 case can be 
included in a consistent approach. 

I t is easily shown tha t a lattice L has an orthogonal split t ing 

(1.2) L = _]_ Uk 
k 

where for each k, Uk is a ftA"-modular lattice. This is called a Jordan decomposi
tion of L. I t is an essential element of tradit ional approaches to lattices. 

Most previous Wi t t - type results have been done for lattices over the ring 
of integers in a local number field, requiring C be complete and £ / p be finite. 
For non-dyadic rings, Rosenzweig [8] found necessary and sufficient condi
tions for vectors to be associated, then Band [1] completed the W i t t theorem 
for sublattices. In the case of dyadic rings, the conditions for vectors to be 
associated have been found in a number of special s i tuat ions by Trojan [9] 
and I Isia [3; 4]. Fnfor tunate ly , their invariants and techniques wrere quite 
cumbersome because of heavy reliance on the Jordan decomposition of a 
lattice. 

Professor X. C. Ankeny has suggested tha t ra ther than the Jo rdan decom
position, one should look at the invar iant sublatt ices of L given by the fol
lowing definition: 

U = \x t L\B(x,L) C D ' ! , 
{ ' U = j.v t L,\Q(x) G ?}. 

These lattices, defined for every integer k, are invariant under isometries of L 
and satisfy L,; D LA.+i, Di;Lk = {0}. Note tha t if L = _L U} is a Jordan 
decomposition of L, then 

L/: = . • • ± T2U,c-2 ± 7T Uk^i JL Uk J_ Uk-i _L . . . . 

If C is non-dyadic (2 a un i t ) , then Lk and Lk are the same latt ice because 
Q(x) = \B(x, x). In [2], Cohen examines the Lk in the non-dyadic case. 

In this paper, we prove the general W i t t theorem for any latt ice L over a 
discrete valuat ion ring which satisfies Lk = Lk for all k. Such a lattice is called 
non-defective. In the l i terature, it is also called totally improper. For such 
lattices, we find the necessary and sufficient conditions for an isometry of 
sublatt ices to extend to the whole latt ice. T h e proof uses a new simpler tech-
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nique based on a recent theorem of M. Kneser [6]. The invariants of vectors 
turn out t o be much simpler when expressed in terms of the Lk than they had 
been in terms of a Jordan decomposition. 

2. Kneser ' s t h e o r e m . L is a lattice, regular as always, over a discrete 
valuat ion ring D , with quadra t ic form Q and associated bilinear form B. If 
u G L satisfies B(u, L) C ( ? ( # ) 0 , then the map au : L —» L such tha t 

(2.1) <ru(x) = x — (B(u,x)/Q(u))u, 

is easily verified to be an isometry of L. We call au the reflection about «. Such 
reflections are the main tool for constructing isometries. 

LEMMA 2.1. Suppose H is a sublattice of L such that H C L0
f. (i.e. for all 

x G H, B(x, L) C £), Q(x) £ £).) Let v, w £ L satisfy Q(v) = Q(w) and h = 
w — v G H. 

(a) If Q(h) G it ( = O - p), /Aen crA(») = w. 
(b) / / (?(/*) (? U rmd /Aerg exts/s u £ H such that Q(u), B(u, v) and B(u, w) 

are in U, then, letting z = h + (B(u, v)/Q(u))u G i7, we have <rz(<ru(v)) = w. 
In both cases, v and w are associated. 

Proof, (a) : ah(v) = v — (2?(fl, h)/Q(h))h = v -\~ h = w because Q(&) = 
Q(v) + Q ( » - B(v, w) = 2Q(v) - B(v, w) = B(v, v - w) = -B(v, h). 

(b) : <ru(v) = v — (J5(w, v)/Q(u))u = v + h — z = w — z. Then 0^(0^(1;)) = 
w — z — (B(w — z, z)/Q(z))z = w if we can show tha t B(au(v), z) = —Q(z). 
But w = z + 0"M(*;) implies tha t 

Q(w) = Q(z) + B(z, au(v)) + Q M » ) ) . 

