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Shear-induced migration of elongated micro-swimmers exhibiting anisotropic Brownian
diffusion at a population scale is investigated analytically in this work. We analyse the
steady motion of confined ellipsoidal micro-swimmers subject to coupled diffusion in a
general setting within a continuum homogenisation framework, as an extension of existing
studies on macro-transport processes, by allowing for the direct coupling of convection and
diffusion in local and global spaces. The analytical solutions are validated successfully
by comparison with numerical results from Monte Carlo simulations. Subsequently, we
demonstrate from the probability perspective that symmetric actuation does not yield net
vertical polarisation in a horizontal flow, unless non-spherical shapes, external fields or
direct coupling effects are harnessed to generate steady locomotion. Coupled diffusivities
modify remarkably the drift velocity and vertical migration of motile micro-swimmers
exposed to fluid shear. The interplay between stochastic swimming and preferential
alignment could explain the diverse concentration and orientation distributions, including
rheological formations of depletion layers, centreline focusing and surface accumulation.
Results of the analytical study shed light on unravelling peculiar self-propulsion strategies
and dispersion dynamics in active-matter systems, with implications for various transport
problems arising from the fluctuating shape, size and other external or inter-particle
interactions of swimmers in confined environments.
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1. Introduction

Migration of active matter is basic to our comprehension of diverse physiological
environments, exemplified by phenomena like algal blooms (e.g. Durham & Stocker
2012). Specifically, the migration of confined micro-swimmers influences significantly
environmental and bio-chemical processes, particularly in the context of dispersion and
mixing (e.g. Cates & Tjhung 2018; Gouiller et al. 2021). Nevertheless, a comprehensive
theoretical depiction of the fundamental properties of living matter remains unattainable
due to its profound complexity. It is plausible, therefore, that overarching principles such
as conservation laws and symmetries serve as constraints on the potential collective
behaviour exhibited by cells (Marchetti et al. 2013).

The dynamics of micro-swimmers is dominated by viscous forces at low Reynolds
numbers, and their self-propulsion can occur only through non-reciprocal fluid
manipulation (Purcell 1997). From a kinematic perspective, it is feasible to establish a
linear relationship from force and moment matrices towards the velocity and rotation
matrices through a grand resistance matrix that encompasses inherently a direct interplay
between positional convective translation and orientational rotation (Karrila & Kim 1991).
This progress could reveal mechanical and bio-physical properties of living matter at
the level of each cell, for locomotion on small scales (Lauga 2011). On the other hand,
there is an essential need for a phenomenological Smoluchowski approach on field-based
continuum modelling, regarding the non-equilibrium steady state of an active system as
emerging from the introduction of non-zero, albeit small, driving forces.

The homogenisation technique has been employed in various applications to investigate
the long-term asymptotic dispersion of passive particles (Mei, Auriault & Ng 1996;
Pavliotis 2008). Dispersion processes in confined flows, with reactions occurring either
in the bulk or on a boundary, were investigated extensively by Ng & Yip (Ng 2006a,b).
Wu & Chen (2014) employed the homogenisation method to examine the initial stage and
transverse concentration distributions. Despite progress in understanding the dispersion
of passive particles, the homogenisation method has not been extended to investigate
the dispersion of ellipsoidal micro-swimmers. In this work, an effective strategy involves
categorising relaxation processes into fast and slow components. As vigorous applications
and extensions, we formulate a homogenised theory that addresses primarily the slow
dynamics, with the fast processes considered as sources of noise and damping.

Kumar et al. (2021) examined Taylor dispersion of passive ellipsoids with anisotropic
diffusion at high flow Péclet numbers in a Poiseuille flow. Following the progress,
asymptotic expressions of mean drift and dispersivity in the limit of large rotary
Péclet numbers are derived by Khair (2022). In contrast to passive particles, the
rotational dynamics turns out to be crucial, especially for the time-dependent transport
of self-propelling micro-swimmers, because a slight deviation of the orientation could
lead to markedly distinct distributions over brief time intervals. Anisotropic diffusion
of ellipsoidal tracers in suspensions of active particles could display non-Gaussian
statistics and dispersive phenomena (Nordanger, Morozov & Stenhammar 2022). Rusconi,
Guasto & Stocker (2014) showed that trajectories of bacteria displayed frequent loops
in high-shear regions due to the hydrodynamic torque generated by the local shear,
corresponding to a shear-induced trapping effect in the high-shear domains. Assuming
that the steady distribution mirrors a uniform distribution and translational diffusion is
negligible, Bearon, Hazel & Thorn (2011) deduced a steady solution of the probability
distribution for spheroidal gyrotactic micro-swimmers in a horizontal Poiseuille flow.
Recently, Fung (2023) obtained analytical solutions for steady distributions of motile
gyrotactic micro-organisms without translational diffusion in vertical flows. While the
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spatial and orientational dynamics of passive and active particles could be controlled
under various mechanisms through external fields and/or fluctuations (Morris & Brady
1996; Saintillan & Shelley 2013; Hwang & Pedley 2014; Ishikawa & Pedley 2014; Morris
2020; Wang & Cirpka 2021; Wang et al. 2022c; Yang et al. 2022; Zeng, Jiang & Pedley
2022), theory has not yet been developed in a general setting to address the migration of
confined micro-swimmers experiencing both anisotropic diffusion and self-propulsion.

The interactions between active matter and rigid plates within the confined channel
significantly influence a range of biophysical and chemical processes (Shen et al. 2017;
Traverso & Michelin 2022; Liao et al. 2023; Zhan, Jiang & Wu 2024). The inclination
of active suspensions to accumulate near surfaces is prominent (Rothschild 1963).
Hydrodynamic interaction, a potential but non-exclusive mechanism for migration, was
addressed by Berke et al. (2008) with regard to Escherichia coli. Alternatively, Li &
Tang (2009) proposed a kinematic-based mechanism that elucidates the accumulation
phenomenon arising from bacterial collisions. This suggests that hydrodynamic
interactions may play only a secondary role in the wall accumulation. The Smoluchowski
equation could predict quantitatively the high-shear trapping phenomena (Bearon & Hazel
2015). Nevertheless, in the absence of translational diffusion, non-physical concentration
singularities may occur at walls. With periodic boundary conditions in position space,
Vennamneni, Nambiar & Subramanian (2020) concentrated on the trapping phenomena
within low- and high-shear regions observed experimentally by Rusconi et al. (2014) and
Barry et al. (2015), to exclude direct influences of channel plates.

The anisotropic diffusion of ellipsoidal particles is ubiquitous in nature, induced
intrinsically by a non-spherical shape (Perrin 1936; Brenner 1967), as well as non-thermal
fluctuations of an external force (Thiffeault & Guo 2022). Spatial fluctuations in viscosity
give rise to modifications in both translation and rotation (Pedley 2010; Brumley
et al. 2015; Chen, Perazzo & Stone 2020; Kamal & Lauga 2023). By abstracting the
mechanism underlying speed alterations and reorientation, a field-based model could
capture adeptly these dynamic phenomena. Shear-induced migration of active ellipsoids
uncovers abundant counter-intuitive phenomena, e.g. low-shear trapping (Rusconi et al.
2014; Vennamneni et al. 2020), upstream rheotaxis (Hill et al. 2007; Kaya & Koser 2009;
Omori et al. 2022) and centreline depletion (Rusconi et al. 2014; Ezhilan & Saintillan
2015), etc. Inspired by these recent experimental and theoretical investigations, we attempt
to analyse at a population level the shear-induced migration of active ellipsoids subject
to coupled diffusivities within a continuum theoretical framework. Intriguingly, how
could built-in asymmetries and external driving forces modify the migration of confined
micro-swimmers?

The paper is structured as follows. Section 2 presents the Smoluchowski analysis
for confined micro-swimmers with anisotropic diffusion, followed in § 3 by asymptotic
solutions for steady moments and macroscopic transport coefficients. Effects of
anisotropic diffusion, particle shape anisotropy, external fields and self-propulsion on the
obtained concentration and orientation distributions are considered in § 4, as well as the
transient phenomenological transport coefficients in § 5. Finally, § 6 concludes. Solution
procedures of time-dependent distributions can be found in Appendix A, and numerical
validations through the Monte Carlo method are shown in Appendix B.

2. Problem formulation

We consider a dilute suspension of confined micro-swimmers in a steady parallel
flow subject to anisotropic diffusion. Ellipsoidal micro-swimmers are exemplified with
fluctuations in both position and orientation spaces, of which the origins could be athermal
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and biological. A set of two-dimensional Cartesian coordinates R = [x, z]T with base
vectors (ex, ez) is introduced, as shown in figure 1. A statistical mechanical description
of a particle’s motion is embodied in the probability distribution function P(R, θ, t) of
finding the swimmer at the right position at time t, with θ standing for the angle of the
orientation vector p from the positive z-axis. The transport problem adopts the form of the
Smoluchowski equation in the position and orientation spaces, from the conservation law
of mass as

∂P
∂t

+ ∇R · [
Pef U f (R)P + PespP − D · ∇RP

] + ∂

∂θ

[
Ω(z, θ)P − ∂P

∂θ

]
= 0, (2.1)

where ∇R is the gradient operator in the position space, U f (R) = [Uf (R), 0]T is the
external velocity. We parameterise all length scales by the width W∗ of the channel, flow
velocity U∗

f by the mean speed U∗
m over the lateral cross-section, swimming velocity by

the swimming speed V∗
s of active ellipsoids, the rate of orientational change Ω∗ by the

rotational diffusivity D∗
θ , and dimensional translational diffusivities (D∗

‖ and D∗
⊥) along

the parallel and perpendicular axes by D∗
θW∗2, with asterisk signs employed to represent

the dimensional characteristic quantities. Specifically, the dimensionless parameters are

t = t∗D∗
θ , x = x∗ − U∗

mt∗

W∗ , z = z∗

W∗ , Uf =
U∗

f

U∗
m

− 1, Ω = Ω∗

D∗
θ

,

Pes = V∗
s

D∗
θW∗ , Pef = U∗

m

D∗
θW∗ , D‖ =

D∗
‖

D∗
θW∗2 , D⊥ = D∗

⊥
D∗

θW∗2 ,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.2)

wherein D‖ is the dimensionless translational diffusivity parallel to the swimming
direction, D⊥ is the dimensionless translational diffusivity perpendicular to the swimming
direction, Pes is the dimensionless swim Péclet number and Pef is the dimensionless flow
Péclet number. Provided inertial motion and particle–particle interaction are absent, the
angular velocity could be determined through Jeffery’s formulation (Jeffery & Filon 1922;
Leal & Hinch 1972; Pedley & Kessler 1992; Lauga 2020), so that the rate of change of
orientation is

Ω (z, θ) = Pef

2
dU
dz

[1 + α0 cos(2θ)] − λ sin θ, (2.3)

where α0 = (AR2 − 1)/(AR2 + 1) is the shape factor characterised by the aspect ratio
AR, λ = 1/2B∗D∗

θ is the gyrotactic bias parameter and B∗ is the reorientation time.
Specifically, α0 = 0 stands for spheroids and α0 = 1 for infinitely thin rods. The elements
of the translational diffusivity tensor are

D =
[

Dxx(θ) Dxz(θ)

Dzx(θ) Dzz(θ)

]
=

[
D‖ sin2 θ + D⊥ cos2 θ

(
D‖ − D⊥

)
sin θ cos θ(

D‖ − D⊥
)

sin θ cos θ D‖ cos2 θ + D⊥ sin2 θ

]
.

(2.4)
In this context, the present work extends the existing theory concerning macro-transport

processes (Jiang & Chen 2021; Wang, Jiang & Chen 2022b; Guan et al. 2023), facilitating
the direct interplay of convection and diffusion in the local and global spaces. The
transport of active ellipsoids, characterised by anisotropic diffusion, becomes intricate due
to the influence of cross-diffusivities.
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U∗ (z∗) ex

ex

ezdU∗ W∗

2

W∗

2

g Dθ
∗

θ

D⊥∗ D|
∗
|

O

Vs
∗dz∗ > 0

dU∗

dz∗ < 0

Figure 1. Ellipsoidal micro-swimmers suspended in a Poiseuille flow subject to anisotropic Brownian
diffusion and an external gravity field.

The no-flux boundary conditions require

∫ 2π

0
ez · [

Pef U f (R)P + PespP − D · ∇RP
]

dθ = 0, at z = 0, 1. (2.5)

Provided that collisions between ellipsoids and channel boundaries are perfectly elastic, we
further require in the position space that the incident probability fluxes be compensated
by the reflected fluxes as (Bearon et al. 2011; Volpe, Gigan & Volpe 2014; Ezhilan &
Saintillan 2015; Jakuszeit, Croze & Bell 2019)

P (R, θ, t) = P (R, π − θ, t) , at z = 0, 1, (2.6)

∂P
∂z

∣∣∣∣
θ=θ0

= − ∂P
∂z

∣∣∣∣
θ=π−θ0

, at z = 0, 1. (2.7)

We refer to (2.6–2.7) as reflective boundary conditions in what follows of our derivation.
For clarity, no periodic boundary conditions are applied at z = 0 and z = 1. It can be
verified with simple algebra that the reflective boundary conditions satisfy the no-flux
integral condition (2.5). From individual Brownian dynamics, when a micro-swimmer hits
the boundary, the swimmer changes symmetrically the swimming direction and bounces
off like a billiard. This strong condition might be realised via reasonable control strategies
for artificial nano- and micro-robots, yet it is seemingly unrealistic for alive motile
micro-organisms. In the orientation space, periodic boundary conditions are imposed as

P|θ=0 = P|θ=2π , (2.8)

∂P
∂θ

∣∣∣∣
θ=0

= ∂P
∂θ

∣∣∣∣
θ=2π

. (2.9)
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The initial probability distribution P(0) is given as

P|t=0 = 1
2π

δ(x)P(0)(z, θ), (2.10)

where P(0) is a prescribed distribution function.
We introduce a differential operator defined as

L(·) � Pes cos θ
∂

∂z
(·) + ∂Ω(z, θ)

∂θ
(·) + Ω(z, θ)

∂

∂θ
(·) − Dzz(θ)

∂2

∂z2 (·) − ∂2

∂θ2 (·),
(2.11)

with reflective boundary conditions in the z-space and periodic boundary conditions in
the θ -space. Note that the linear operator L is not self-adjoint if Ω /= 0 or Pe /= 0. The
transport equation (2.1) for the probability distribution function could thus be re-written
as

∂P
∂t

+ [
Pef Uf (z) + Pes sin θ

] ∂P
∂x

− Dxx(θ)
∂2P
∂x2 − 2Dxz(θ)

∂2P
∂x∂z

+ LP = 0, (2.12)

P|t=0 = g(x)P(0)(z, θ). (2.13)

Further coupling of the external field (e.g. force fields) between the global (streamwise)
and local spaces could be introduced in the meantime, which does not break the generality
of the manipulation discussed hereafter by absorbing the external field into the velocity
terms. It is supposed the coupled diffusivities are symmetrical,

Dxz(θ) = Dzx(θ), (2.14)

as embodied in (2.4). When these coupled diffusing terms are set to zero, the resulting
transport problem reduces to the special case in the existing dispersion analysis of active
particles (Jiang & Chen 2019). As a substantial extension of the previous dispersion theory,
the present case is more general by including the direct coupling between global and local
transport processes.