Since Q(<xu(v)) = Q(v) = Q(w), we get B(z, <ru(v)) = -Q(z). 

Definitions. Hom(Af, K) is the group of homomorphisms from the lattice M 
into the field K. Similarly, we have H o m ( M , £>) and H o m ( M , p*). If M is a 
sublattice of L, then \M : L —•» H o m ( M , X") is the map such tha t \M(%) (y) = 
B(x, y) for all x G L, 3/ G M. 

T H E O R E M 2.2 (AI. Kneser) . Assume M, N, and H are sublattices of L such that 
H is a sublattice of L0

f, and M and N satisfy 

(2.2) \M(H) = H o m ( M , © ) , \N(H) = Hom(iV, © ) . 

Let T : AI —» N be an isometry such that 

(2.3) T(X) = x (mod H) for all x G M. 

Then r can be extended to an isometry <p G 0(L) which satisfies 

(2.4) <p(x) = x (mod H ) for all x G L. 

Moreover, <p can be expressed as a product of reflections ah, where h G H, provided 
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either of the following hold: 

(2.5) | C / p | j* 2, and there exists g G H such that Q(g) G U, or 

(2.6) | £ / p | = 2, and there exists g G H such that Q(g) G U and B(g, H) C p. 

Proof. We prove this theorem via several cases. 

Case 1. Dim (il/) = 1 and either (2.5) or (2.6) holds. 
Suppose M = £> , N = £)w, where T(V) = w = v + A, for some h G //• 

If Q(/0 G U, we are done by Lemma 2.1 (a). So assume Q(h) G U. Because 
Q(v) = Q(w), we see t h a t Q(h) = -B(v,h) = 5 ( w , A) £ p. Let F = 
[f G / / | B(v,f) G U, 5 ( w , / ) G It}. If there e x i s t s / G ^ such tha t Q ( / ) £ it, 
we are done by Lemma 2.1 (b) . 

Otherwise, Q(F) C P- If | 0 / p | ^ 3, F contains more elements than any 
proper sublatt ice of H, so F must span H. If / G F and h = w — v} then 
h +f e F must satisfy Q(ft + / ) G p. Since Q(&) and Q(f) are in p, 13(h, f) 
must also be in p, so B(h, F) C p, hence B(h, H) C P under condition (2.5). 

I f / G / ; and g is given by (2.5) or (2.6), for some a G £ \ the vector /* = 
g -\-af will satisfy w G /7 and Q(w) G U, because B(w, it) — B(v, it) = 
B(h, it) G p. Since this contradicts Q(F) C P, we are clone. Condition (2.4) is 
immediately verified. 

Case 2. Dim (A/) = r > 1 and either (2.5) or (2.6) holds. 
The proof is by induction on r. Let g be given by (2.5) or (2.6). Suppose 

\vu . . . , vr) is a basis of M over £ \ Reordering, we can assume B(g, vt) G 
B(g, Vi)£ for all i. Changing vt to vt — (B(g, vt)/B(g, Vi))vu we can assume 
B(g, Af) = 0 where Mf = £v2 © . . . © Ovr. By induction, r restricted to i lf 
extends to an isometry <p G O(L) which is a product of reflections ah} h f IF 
Because of (2.4), <p(H) = / / a n d conditions (2.2) and (2.3) still hold with M 
replaced by <p(M). We can now assume tha t r{vt) = vt for all i > 1. 

By (2.2), there exist h, h' G II such tha t B(vu h) = B(T(VI), W) = I, 
B{vu h) = B(vu hf) = 0 for all i > 1. Define H" = {h G H\B(hy M') = 0 | , 
M" = £v\, N" = £r(vi). We wish to apply Case 1 to the restriction of r 
to i l / " . Condit ions (2.2) and either (2.5) or (2.6) hold because g, h, and h' are 
in H". (2.3) holds because for all i > 1 : 

B(T(V{) -vuvt) = B(r(v,),Vi) -B(vuvt) 

= / 3 ( r ( ^ ) , T ( ^ . ) ) - i*(0i, *,) = 0 

since r is an isometry on A/. By Case 1, r : V\ —> r(i>i) extends to an isometry 
<p of the lattice L which is a product of reflections <jh with h G H"• Because 
B(M', H") = 0, we see from (2.1) tha t <p(vi) = vt = T(V{) for all i > 1. 
Hence <p extends r on all of M. 

Case 3. (2.5) and (2.6) do not hold. 
We enlarge the lattice L so tha t (2.5) or (2.6) will hold. Define L* = 

L ± (£)£ © £)V) where Q(£) = QO?) = 0, £ ( { , 17) - 1, and let Af* = 
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M ±8ri, N* = N ± €77, H* = H ± (£ + 77). Define r* : M* -> N* to he 
r on i f and the identi ty on O77. Let g = £ + *;. Then Q(g) = 5 ( £ , 77) = 
1 6 U. If | 0 / p | - 2, then 2 G p, so J3(g, i f*) C 5 (g , g ) 0 C 2 0 C p. So either 
(2.5) or (2.6) holds. By Case 1 or 2, r* extends to an isometry <p* of L* which is 
a product of reflections ah with h G if*. 

Since B(£ — rj, H*) = 0, we must have r*(£ — 7/) = £ — 77. Because 
<£>*(T?) = T*(TJ) = 77, <p* is the identi ty on O £ © O 77. Because L is the orthog

onal complement of £) £ © C 77, <£* must satisfy (p*(L) = L. Let t ing <̂  be the 
restriction of <p* to L, <̂  is an isometry of L which extends r. 

Our use of Kneser 's theorem will be via the following corollary to Theorem 
2.2. 

T H E O R E M 2.3. Assume M and N are sublattices of L satisfying 

(2.7) A M ( L „ ' ) = Horn (M, p*), \N(L}/) = Horn (TV, p*), 

where k is fixed. Let r : M —> N be an isometry such that 

(2.8) T(X) = x (Lk) for all x G M. 

Then r extends to an isometry ç> G 0(L) such that 

(2.9) <p(x) = x (Lk
f) for all x G L. 

Proof. If T(X) - x = y G Lk, then (?(r(x)) - Q(x) + Q(y) + 73(.r, y) 
implies Q(y) = — B(x, y) G pfc, so ;y G I V . Therefore L;. can be changed to 
L / in condition (2.8). With H = ZV, this theorem is a direct corollary to 
Theorem 2.2 if we scale Q and B by 7r-*\ 

3. M o d u l a r version of Kneser ' s re su l t s . Here we present modular ver
sions of the results of the last section. They will be derived from the following 
lemma. 

LEMMA 3.1. Suppose H is a sublattice of L such that H C L0
f. If v, w G L 

satisfy Q(v) = Q(w) (pr) and h = w — v £ H, then the following hold. 
(a) If Q{h) G U, then ah(v) = w {irrH). 
(b) If Q(h) G U and there exists u G H such that Q(u), B(u, v) and B(u, w) 

are in U, then az(au(v)) = w (wrII) where z = h + (B(u, v)/Q(u))u G H. 

Proof. This lemma is proved in exactly the same way as Lemma 2.1. 

We say tha t an isomorphism T \ M —* N oi sublattices of L is an isometry 
modulo p r if 

(3.1) Q(T(X)) S 0 ( a ) (pO for all * G M. 

T h e following modular version of Kneser 's Theorem says t ha t an isometry 
modulo p r of sublattices satisfying the conditions of Theorem 2.2 can be 
extended modulo TTH to an isometry of the whole lattice L. 
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T H E O R E M 3.2. Assume M, N, and H are sublattices of L such that H is a sub-

lattice of Lo . With r a positive integer, assume r : M —» N is an isometry modulo 

p r. Suppose M, N and r satisfy (2.2) and (2.3). Then there exists an isometry 

if Ç 0(L) which satisfies 

(3.2) <p(x) = T(X) (irrH) for all x G M, and 

(3.3) <p(x) = x (H) for all x Ç L. 