3. Asymptotic solutions of macro-transport processes with anisotropic diffusion

Here, we proceed to evaluate the anisotropic diffusion of micro-swimmers by a
homogenisation method. Since only the effects of local translational diffusivity in the
lateral direction enter into the local operator, any coupling fluctuations of micro-swimmers
can be neglected safely, to the leading order. That is, the relevant diffusivity component
at the leading order only arises in the vertical direction, while the cross-diffusivities act in
the sequence of higher orders. Some formal transformations are considered below.

3.1. General considerations on macro-transport processes subject to anisotropic
diffusion

Note that, due to the convection term by the shear flow, the solution of (2.12) will have the
form of a mass cloud moving to infinity at long times. Thus, we hereafter study the solution
P(x′, t) = P(x − Ūt, t) in a moving coordinate, where Ū is the drift to be quantified. Then,
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the transport equation of the probability density function turns into

∂P
∂t

+ [
Pef Uf (z) + Pes sin θ − Ū

] ∂P
∂x′ − Dxx(θ)

∂2P
∂x′2 − 2Dxz(θ)

∂2P
∂x′∂z

+ LP = 0. (3.1)

Given the slow variation in both the initial distribution and its corresponding solution,
it is appropriate to investigate the system’s effective dynamics on the extended space
and time scales. In this work, we present a small parameter ε as the ratio of the local
Péclet number to the global Péclet number. Here, the limit ε → 0 corresponds to the
asymptotically long times during which a single particle samples the entire local spaces
(z- and θ -spaces) at a longitudinal position before spreading downstream. The local Péclet
number can be manifested as the collective influence of translational diffusion along
parallel, perpendicular and/or cross directions in the local position space, as well as
rotational diffusion in the orientation space. Nevertheless, the combined effect of local
aspects is typically overshadowed by the influence of the global (longitudinal) Péclet
number. As the convective field tends to an average of zero, the resultant behaviour of
P mirrors that characteristic of a pure diffusion process. To address this effect, we resort
to the following particular scaling of space and time about ε as:

x′ = ε−1ξ, t = ε−2τ. (3.2)

This scale separation, known as the diffusive scaling (Pavliotis 2008, Chapter 13, p. 210),
is anticipated for asymptotically long times, to yield the effective drift and diffusivity.
The reason for different scales of perturbation in time and space is that this treatment
homogenises the local spaces for the derivation of an effective diffusion equation, as could
be placed into evidence promptly should we initially approximate an ε scale for both time
and space before coming to the present scale separation successively. Now the rescaled
probability distribution Pε as spatio-temporal functions of ξ and τ satisfies the equation

ε2 ∂Pε

∂τ
+ ε

(
Pef Uf + Pes sin θ − Ū

) ∂Pε

∂ξ
− ε2Dxx

∂2Pε

∂ξ2 − 2εDxz
∂2Pε

∂ξ∂z
+ LPε = 0.

(3.3)
Assuming that the probability distribution P possesses an a posteriori unique solution,
substitution of an approximate solution of multiple-scale expansions in the limit of ε → 0

Pε = P0 + εP1 + ε2P2 + O(ε3) (3.4)

into (3.3) gives a hierarchy of equations, belonging to the framework of the classical
homogenisation problem.

Let us collect the terms of order 1 as

O (1) : LP0 = 0. (3.5)

Since the longitudinal distribution of the initial condition is a function independent of the
small-scale variable ξ , it is intuitive to conclude that the leading-order behaviour should
be a function only of z and θ . Next, we equate to zero the terms of the order of ε1

O(ε) : LP1 = −(Pef Uf + Pes sin θ − Ū)
∂P0

∂ξ
+ 2Dxz

∂2P0

∂ξ∂z
. (3.6)

A separation of variables for the first moment will then yield a cell problem of b(z, θ),
which contains complete local information.
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Although the coupling of components of the diffusivity tensor breaks the independence
between the global and local spaces, the Onsager-like symmetry relations guarantee the
mathematical tractability for the cross-diffusivities, i.e. the transposes of the global, local
and coupling diffusion tensors equal themselves. For the order of ε2, we have

O(ε2) : LP2 = −(Pef Uf + Pes sin θ − Ū)
∂P1

∂ξ
+ Dxx

∂2P0

∂ξ2 + 2Dxz
∂2P1

∂ξ∂z
− ∂P0

∂τ
. (3.7)

These equations will be solved recursively below.

3.2. Perturbations of zeroth order
For the equation of the order of 1, a transient separable solution is

P0 (ξ, z, θ, τ ) = P∞
0 (z, θ) c (ξ, τ ) , (3.8)

with LP∞
0 = 0. That is, the historical effect is shown as c(ξ, τ ). At the leading order, the

probability density is similar to the classical theory (Brenner & Edwards 1993; Jiang &
Chen 2019) subject to isotropic diffusion, albeit with the lateral translational diffusivity
opting for its local value.

Specifically, the governing equations of P∞
0 are

LP∞
0 = 0,

P∞
0 (z, θ) = P∞

0 (z, π − θ) , at z = 0, 1,

∂P∞
0

∂z
(z, θ) = −∂P∞

0
∂z

(z, π − θ) , at z = 0, 1,

P∞
0

∣∣
θ=0 = P∞

0
∣∣
θ=2π

,

∂P∞
0

∂θ

∣∣∣∣
θ=0

= ∂P∞
0

∂θ

∣∣∣∣
θ=2π

.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.9)

The asymptotic zeroth moment P∞
0 can be determined explicitly by solving the above

equation set. Benchmark solutions of P∞
0 will be shown for some special cases shortly.

When it comes to more general cases with particle shape anisotropy and a coupling
diffusivity tensor, the zeroth moment can be derived as a series expansion of the
eigenfunctions. A Galerkin solution is pursued for P∞

0 as

P∞
0 (z, θ) =

∞∑
i=1

qiei(z, θ)

≡
∞∑

i=0

∞∑
j=1

[
Aij cos(iπz) + Bij cos(iπz) cos( jθ) + Cij sin(iπz) sin( jθ)

]
, (3.10)

in which Aij, Bij and Cij are the coefficients to be obtained by a group of linear equations
with the orthogonality of trigonometric functions, and qi is the abstract coefficient vector.
The analytical approximation would be truncated at a finite number, for the computational
effectiveness of P∞

0 . Due to the potential non-self-adjoint nature of L, a weak formulation
is given in the form of an inner product. By computing in advance the inner product
of ei and Lej in a bi-linear form, the problem turns into solving the null space of the
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local operator. That is, the coefficients are determined by the obtained null vector with an
arbitrary constant. The normalisation condition

〈P∞
0 〉 = 1, (3.11)

will ascertain the coefficients to be unique, wherein the averaging operator is defined as

〈·〉 �
∫ 1

0

∫ 2π

0
·dθ dz. (3.12)

3.3. Perturbations of first order
At O(ε), the no-flux boundary condition becomes

∫ 2π

0

[
Dxz(θ)

∂P0

∂ξ
+ Dzz(θ)

∂P1

∂z
− Pes cos θP1

]
dθ = 0, at z = 0, 1. (3.13)

With (3.6), (3.13) and corresponding periodic boundary conditions, a centring condition
is