In particular, <p extends r modulo L/: 

(3.4) <p(x) = r(x) (L/) for all x £ M. 

Moreover, ç can be expressed as a product of reflections ah, h G H, provided either 

(2.5) or (2.6) hold. 

Proof. This theorem can be proved by the same cases as in the proof of 
Theorem 2.2. Cases 1 and 2 hold identically here remembering t h a t all equa
tions involving Q and B only hold modulo p r , while all equat ions between 
vectors hold modulo wTH. In Case 3 we get an isometry <£* of L* which extends 
r* modulo TT'H* and is the identi ty on £) £ © € rj modulo irrH*. Let M" = 
C £ ® £ v, N" = T*(M"), H" = irrMn, and r " : M" - » N" be the restric

tion of (p*. Applying Theorem 2.2 with Q and B scaled by w~r, there is an isom
etry if" which extends ^* on M" and satisfies <p" (x) = x (TTTM") for all x G L. 
Then ç"~lç* is an isometry which is the ident i ty on M". Tak ing <p to be its 
restriction to L, ç is an isometry of L which satisfies the requirements of the 
theorem. 

As a direct corollary to Theorem 3.2 wre have the following useful theorem. 

T H E O R E M 3.3. Let r : Af —> N be an isomorphism of siiblattices of L. With k 
and r fixed integers, r > 0, suppose the following conditions hold : 

(3.5) Q(x) EE Q(T(x)) (D*+') for all x Cz M, 

(3.6) T(X) = x (L,) for all x G M, 

(3.7) X.„(L,') = Mom (.1/, f), \N(Lk') = Horn (N, f). 

Then there is an isometry <p (i 0(L) satisfying 

(3.8) ç(x) = x (L;/) for all x Cz L 

such that <p extends r modulo L/:+/, i.e. the following holds: 

(3.9) <p(x) = r(x) (L,,+ / ) for all x (z M. 

4. S o m e genera l l e m m a s o n l a t t i c e s . Recall t ha t a vector z £ L is primi
tive if z (f_ TL. We say tha t z f L is primitive modulo Lk if z # TL + LA.. 

LEMMA 4.1. z is primitive mod L / + i if and only if B(z, L f) = p7'. 
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Proof. (=») Let k be minimal such tha t z is primitive mod Lk+\. So k ^ /. 
Co nsider a modular decomposition of L. The minimality of & implies z 0-
TL-\- Lk+i, z (z 7rL + LA-. Then the component of z in the pA'-modular com

ponent of L must be primitive. Therefore B(z} Lk) = pA and B(s, Tj~kLk) = 
p j . Since irj~kLk C 7>,, we have 73 (z, L,) = p;". 

(<=) If 2 is not primitive mod Lj+i, then 2 G 7rL + i> /+i, so tha t B{z, Lf) C 
p i + 1 . 

The bilinear form 73 (x, y) via the map \nr(Lk) yields a decomposition of the 
sublattice M into a direct sum of two lattices, one of which has all the homo-
morphisms into pA:, and another which maps into pA"+1, as in the following lemma. 

LEMMA 4.2. Let M be a sublattice of L and k fixed. Then 
(a) M has a decomposition M = M\ © M 2 such that 

(4.1) \Ml(Lk) = Horn (Mi, pA) and 73 (M2 , Lk) C p*+1. 

(b) Given this decomposition, there is a sublattice AI2 of L and a linear trans
formation y from M onto M\ © TTM2 such that y is the identity on Mi and y 
maps M2 onto wALf with y(y) = y (Lk+i) for all y £ M. 

Proof, (a) Assume M\ is a sublattice of M with maximal dimension such 
t ha t \Mi(Lk) = Horn (Mi, pA"). Say {xi, . . . , xm] is a basis of Mi . Then there 
exist Wi, . . . , wm G Lk which satisfy B(xu w f) = ôijTk for all i, j . Then M = 
Mi © M 2 where M 2 can be adjusted so tha t 73(M2, wt) = 0 for all i. If 
73 (M2 , Lk) (t pA"+1, choose y G M2 , w Ç L* such tha t B(y, w) = wk. Modifying 
w by multiples of the wu we can assume B (xt-, w) = 0 for all i. Also 73 (y, wt) = 
0 for all i because 3/ (E M2 . Let t ing Mi* = AI 1 © f£y, we see t ha t \Ml*(Lk) = 
Horn (Mi*, pA) and dim (Mi*) > dim (Mi) , contradicting the maximali ty of 
dim (Mi) . Hence 73 (M2 , Lk) C PAf l . 

(b) Let {xi, . . . , xm\ and \yi, . . . , yn\ be bases for Mi and M2 , respectively. 
Because 73 (M2 , Lk) C PA+1, Lemma 4.1 implies tha t the y% are not primitive 
mod Lk+i. Hence for all i, there exists zt Ç L such tha t yt = irZf (Lk+Ï). 
Changing the zt by vectors in Lk1 we can assure tha t {xi, . . . , xm, z\, . . . , zn\ 
are linearly independent over C Define M 2 ' = Czi © . . . © Ozn and 7 : 
M —» Mi © 7rM/ such tha t y(Xi) = xu y(yf) = TTZ j . This is the desired map. 

LEMMA 4.3. If AI is a sublattice of L, then XM(Lk) = Horn (M, pA") if and only 
if, for any z which is primitive in AI, z is primitive mod Lk+i. 

Proof. (=>) Let {xi, . . . , xm] be a basis for M and let Wj £ Lk satisfy 
B(x{, Wj) = bijirk for all i, j . If z = Y.&ixi is primitive in M, then on (? p for 
some i, so B(z, wt) = a{Kk ^ 0 (pA+1)- By Lemma 4.1, z is primitive mod 
Lk+\. 

'(<=) Consider the decomposition M = Ali © M 2 given by Lemma 4.2. If 
M 2 ^ 0, let s be primitive in M2 . By hypothesis z is primitive mod Lfc+i, so 
B(z, Lk) = pfc, contradicting B(AI2, Lk) C pfc+1. Hence M = M x and we are 
done. 
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Definition. The exponent modulo Lk of a vector x G L is the greatest integer 

t = /(x, k) such tha t x G 7r'L + L*.. If x G L;-, we say t = + 0 0 . 

Note tha t the exponent mod Lk of a vector is invar iant under isometries of 
L, i.e. x ~ y =ï /(x, &) = /(% &) for all &. 

LEMMA 4.4. Assume r : ^f —> TV is <7 surjective linear transformation of sub-
modules of L which satisfies the following: 

(4.2) for all x G ^1/, x and r (x ) have the same exponent mod L*+i, 

(4.3) X, f(L,) = Horn (M, f). 

Then r is injective and \N(Lk) = Horn (iV, p*). 

Proof. Suppose r (x) = 0 for some non-zero x G M, which we can assume is 
primitive in Af. By Lemma 4.3, x is primitive mod Lk+i. Then by (4.2), x and 
r (x) have exponent 0 mod Lk+1, contradict ing r (x) = 0. Hence r is injective. 

Assume r (x) is primitive in N. Then x must be primitive in M. By Lemma 
4.3 and condition (4.2) we see tha t r (x ) must be primitive mod Z^+i. Then 
Lemma 4.3 implies \N(Lk) = Horn (A, pA). 

5. I n v a r i a n t s in n o n - d e f e c t i v e l a t t i c e s . Henceforth L is a non-defective 
lattice, i.e. Lk = L,/ for all k. 

If x is a vector in L, we've seen tha t its exponent modulo Lk, t = t(x, k), is 
invariant under isometries of L. Recall t ha t t is the greatest integer such tha t 
x G TT'L + L,:. Another invar iant of x is its length Q(x). A stronger length con
dition is found by looking a t a vector xk such tha t x = w'xk (Lk). 