〈
− [

Pef Uf + Pes sin θ − Ū
] ∂P0

∂ξ
+ 2Dxz

∂2P0

∂ξ∂z

〉

= 〈LP1〉

=
〈
Pes cos θ

∂P1

∂z
+ ∂ [Ω(z, θ)P1]

∂θ
− 2Dxz(θ)

∂2P0

∂ξ∂z
− Dzz(θ)

∂2P1

∂z2 − ∂2P1

∂θ2

〉

= −
∫ 1

0
dz

∫ 2π

0

∂

∂z

[
2Dxz(θ)

∂P0

∂ξ
+ Dzz(θ)

∂P1

∂z
− Pes cos θP1

]
dθ

+
∫ 1

0
dz

[
Ω(z, θ)P1 − ∂P1

∂θ

]2π

0
= 0. (3.14)

It follows that the convective term then averages to zero in an appropriate sense, as
demonstrated in the next subsection. In other words, the effective behaviour of P0 is that
of pure diffusion. Explicitly, with the normalisation condition, we obtain the drift as

Ū =
〈
P∞

0
(
Pef Uf + Pes sin θ

) − 2Dxz
∂P∞

0
∂z

〉
. (3.15)

An a posteriori solution for P1 is available with the centring condition as

P1 (ξ, z, θ, τ ) = −b (z, θ)
∂c
∂ξ

+ P∞
0 (z, θ) f (ξ, τ ) , (3.16)
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wherein b(z, θ) is governed by

Lb = P∞
0

(
Pef U + Pes sin θ − Ū

) − 2Dxz
∂P∞

0
∂z

,

b|θ=θ0 = b|θ=π−θ0 , at z = 0, 1,

∂b
∂z

∣∣∣∣
θ=θ0

= − ∂b
∂z

∣∣∣∣
θ=π−θ0

, at z = 0, 1,

b|θ=0 = b|θ=2π ,

∂b
∂θ

∣∣∣∣
θ=0

= ∂b
∂θ

∣∣∣∣
θ=2π

.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.17)

The boundary conditions are similar to those of P∞
0 . Note that L[P0(z, θ)f (ξ, τ )] = 0, so

the arbitrary function f (ξ, τ ) does not indeed enter into the moment equations.
It is obvious from (3.9) that P∞

0 multiplied by an arbitrary constant constitutes a
complementary solution of b. Thus, we introduce a normalisation condition as

〈bN〉 = 0. (3.18)

We then devise a decomposition of b as

b(z, θ) = bN(z, θ) + B̄P∞
0 (z, θ), (3.19)

where the constant B̄ is the integration of b over the cross-section, representing the initial
information of probability. Indeed, it is the gradient of B that is unique rather than B
itself since it has an additive constant B̄, as shown in (3.19). Nevertheless, only ∇B, or
alternatively bN with the normalisation condition (Hill & Bees 2002; Manela & Frankel
2003), other than B enters into the computation of dispersivity. Solutions of long-time
phenomenological transport coefficients can be derived with bN solely. Likewise, we will
pursue a Galerkin solution of bN as performed to P∞

0 . The difference lies in that the
right-hand side becomes an inhomogeneous source term.

Next of interest to us is utilising b, which contains complete local information, to
determine the analytical solution of the dispersivity directly.

3.4. Perturbations of second order
With the reflective and periodic boundary conditions, we have

〈LP2〉 =
〈
− [

Pef Uf (z) + Pes sin θ − Ū
] ∂P1

∂ξ
+ Dxx(θ)

∂2P0

∂ξ2 + 2Dxz(θ)
∂2P1

∂ξ∂z
− ∂P0

∂τ

〉

=
〈
Pes cos θ

∂P2

∂z
+ ∂ [Ω(z, θ)P2]

∂θ
− Dxz(θ)

∂2P1

∂ξ∂z
− Dzz(θ)

∂2P2

∂z2 − ∂2P2

∂θ2

〉

= −
∫ 1

0
dz

∫ 2π

0

∂

∂z

[
2Dxz(θ)

∂P1

∂ξ
+ Dzz(θ)

∂P2

∂z
− Pes cos θP2

]
dθ

+
∫ 1

0
dz

[
Ω(z, θ)P2 − ∂P2

∂θ

]2π

0
= 0. (3.20)
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Anisotropic diffusion of micro-swimmers

For the equation of the order of ε2, substitution of solutions of P0 (3.8) and P1 (3.16) into
(3.7) gives

LP2 = (
Pef Uf + Pes sin θ − Ū

)
b
∂2c
∂ξ2 − (

Pef Uf + Pes sin θ − Ū
)

P∞
0 (z, θ)

∂f
∂ξ

+ DxxP∞
0

∂2c
∂ξ2 − P∞

0
∂c
∂τ

− 2Dxz
∂b
∂z

∂2c
∂ξ2 + 2Dxz

∂P∞
0

∂z
∂f
∂ξ

. (3.21)

With (3.7) and (3.20), we obtain a second centring condition
〈(

Pef Uf + Pes sin θ − Ū
)

b
∂2c
∂ξ2 − (

Pef Uf + Pes sin θ − Ū
)

P∞
0

∂f
∂ξ

+ DxxP∞
0

∂2c
∂ξ2 − P∞

0
∂c
∂τ

− 2Dxz
∂b
∂z

∂2c
∂ξ2 + 2Dxz

∂P∞
0

∂z
∂f
∂ξ

〉
= 0. (3.22)

It could be seen from (3.16) that f (ξ, τ ) does not contribute to P2 with the help of the first
centring condition (3.14). That is, the governing equation of the undetermined function
c(ξ, τ ) is

∂c
∂τ

−
〈(

Pef Uf + Pes sin θ − Ū
)

b + DxxP0 − 2Dxz
∂b
∂z

〉
∂2c
∂ξ2 = 0. (3.23)

Note that the normalisation condition of P0 has been utilised in (3.23). As the notation
suggests, the migration of micro-swimmers subject to anisotropic diffusion in a confined
channel is governed by an effective dispersion equation with the convective term averaged
out. It implies evidently that the dispersivity reads

D̄ =
〈(

Pef Uf + Pes sin θ − Ū
)

b + DxxP∞
0 − 2Dxz

∂b
∂z

〉
. (3.24)

Consequently, the enhanced diffusivity scales with the swim and flow Péclet numbers,
and the molecular diffusivity is modified with an addition of the anisotropic effect. For
0 < ε � 1 and long times, the solution Pε of (3.3) is approximated by P0, a solution of
the convection–diffusion equation with slowly varying initial conditions

∂P0

∂t
+ Ū

∂P0

∂x
= D̄

∂2P0

∂x2 , (3.25)

P0|t=0 = g(x)P(0)(z, θ). (3.26)

The important point is that the parabolic equations, cf. (3.9) and (3.17), exhibit
independence from the small-scale ε. In certain cases, explicit solutions for the two partial
differential equations are attainable, as will be shown in § 4.1. Even when this is not the
case, the equations lend themselves to rigorous analysis or efficient numerical simulations.
Due to the slowly varying coefficients, this is far less computationally expensive than
the direct numerical simulation of (2.1). Specifically, (3.15) represents the mean drift
velocity of an active Brownian particle, and (3.24) is the dispersivity as a sum of the
convective Taylor contribution and the molecular contribution. In summary, the asymptotic
phenomenological coefficients are derived precisely with a homogenisation method.

Orientation distribution could be obtained by the averaged zeroth moment over
the lateral cross-section as Cθ = ∫ 1

0 P∞
0 (z, θ) dz. The vertical flux is the product of
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normalised vertical polarisation Cz = ∫ 2π

0 P∞
0 (z, θ) dθ and vertical concentration Pz =∫ 2π

0 P∞
0 cos(θ)(z, θ) dθ/Cz, with swim Péclet numbers as a coefficient, as

Jz(z) = PesPz(z)Cz(z) =
∫ 2π

0
P∞

0 (z, θ)Pes cos θ dθ. (3.27)

Integrating (3.5) from 0 to 1 with respect to θ gives

Pes cos θ
∂Cz

∂z
− Dzz

∂2Cz

∂z2 = 0. (3.28)

That is, the vertical concentration is governed by the balance between lateral diffusion and
convection. Hence, the ensemble-averaged effective vertical migration could be quantified
by the ratio of vertical flux to vertical concentration, i.e. normalised vertical polarisation,
as

V∞
m (z) = Jz

Cz = PesPz(z). (3.29)

For further research interest, the transient evolution of these transport coefficients can
feature the temporal process in the anisotropic diffusion of active ellipsoids long before
the Taylor dispersion regime (Guan et al. 2021; Debnath et al. 2022; Wang, Jiang & Chen
2022a, 2023). To reflect the transient evolution of Ū and D̄, we denote the transient drift
velocity and dispersivity as Ux(t) and DT(t), respectively. Note that we should not take it
for granted to write the streamwise drift velocity and dispersivity (Yasuda 1984; Guan et al.
2022; Guan & Chen 2024), by reducing the external integral of (3.15) and (3.24) directly.
Instead, we should recover a streamwise definition from the time-dependent solutions of
moments successively.

4. Migration of confined micro-swimmers

In this section, we will investigate the shear-induced migration of confined
micro-swimmers subject to anisotropic diffusion in a Poiseuille flow

Uf (z) = −6z2 + 6z − 1. (4.1)

The external flow field exerts two effects on the transport processes: (a) streamwise
convection leading to spatial non-uniformity; (b) shear-induced rotation causing
orientational redistribution. This introduces inherently multi-scale effects for the evolution
of the shear-induced migration of micro-swimmers.

4.1. Benchmark solutions without translational diffusion and particle shape anisotropy
First, we resort to a simple benchmark case of spheroidal (α0 = 0) gyrotactic
micro-swimmers without translational diffusion (D‖ = D⊥ = 0). The steady distribution
is

LP∞
0 = Pes cos θ

∂P∞
0

∂z
+ Pef

2
dU
dz

∂P∞
0

∂θ
− λ ∂

∂θ

(
P∞

0 sin θ
) − ∂2P∞

0
∂θ2 = 0. (4.2)

With an a posteriori condition that the rotational diffusion results in a uniform angular
distribution asymptotically, the governing equation of P∞

0 is independent of θ . In this way,
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Anisotropic diffusion of micro-swimmers

(4.2) reduces to

Pes cos θ
dP∞

0
dz

− λ d
dθ

[
P∞

0 (z) sin θ
] = 0. (4.3)

Thus, an analytical solution is

P∞
0 = λ

2πPes
[
exp (λ/Pes) − 1

] exp
(
λz
Pes

)
. (4.4)

Note that the benchmark solution (4.4) satisfies the reflective boundary conditions. We are
aware that an identical formalism of this benchmark has also been proposed previously
(Bearon et al. 2011; Vennamneni et al. 2020). For distributions of non-gyrotactic
micro-swimmers (λ = 0), (4.4) asymptotes to uniformity as

P∞
0 = 1

2π
. (4.5)

Subsequently, the steady drift could be derived as

U∞
s = P∞

0
(
Pef U + Pes sin θ

) = λPef Uf (z)exp (λz/Pes)

Pes (exp (λ/Pes) − 1)
. (4.6)

With the vertical migration velocity (3.29), it is interesting to see whether gyrotactic
micro-swimmers tend to swim vertically within a horizontal flow in the presence of
reorientation. The steady vertical polarisation equals zero asymptotically as

V∞
m = 0. (4.7)

This may seem simple, but is in fact far reaching in that symmetric actuation leads
to no ensemble-averaged vertical movement at a population level. Conversely, imposed
symmetry breaking would bring some exceptional deviations from the prediction. That
is, non-spherical shapes, external body forces and direct coupling effects in a noisy
environment can all be exploited to generate effective locomotion of micro-swimmers.

4.2. Spatial patterns: effects of anisotropic diffusion at leading order
Gyrotaxis, which arises from the combined effects of gravity and shear, can induce an
overall upward tendency of the micro-swimmers. Figure 2 illustrates the influence of
anisotropic diffusion on steady distributions of the spatial and orientational probability.
The exerted driving force is as weak as λ = 0.5, and the parallel translational diffusivity
D‖ is tuned with D⊥ fixed as zero as a hallmark of anisotropy on the vertical diffusivity
Dzz, since the streamwise diffusivity and cross-diffusivity do not factor into P∞

0 . For
strong translational diffusion, the concentration distribution approaches (yet will never
reach) uniformity. Concurrently, the orientational distribution exhibits a preference for
upward migration since gravity is sufficiently strong. In the limit of weak translational
diffusion, the orientational distribution becomes fairly uniform while the concentration
distribution shows peculiar accumulation at walls. With moderate diffusivity (10−5 ≤
D‖ ≤ 10−3), the concentration distribution exhibits wall accumulation due to gyrotaxis,
as shown in figure 2(a). The peak of Cθ occurs around 3π/2 in figure 2(b), signifying a
prevalence of upstream swimming. The amalgamation of these observations suggests that
micro-swimmers rotate to swim against the flow near walls where the flow is relatively
weak.
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Figure 2. Steady distributions of concentration and orientation subject to gyrotaxis. Common parameters are
Pes = 0.1, Pef = 10, α0 = 0, λ = 0.5 and D⊥ = 0.

D⊥ = 10–2, D|| = 10–2 D⊥ = 10–2, D|| = 0

D⊥ = 10–4, D|| = 0D⊥ = 10–3, D|| = 0
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(a) (b)

Figure 3. Steady distributions of concentration and orientation subject to a shape-induced strain rate.
Common parameters are Pes = 0.1, Pef = 10, α0 = 1 and λ = 0.

Figure 3 illustrates an internal symmetry breaking originating from particle shape
anisotropy, which in turn leads to the generation of steady non-zero vertical locomotion
from the probability perspective. Using (2.3) with λ = 0, the angular velocity of
micro-swimmers is governed by the local flow vorticity and the shape-induced strain
rate. For highly elongated particles (α0 = 0.9) swimming slowly (Pes = 0.1) through
the channel, it becomes evident that micro-swimmers tend to align themselves in a
manner that amplifies effectively the impact of the strain rate, thereby sampling a
position preferentially to compete against the pronounced fluid rotation. Specifically, the
contribution of shape-induced rotation is maximally negative when the orientation angle
θ assumes values of either π/2 or 3π/2, in accordance with the orientation depicted in
figure 3(b).

Various patterns of concentration and orientation distributions occur with different
anisotropic diffusivities. We direct our attention to the influence of anisotropic diffusion
in a comparably strong flow field (Pef = 10). In figure 3(a), for a large perpendicular
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Anisotropic diffusion of micro-swimmers

diffusivity, swimmers tend to form a symmetric cup-like concentration focused around
the centreline. Conversely, pairs of depletion layers emerge, displaced symmetrically
about z = 0.5, with their maxima diminishing in amplitude while converging towards
the wall as D⊥ increases. A subtle transition from downstream to upstream swimming
becomes noticeable in figure 3(b) from a probabilistic standpoint in response to stronger
translational diffusion. In contrast to the gyrotactic cases discussed previously, the
pronounced external flow reduces significantly the wall accumulation for elongated
micro-swimmers. This effect arises from the rapid rotation imposed by the strong external
flow on the particles near the wall, causing them to swim inward and compelling the
elongated particles within the bulk to preferentially align themselves with the flow
direction. The cup-like focusing pattern results from a delicate balance between shear
alignment and diffusion. Thus a slight alteration in the diffusivity tensor can readily
transition it into a bi-modal trapping pattern.