Consider two vectors xA-, xk' G L which satisfy x = irlxk = -K{xk (Lk). Then 
xk — X/, G L,c_t, so tha t 

Q(x,/) = Q(xk) + Q(xk' - xk) + B(x,, x,' - xl:) 

- Q(xk) if~'), 

where we used the fact tha t Lk_( = L,._/ implies Q(xk
f — xk) is in pA"~G Hence 

Q(x,:) modulo pk~' is an invar iant of x where xk is a vector of L satisfying 
x = Tfx,c (Lk). For vectors x and y to be associated, they must satisfy the 
following partial length condition: 

(5.1) x = TT'.T,, y = ir'yk (Lk) =* Q(xk) = Q(yk) (?->). 

We intend to show tha t these part ial length conditions along with equal i ty 
of exponents are sufficient for the associativity of vectors in a non-defective 
lattice. 

6. A l i f t ing t h e o r e m . The following theorem is the most impor tan t step 
in the proof of the general W i t t theorem. Given a m a p r : M —> A of sublatt ices 
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of L and an isometry ç G 0(L) such tha t ç = r{Lk) on M, this theorem will 

enable us to lift ç> to an isometry cpf G O(L) such tha t <p' = r (f^+i). 

T H E O R E M 6.1. Given a non-defective lattcie L, k G Z, let T : M —> N be a linear 
transformation of sublattices of L such that for all x in M the following hold: 

(6.1) T(X) ^X (Lk); 

(6.2) x and r(x) have the same exponent mod L*+i> say t; 

(6.3) x = x'x', r(x) ^ Try (L/0+1) => (3(x0 ^ G(y) ( ^ - < ) . 

77zew /feere is aw isometry ip G O(L) swcft that for all x G Af: 

(6.4) <p(x) ss r (x) (L*+1). 

Proof. By induction on &. For some sufficiently small &*, L = Lk*, so there 
is nothing to prove for k < k*. Now assume tha t the theorem is true for all 
k' < k and any Af, iV, and r. 

Let Mi , AT2, Af2', and y : M —> Afi © 7rAf2' be given by Lemma 4.2. Then 
Af = Mi © Af 2 where 

(6.5) \Ml(Lk) = Horn (il/ l f p*) and 7i(AT2, L,) C p*+1. 

Also 7 is the identi ty on Af i and maps M2 onto 7rAf 2' with 

(6.6) 7 ( x ) = x (L*+i) for all * G Af. 

We lift r first on M2, then on Afi. 
Let M' = ilfi © AT2'. Define a map T' on M' such tha t r ' = r on Afi and 

for any z G Af2', r ' ( s ) G JL satisfies 

(6.7) W{z) = r ( 7 " 1 ( ^ ) ) (L*+i). 

This is possible because 7_1(7r2;) G Af2, so T ( 7 _ 1 ( 7 T S ) ) has exponent ^ 1 mod 
Z^+i. After defining r' on a basis of M2

f to satisfy (6.7), extend it to A/V. 
Note t ha t (6.7) holds for any z in M' because y~l is the identi ty on Mi. 

Claim. (rf, AT, rf (M')) satisfies the conditions of the theorem for k — 1. 

Proof of claim. For any s in M' : 

7rr'(s) ^ r ( 7 " 1 ( ^ ) ) (Lk+i) by (6.7) 

= 7 - H ^ ) (L*) by (6.1) 

= TTZ (Lk+i) by (6.6). 

Hence rf (z) = s (L ,_0 for all s G AT, so (6.1) holds. Proving (6.2) and (6.3) 
for z and r'(z) a t k — 1 is equivalent to proving them for TTZ and WT'(Z) a t &. 
Because 7_1(7r2) G Af, these conditions hold for y~l{nz) and r (7 - 1 (7rs) ) . (6.6) 
and (6.7) imply TTZ = y~l{jz), TT'(z) = r(7_ 1(7rs)) (Lk+i). Hence (6.2) and 
(6.3) also hold for TTZ and TTT' (z), proving the claim. 
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Applying the induction hypothesis, there exists <pf G 0(L) such tha t 

(G.8) <p'(x) = T'(X) (Lk) for all x G IV. 

Given x G il/2, suppose y(x) = irz where z G M 2 ' . Then 

<p'(x) = <p'(y(x)) (Lt+1) by (6.6) 

= ir<p'(z) because y(x) = irz 

= W{z) (L,+ 1) by (6.8) 

= r(.r) (L, + i ) by (6.7). 

For x G Mj , r (x ) = T'(X) = <p'(x) (Lk) by (6.8). Replacing i f by <p'(M), con
ditions (6.1), (6.2), and (6.3) still hold, and we may assume M = Mi © M2 

satisfies (6.5) with 

(6.9) r (x) = x (L,+ 1) for all x G J / 2 . 

By Lemma4 .4 , r : Mi —>T(MI) i s in ject iveand \ rufi) (Lk) = Horn ( r (Tf i ) , p;.). 
Since primitive vectors in Mi have exponent 0 mod L/.+i, (6.3) implies 

Ç( r (x ) ) ^ Ç(x) (p*+0 for all x G J l^ . 

Applying Theorem 3.3 with r = 1, recalling Lk = A / , there is an isometry 
s? = 1 ( A ) such tha t <p(x) = r (x ) (A.-+i) for all x in il/i. If x G ilA satisfies 
x = 7TZ (A-+i) where z G A, then (6.9) and (3.8) imply 

<p(x) = <f(irz) = 7TS = x = r (x) (A-+0-

Therefore <^(x) = r (x) (A, + i) for all x G if, completing the proof. 

7. T h e m a i n t h e o r e m . Wi th the lifting of Theorem 0.1, we can now prove 
the general W i t t theorem for non-defective lattices. 

T H E O R E M 7.1. Let r : M —> TV be an isomorphism of sublattices of a non-
defective lattice L. Then T extends to an isometry <p G 0 (A) if and only if the 
following hold for all x G M and y = r ( x ) : 

(7.1) x and y have the same exponent mod Lk1 say t — /(x, k); 

(7:2) x = TT'X!;, y = v'yk (L,) => Q(x,) = Q(yk) (p*-') . 

Proof. The necessity of these conditions was shown earlier. If x = irjx' 
where x G M, xf G L, define r (x ' ) = ir~jr(x). Then x and r (x ) satisfy (7.1) 
and (7.2) if and only if x' and r (x ' ) satisfy them. Hence we can assume tha t 
every vector which is primitive in M is also primitive in L. 

Claim. For a sufficiently large A', \M(LK) = Horn (M, $K). 

Proof of claim. Take A to be the order of the highest component of a 
Jordan decomposition of L. Then LK+i = irlLK for all i > 0. By L e m m a 4.2, 
M has a decomposition M = Mx © M2 where \Ml(LK) = Horn (Mi, p*) and 
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B(M2, LK) C pA + 1 . Suppose x is a primitive vector in Mo. Then Lemma 4.1 
implies 

x (E 7rL + LK+i = TL + nLK = TL. 

Since this contradicts our assumption tha t vectors primitive in M are also 
primitive in L, we have M = Mi, proving the claim. 

(liven K by the claim, Lemma 4.4 implies r is injective and \y(LK) = 
Mom (N, p x ) . If x is primitive in M, its exponent /(x, k) is 0 for all k > K, so 
taking xk = x, y,c = r (x) in (7.2), we have Q(x) = Q(T(X)) (pfc). Since 
f\ PA" = {0}, we see tha t Q(x) = Q(T(X)) for all x £ J / , so r : M -> iV is an 

isometry. If the additional condition: 

(7.3) r (x) = x (LK) for all x G M 

held, then by Theorem 2.3, r extends to an isometry <p G 0(L), and we would 
be done. 