At finite translational diffusivities, we analyse the effect of strong isotropic diffusion
with various ellipsoidal shapes and gyrotaxis strengths. In figure 4, the funnel-shaped
concentration distribution is featured for non-gyrotactic elongated micro-swimmers.
Recall that the perfectly spherical active particles would sample a uniform distribution
in the z-space and exhibit no net vertical polarisation. The more the ellipsoids
are elongated, the more enhanced the non-uniformity becomes. Both ends of the
funnel-shaped distributions in figure 4(a) are anticipated as a result of the polarisation.
Since the polarisation distribution is anti-symmetric about z = 0.5, we consider only
the upper half-plane. Due to shear-induced migration, the ellipsoidal micro-swimmers
near the centreline tend to migrate upwards, i.e. towards high-shear regions. When
micro-swimmers approach the upper wall, the reflective condition turns the swimming
direction opposite, as indicated in figure 4(b). This observation for the reflective boundary
conditions deviates from the high-shear trapping, as reported by Bearon & Hazel (2015)
with extreme wall accumulation for a Robin boundary condition and by Ezhilan &
Saintillan (2015) with singular cusped profiles for a periodic double-Poiseuille boundary
condition. The nomenclature of high-shear trapping with regard to this typical kind of
steady concentration distribution, once deemed suitable for delineating this phenomenon,
now appears less appropriate. More precisely, this constitutes a distinctive transport
process moulded by the interplay between shape- and shear-induced migration, under
the reflective boundary conditions. For spherical gyrotactic particles subject to strong
isotropic diffusion, the deviation of the concentration distributions from uniformity in
figure 4(c) and upswimming behaviour in figure 4(d) are remarkable and significantly
enhanced with the gyrotaxis strengths. It is interesting to investigate the balance between
gyrotactic upswimming and self-propulsion. With small λ, we have shown in figure 2
that the orientational distribution peaks in the upward direction. The swimmers migrate
upwards rapidly near the centreline while exhibiting almost no net vertical locomotion
near the wall. As gyrotaxis grows, a steady concentration layer of micro-swimmers forms
with appreciable thickness due to the wall reflection and shear trapping. The thickness
of this accumulation layer declines rapidly when gyrotaxis or diffusion dominates
self-propulsion.

Using (3.5), the change of orientation originates from three parts: (a) relative strength
of the lateral translational diffusivity to the rotational diffusivity, (b) angular velocity
under the external effect of flow orientation and gravity field and (c) reflection when
bouncing at walls. As illustrated in figure 5, the micro-swimmers exhibit three distinct
equilibrium orientations. A possible first state could be peaking at approximately 3π/2,
indicative of horizontal swimming against the prevailing flow; the second displays a
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Figure 4. Steady distributions of concentration and vertical migration velocity with different particle shape
anisotropies and gyrotaxis: (a) vertical concentration distribution and (b) polarisation distribution for
non-gyrotactic micro-swimmers (λ = 0); (c) vertical concentration distribution and (d) polarisation distribution
for spherical micro-swimmers (α0 = 0). Common parameters are Pes = 0.1, Pef = 5, D‖ = 10−2 and D⊥ =
10−2.

pronounced tendency to sample inclined angles relative to the upright direction; the
third orientation represents a transitional mode positioned between the above two states.
When strong rotational diffusion dominates, the equilibrium balance is dominated by
gyrotaxis and self-propulsion. Steady concentration layers emerge as a consequence of
gyrotactic trapping when gyrotaxis exhibits relative weakness. Conversely, for sufficiently
robust gravitational forces, micro-swimmers accumulate invariably towards the wall,
disregarding the wall reflection, and align themselves with the upstream direction, as
illustrated in figure 5(a,b). Note that the transition from low to high gyrotaxis signifies
a distinct concentration distribution, in which a persistent characteristic peak becomes
conspicuously pronounced, surpassing the nearby average values on both sides of the wall.
This observation aligns with the upswimming behaviour depicted in figure 5(c), wherein
the trapping layers correspond to the negligible vertical migration velocity in the wall
regions, and wall accumulations correspond to the approach of the peak of polarisation
distribution towards z = 1.

The magnitude of anisotropic diffusion impacts the migration of micro-swimmers only
through the alteration of Dzz. That is, D‖ is dominant for the upswimming mode of
orientation, while D⊥ becomes advantageous for the upstream swimming mode. For
large gyrotaxis (λ = 10), micro-swimmers accumulate remarkably near the wall while
displaying a pronounced preference for alignment against the flow direction. In this case,
the existence of parallel diffusivity works indeed as an amplifier of the overall vertical
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Figure 5. Steady distributions with different translational diffusivities and gyrotaxis. Common parameters
are Pes = 0.1, Pef = 10 and α0 = 0.

translational diffusivity, thereby smoothing the sharp accumulation near the wall. Under
moderate gyrotaxis conditions (λ = 5), the balance mechanism becomes more intricate
with the potential gyrotactic trapping or wall accumulation. Here, translational diffusion
is governed primarily by D‖, and anisotropic diffusion emerges into effect when D‖ /= D⊥.
With an increase in the magnitude of the overall Dzz, the concentration distribution
becomes more flattened, transitioning from wall accumulation to gyrotactic trapping if
gyrotaxis is fixed. During the approach to uniformity, a transitional characteristic peak is
observed within the range of moderate values for Dzz, e.g. the red line for 10−3 < Dzz <

10−2 in figure 5(a).

4.3. Diversity in concentration distributions: effects of flow convection and
self-propulsion

Figure 6 shows the effect of flow strength on steady distributions of concentration and
orientation with weak self-propulsion and isotropic translational diffusion. Diversity of
steady concentration distributions is revealed as a result of different shear strengths in
figure 6(a). When the flow speed is comparable to the swim speed, micro-swimmers
exhibit a flattened nearly uniform distribution whereas tiny accumulations at the wall and
slight focusing near the centreline are observed. As shown in figure 6(b), the orientation
distributions with different flow Péclet numbers are qualitatively consistent, aligning
preferentially with the flow direction either along the upstream or downstream direction.
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Figure 6. Steady distributions of concentration and orientation as functions of flow Péclet numbers.
Common parameters are Pes = 0.1, D‖ = 10−4, D⊥ = 10−4, λ = 0 and α0 = 0.9.

With weak Pef , this non-uniformity of orientation is impaired remarkably. Interestingly,
the upstream tendency is sampled a bit more from the probability perspective, consistent
with the mechanism of upstream rheotaxis for wall accumulations similar to figure 5.

When the flow strength grows, shear trapping appears as a peculiar phenomenon
featuring symmetric depletion layers about the centreline. For periodic boundary
conditions, Vennamneni et al. (2020) have discussed intensively and rationalised the
trapping phenomenon. In the present work, due to the imposed boundary conditions,
trapping would be more complicated and we define three potential patterns as centreline
focusing, wall accumulation and shear trapping. Note that the bi-modal distribution of
depletion layers is a hallmark of shear trapping, trapped either in the low- or high-shear
regions. Of interest for us to elucidate are distributions and mechanisms in this new system
with effective boundary conditions. As demonstrated in figure 3(a), the shear-induced
migration of elongated micro-swimmers could form a cup-shaped focus at the centre
for strong translational diffusion. In contrast, funnel-shaped shear trapping with reduced
wall accumulation is found for low translational diffusivities and great flow strengths.
As illustrated in figure 6(a), the trapped depth converges towards the centreline with
increasing flow Péclet number. That is, the strong flow rotates rapidly the particles with
the largest shear rates at z = 0 and 1, thereby depleting the near-wall micro-swimmers and
rushing them inward. On the other hand, the micro-swimmers on the centreline migrate
with an inclined angle to the flow direction, only stable when swimming away from
the centreline since they would otherwise experience an anti-symmetric flow vorticity.
Combining these two mechanisms, the bi-modal trapping distribution is formed. Note that
the orientation still peaks around π/2 and 3π/2, exhibiting upstream rheotaxis and shear
alignment in figure 6(b), whereas the width of the Gaussian-like distribution decreases
with Pef .

Steady distributions of concentration and orientation for moderate values of Pef
as functions of swim Péclet numbers are presented in figure 7. With small Pes,
the micro-swimmers become trapped near the central axis and walls, resulting in a
symmetrical depletion layer around z = 0.5. Within the near-wall domains, a balance
is achieved between stochastic swimming and wall reflection at a fixed depth, thereby
trapping particles preferentially aligned with the flow. In the central region, the mechanism
of shear-induced alignment contributes to various sampling modes of micro-swimmers.
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Figure 7. Steady distributions of concentration and orientation as functions of the swim Péclet numbers.
Common parameters are Pef = 10, D‖ = 10−4, D⊥ = 10−4, λ = 0 and α0 = 0.9.

Note that the trapping depth converges towards the boundary plates as self-propulsion
intensifies. As Pes increases further, the trapping transitions into a pair of uni-modal
distributions symmetric about z = 0.5. When self-propulsion is as strong as or even
surpasses flow convection, noteworthy wall accumulations and subtle centreline focusing
phenomena are observed. With increasing swim Péclet numbers, the characteristic
alignment of ellipsoidal micro-swimmers is compressed considerably, resulting in a nearly
uniform distribution in both the position and orientation spaces. That is, the strength of
shear-induced trapping is influenced significantly by the swim Péclet numbers, with its
highest manifestation occurring at intermediate levels of activity (Rusconi et al. 2014).
However, the active swimming could not alter qualitatively the steady distributions, yet
eliminate quantitatively the deviations between the near-wall regions and the central area.

5. Transient solutions and evolution of phenomenological transport coefficients

To comprehend the transient impacts of anisotropic diffusion, we investigate the
temporal evolution of typical phenomenological transport coefficients. Non-spherical
shape anisotropy and external gravitational forces are employed to induce vertical
locomotion at a population level. Specifically, coupled diffusivities are revealed to
influence remarkably the transient drift velocity Ux(t) and dispersivity DT(t) at high
orders.

Unlike spherical particles in a Poiseuille flow, elongated micro-swimmers display a
persistent non-zero drift for asymptotically long times, as demonstrated in figure 8(a).
Initially, the micro-swimmers are displaced on the centreline where flow convection is
most pronounced, resulting in a notably positive drift relative to the mean flow speed.
A sharp decline in transient drift is expected as micro-swimmers diffuse stochastically
and swim actively, causing disparate sampling of individual streamlines with unequal
probabilities over time. Consequently, this preferential sampling leads to a modest
temporal increase in drift during the transitional phase. For the asymptotic dispersion
period, the drift converges asymptotically to a constant value, as predicted by (3.15).
In the scenario involving elongated micro-swimmers with robust self-propulsion, the
upstream rheotaxis surpasses distinctly the flow convection for asymptotically long
times, a trend that is augmented with higher cross-diffusivity Dxz. Utilising (3.15), it
becomes apparent that the inclusion of a non-zero D‖, corresponding to the isotropic
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Figure 8. Transient distributions of phenomenological transport coefficients. The swimmers are initially
displaced at z = 0.5 and uniformly oriented. Common parameters are Pes = 1, Pef = 10, α0 = 0.9 and λ = 0.

condition in the present case, indeed magnifies the overall cross-diffusivity. A monotonic
increase in the effective diffusivity, known as dispersivity, is observed due to the
combined effects of swimming dispersion and shear dispersion. Specifically, anisotropic
diffusion modifies dispersivity by means of streamwise diffusivity and cross-diffusivities.
Figure 8(b) displays a notably increased diffusivity, by orders of magnitude, relative
to the overall translational diffusivity. For the isotropic case, cross-diffusivities play
no role in determining dispersivity; hence, effective diffusion is reinforced as overall
streamwise diffusivity (Dxx) increases. With the predominance of shear dispersion subject
to anisotropic diffusion, an increase in D⊥ leads to a reduction in dispersivity, which arises
from the adverse influence of associated coupling terms.

Finally, our focus shifts to gyrotactic micro-swimmers exposed to an external
gravitational field, as shown in figure 9. For simplicity, we maintain the perpendicular
diffusivity at zero and manipulate the parallel diffusivity to elucidate the influence of
anisotropic diffusion. As evidenced previously in figure 2, gyrotactic micro-swimmers
accumulate near the wall in the dispersion regime and exhibit a pronounced preference
for upstream migration. Consequently, we anticipate that gyrotactic micro-swimmers will
experience downstream convection with a positive drift as initially discharged at the
centreline, later exhibit transient rises due to stochastic swimming and eventually converge
to a constant negative value due to upstream rheotaxis. Upstream migration becomes
more pronounced with increasing gyrotaxis, as shown in figure 9(a). Enhanced diffusion,
exhibiting a monotonic time-dependent behaviour, is observed in comparison with the
original translational diffusion, as depicted in figure 9(b). Notably, in the exceptional
scenario of pronounced gyrotaxis (λ = 5) coupled with low translational diffusivities, a
non-monotonic dependence of transient dispersivity on time and a significant reduction
in asymptotic dispersivity are observed. This phenomenon arises because nearly all
micro-swimmers accumulate near the wall regions where flow convection is minimal,
resulting in limited opportunities for bulk streamline sampling through Brownian
diffusion.

6. Conclusion

This work establishes a population-level theoretical framework aimed at modelling
macro-transport processes of elongated micro-swimmers involving anisotropic diffusion.
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Figure 9. Transient distributions of phenomenological transport coefficients under gravity. The swimmers are
initially displaced at z = 0.5 and uniformly oriented. Common parameters are Pes = 1, Pef = 10, α0 = 0.9,
D⊥ = 0 and λ = 0.5 (unless otherwise declared).

In the absence of shape anisotropy and stochastic diffusion, we present a detailed
examination of a benchmark solution of the zeroth moment for spheroidal gyrotactic
micro-swimmers.

Utilising the analytical solutions, we demonstrate that symmetric actuation in a
horizontal flow does not lead to net vertical locomotion of micro-swimmers from the
probability perspective, unless non-spherical shapes, external fields or direct coupling
effects are utilised to induce vertical polarisation. The inherent asymmetries and external
fields can exert substantial influence on the observed concentration and orientation profiles
of self-propelling micro-swimmers, as well as phenomenological transport coefficients.