For K' sufficiently small, r (x) = x (L/r) for all x G -1/ . For example, if K' 
is the order of the lowest component of a Jordan decomposition of L, then 
L = LK>, so this is true trivially. Suppose tha t for a j such t ha t i£ ' ^ j < K, 
there is an isometry <pj G O(L) such tha t <pj(x) = r (x) (L ;) for all x £ 3 / . 
Then the map (pflr satisfies <P~1T(X) = x {Lf) for all x G M. Theorem 6.1 
gives a lifting ç' £ 0{L) such tha t 

<^'(x) = iprlr{x) (Lj+1) for all x G ^ . 

Let t ing ^ J + i = ipjip', <pj+i is an isometry satisfying 

<pj+i(x} = r (x) (Lj+i) for all x Ç M. 

Taking <pK> to be the identity, after a t most K — Kf such liftings, we obtain 
an isometry (pK G O(L) such tha t (7.3) holds with r replaced by <pK~lT- As 
noted above, there is an isometry <p of L which extends <AK_1T- Then the isom
etry (pK(p extends r on M, so the proof is complete. 

Let t ing M = £x, as an immediate corollary to Theorem 7.1, we can give 
necessary and sufficient conditions for vectors to be associated in a non-
defective lattice. 

T H E O R E M 7.2. Vectors x and y in a non-defective lattice L are associated if and 
only if conditions (7.1) and (7.2) hold for all k. 

8. R e m a r k s . A) Conditions (7.1) and (7.2) of Theorem 7.1 need only be 
verified for primitive vectors in M in order to assure t ha t r extends to an 
isometry of L. 

B) T h e exponents of vectors satisfy t{x, k) ^ t(x, k + 1) for all x, k. If K' 
is the order of the lowest component of a Jordan decomposition of L, then 
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L = LK>, so t(x, K') = + GO for all x. Hence conditions (7.1) and (7.2) need 
only be considered for k > K'. 

C) If K is the order of the highest component of a Jo rdan decomposition of L, 
then LK+i = TTLK. If x is primitive in L, then x (/-_ irL + £^+i> so /(x, i£ + 1) = 0. 

If one assumes tha t r is an isometry, i.e. Q(x) = Q( r (x ) ) for all x, then 
condition (7.2) is only needed when /(x, &) > 0. Hence if x and 3; are primitive 
with Q(x) = Q(y), then x ~ y if conditions (7.1) and (7.2) hold for k such 
tha t K' < k ^ K. This gives an effective method of determining if two 
vectors are associated. 

D) Theorem 7.1 yields an effective method of determining whether an 
isometry r : M —> N extends to an isometry of L. Assume K' and K are as in 
B) and C) , and assume tha t every vector which is primitive in M is also 
primitive in L. Then \M(LK) = Mom (M, pK) and for K' ^ j < K, M has a 
decomposition M = ® ^ 0 Mjt © M* where M* C £;+i and 

(8.1) Xu^Lj-i) = Horn (MJU p') for all i. 

The following conditions are necessary and sufficient for r to extend to an 
isometry <p G 0(L): 

(8.2) \N(LK) = Horn (N, p*), 

(8.3) X r ( 1 / ; ! ) (L ,_0 = Horn ( r (Af ,0 , p ' ) , and 

(8.4) if {xJlh\l ^ h ^ dim (Mji)} is a basis for Mjt and if 

x/?7, = 7r?x/7//, r(x / ; 7?) = 7r^ / i 7/ (Lj+i), then for all i, ï such 

tha t i > 0, V S h and for all h, h', 

Q(xjt»') - Q(yjt*'), B(xJih
f, xjn/) = / i f r ^ ' , ^ ,r / / ) ( P " 1 - ' ) -

There are only a finite number of conditions in (8.3) and (8.4) because we only 
consider j such tha t K' ^ j < i^. Conditions (8.2) and (8.3) assure tha t x 
and T(X) have the same exponent modulo L H i . Condition (8.4) assures con
dition (7.2) holds when t(x, k) > 0. 
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