Multiple patterns of shear-induced migration are elucidated with varying anisotropic
diffusivities. In particular, highly elongated particles, moving slowly through a confined
channel, tend to align themselves in a manner that amplifies the adverse effects of the strain
rate, thereby adapting to balance the pronounced fluid rotation. It is intriguing to observe
a distinct and persistent peak of the concentration distribution with moderate gyrotaxis,
surpassing the nearby average values on both channel walls. Diverse collective behaviours
encompassing upstream migration and shear alignment, as well as the formation of
depletion layers, centreline focusing and surface accumulation, have been observed for
various swim and flow Péclet numbers.

Notably, as the flow strength increases, distinctive phenomena of shear trapping are
characterised by a rich array of symmetric depletion layers around the centreline. This
implies that shear-induced migration exhibits a high degree of independence from the
intricacies of the propulsion system and reorientation mechanisms. We also observe and
explain the remarkable phenomenon whereby a reduction in the perpendicular diffusivity
increases the effective diffusivity caused by the shear dispersion mechanism. A substantial
decrease in steady dispersivity has been reported, deviating from the expectations of
classical Taylor dispersion theory.

The theoretical analysis offers valuable insights into understanding distinct
self-propulsion strategies and the transport dynamics within active-matter systems. As a
first step, the current study has the potential to tackle a multitude of transport problems
stemming from external or inter-particle interactions of spatially varying shapes, sizes
and others for swimmers in constrained environments. For example, micro-swimmers can
generate stress in the fluid, potentially causing collective motion at higher concentrations
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(Nordanger et al. 2022). Jeffery orbits, typically associated with Newtonian fluids,
undergo notable changes due to viscoelastic stresses induced by the activity (Choudhary,
Nambiar & Stark 2023). The conceptualisation of the rheological dynamics in dense
active suspensions is absent from the present theoretical framework. Future work could
encompass extensions to incorporate high-concentration interactions, non-Newtonian
effects and realistic boundary conditions.
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Appendix A. Time-dependent solutions

Following our previous analyses (Jiang & Chen 2020, 2021; Wang et al. 2022b; Guan
et al. 2023), we can define the local moments as

Pn(z, θ, t) �
∫ ∞

−∞
xnP(x, z, θ, t) dx, n = 0, 1, . . . . (A1)

The global moments, i.e. the moments of the averaged probability distribution function,
are

Mn(t) �
∫ ∞

−∞
xn〈P〉 (x, t) dx. (A2)

The governing moment equation for micro-swimmers with anisotropic diffusion reads

∂Pn

∂t
+ LPn = n(n − 1)DxxPn−2 + n

[
Pef Uf + Pes sin θ

]
Pn−1 + 2nDxz

∂Pn−1

∂z
, (A3)

with the understanding that P−1 = P−2 = 0.
Accordingly, a reflective boundary condition in the position space is imposed as

Pn (z, θ, t) = Pn (z, π − θ, t) , at z = 0, 1, (A4)

∂Pn

∂z
(z, θ, t) = −∂Pn

∂z
(z, π − θ, t) , at z = 0, 1. (A5)

In the orientation space, periodic boundary conditions are

Pn|θ=0 = Pn|θ=2π , (A6)

∂Pn

∂θ

∣∣∣∣
θ=0

= ∂Pn

∂θ

∣∣∣∣
θ=2π

. (A7)

The initial condition is

Pn|t=0 =
∫ ∞

−∞
xnP(0) (x, z, θ) dx. (A8)
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Integration of (A3) with regard to θ and z by use of reflective boundary conditions yields
the governing equation of global moments Mn as

dMn

dt
=

〈
Dxx(θ)Pn−2 + n

[
Pef Uf (z) + Pes sin θ

]
Pn−1 − nDxz(θ)

∂Pn−1

∂z

〉
. (A9)

Note that M0 = 1. The initial conditions of global moments read

Mn|t=0 =
∫ ∞

−∞
xn〈P(0)〉 dx. (A10)

The transient drift velocity Ux and dispersivity DT can be calculated through moments
as

Ux(t) � dμx

dt
= dM1

dt
, (A11)

DT(t) � 1
2

dσ 2

dt
= 1

2
dM2

dt
− M1

dM1

dt
, (A12)

where μx and σ 2 are the mean displacement and mean square displacement calculated
through moments, respectively, as

μx � M1

M0
= M1, (A13)

σ 2 � M2

M0
− M2

1

M2
0

= M2 − M2
1 . (A14)

The auxiliary eigenvalue problem concerning the governing equation of local moments
(A3) is

Lfi = λifi, (A15)

wherein λi represents the eigenvalue (i = 1, 2, . . .) and fi the associated eigenfunction
subject to the reflective boundary conditions. With the Galerkin method, λi and fi can
be solved (Jiang & Chen 2021; Guan et al. 2023). The eigenfunction fi is

fi =
∞∑

j=1

φijej, (A16)

where φij denotes the coefficients of the expansion. In the present work, the basis function
{ei}∞i=1 comprises

1√
2π

,
1√
π

cos(mθ),
1√
π

cos(nπz),
√

2
π

cos(nπz) cos(mθ),

√
2
π

sin(nπz) sin(mθ).

⎫⎪⎪⎬
⎪⎪⎭

(A17)

Currently, the moment equation is not only related to the complicated local operator
L, but also carries extra cross-derivatives. Indeed, two challenges arise: (a) the existing
analytical solutions are not suitable for the present configuration, and (b) the local
operator associated with the reflective boundary conditions can be non-self-adjoint due
to self-propulsion and rotation of active ellipsoids. The first difficulty requires extended
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Figure 10. Analytical solutions of the mean displacement and mean square displacement obtained by (A13)
and (A14), compared with the Monte Carlo numerical results. Common parameters are Pef = 1, Pes = 1,
D‖ = 0.02, D⊥ = 0.01, λ = 0 and α0 = 1.

solutions of the moment equations subject to anisotropic diffusion, extending the classical
results from the separation of variables (Barton 1983). The second difficulty could be
resolved by constructing a set of functions satisfying the bi-orthogonality relation

〈 f �
i , fj〉 = δij, (A18)

where δij is the Kronecker delta, and f �
i is the dual basis function with respect to fi

corresponding to λi.

Appendix B. Monte Carlo simulation

Monte Carlo simulation is conducted to validate the analytical solutions of moments as
well as macroscopic transport coefficients. The stochastic differential equations equivalent
to the Smoluchowski equation of active particles in a Poiseuille flow read

dx = Pef Uf (z) dt + Pes sin θ dt + √
2D‖ sin θ dW‖ −

√
2D⊥ cos θ dW⊥, (B1)

dz = Pes sin θdt + √
2D‖ cos θ dW‖ +

√
2D⊥ sin θ dW⊥, (B2)

dθ = Ω dt +
√

2 dWθ , (B3)

wherein Ω = −3Pef (2z − 1)(1 + α0 cos 2θ) in the Poiseuille flow. The infinitesimal
generator of anisotropic diffusion is produced by independent Gaussian distributions with
zero mean and variance of dt at each time step.

The reflective boundary conditions are implemented as

zn → 2 − zn, θn → π − θn, for zn > 1, (B4)

zn → −zn, θn → π − θn, for zn < 0. (B5)

A total number of 5 × 105 particles are distributed reasonably according to the
initial conditions of different cases to reach steady-state distributions of moments and
macroscopic transport coefficients. To solve the stochastic differential equations, the
Eulerian scheme with a non-dimensional time step of dt = 10−4 is adopted to avoid
multiple wall collisions within a single time step. The comparison of analytical results
and numerical simulations is shown in figures 10 and 11, with excellent agreement.
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Numerical Asymptotic
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Figure 11. Asymptotic solutions of drift and dispersivity obtained by (3.15) and (3.24), along with the Monte
Carlo numerical results. Parameters are identical to figure 10.
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