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Extreme events in turbulent flow
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Extreme events in turbulent flow are associated with intense stretching of concentrated
vortices, intermittent in both space and time. The occurrence of such events has been
investigated in a turbulent flow driven by counter-rotating propellors (Debue et al., J.
Fluid Mech., 2021), and local flow structures have been identified. Interesting theoretical
problems arise in relation to this work; these are briefly considered in this focus paper.
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1. Introduction

A central challenge in the theory of turbulence is to resolve the precise mechanism
by which energy is dissipated in the limit of very high Reynolds number Re � 1. In
homogeneous turbulence, the mean rate of dissipation of energy ε is given by ε = ν

〈
ω2〉.

Here, ν is the kinematic viscosity of the fluid, ω(x, t) = ∇ × u(x, t) is the vorticity
field, u is the velocity field and the angular brackets 〈· · · 〉 denote a space average. In
the widely accepted, although simplistic, scenario of Kolmogorov (1941), the turbulence
acquires its mean kinetic energy

〈
u2〉 /2 = u2

0/2 on a scale �0 at a rate ε ∼ u3
0/�0; this

energy cascades down through the ‘inertial range’ of scales to the Kolmogorov scale �ν ∼
(ε/ν3)1/4 ∼ Re−3/4�0, below which it is dissipated by viscosity. On dimensional grounds,
the all-important parameter ε determines the energy spectrum E(k) = Cε2/3k−5/3 in the
inertial range, where C is supposedly a universal constant and k is the wavenumber.
The vorticity spectrum k2E(k) thus rises like k1/3 through the inertial range, peaking
at a wavenumber k of order kν = �−1

ν , consistent with
〈
ω2〉 ∼ ε/ν. The fundamental

process of vortex stretching is responsible for the cumulative intensification of vorticity
on ever-decreasing length scales.

Following Kolmogorov (1962), it has been known for some time from direct numerical
simulations that this process of vorticity intensification is extremely intermittent (see, for
example, Ishihara et al. 2007). With decreasing scale, the vorticity distribution becomes
more and more concentrated in singular structures that look like highly distorted sheets
or filaments of vorticity. The sheets have a natural tendency to break up into filaments
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Figure 1. (a) Reproduction of figure 4(a) from DVC showing the joint p.d.f. (probability density function)
of R and Q, with dark red representing the maximum probability; the tear-drop region is the location where
most extreme events are found, as shown in their figure 5(a) (not shown here); (b) the four regions of the same
plane in which topologically distinct structures, as indicated, were identified; the cusped curve is M(R, Q) ≡
27R2 + 4Q3 = 0; (c) corresponding divisions of the {β, ω0} plane, when the local velocity field takes the
idealised form u = (−αx − (ω0y)/2, −βy + (ω0x)/2, (α + β)z) (with α = 1), as on the axis of a Burgers-type
vortex.

by elliptic and/or Kelvin–Helmholtz instabilities (McKeown et al. 2018). Such vortex
filaments were first detected experimentally by Douady, Couder & Brachet (1991),
intermittent in both space and time (see also Rusaouën, Rousset & Roche (2017) for similar
observations in liquid helium).

2. Most extreme events of local energy transfer

An important advance has now been made in the detection of near-singular structures
in a turbulent flow that is driven by counter-rotating propellors in the ‘von Kármán’
configuration (Debue et al. 2021; hereafter DVC). These propellors drive a mean flow
with a non-zero helicity that is presumably inherited by the turbulence. By the use of
tomographic particle velocimetry, the authors have identified ‘extreme events of local
energy transfer’, and have determined the structure of the local velocity and vorticity fields
in each case. The Reynolds number based on the propellor geometry and rotation rate
varied over the range 6.3 × 103 to 3.1 × 105; at the lower end of this range, it was possible
to resolve structures on the dissipative length scale �ν ∼ 1.4 mm, whereas at the upper end
only the inertial range was accessible.

Classification of extreme events has been based by DVC on the non-zero invariants of the
velocity-gradient tensor Sij = ∂ui/∂xj, defined by Q(x) = −(SijSji)/2, R(x) = −det[Sij].
If M(R, Q) ≡ 27R2 + 4Q3 < 0, the three eigenvalues of Sij are real, and local irrotational
strain dominates over vorticity. If M > 0, one eigenvalue is real and the other two are
complex conjugates, so vorticity dominates and streamlines are locally spiral or helical
in character. Figure 1(a) reproduces figure 4(a) from DVC: in this, the tear-drop region
shows where, in the {R, Q} plane, most extreme events are found (see also their figure 5(a),
not shown here). Figure 1(b) shows the basic structure of this figure, in which this plane
is separated into four regions in which topologically distinct structures were identified:
vortex stretching; vortex compressing; sheets; and filaments.

DVC found that the most extreme events of local energy transfer occurred in the
vortex-stretching and vortex-compressing regions. It may be helpful to interpret this
finding with reference to a simple vortical flow of the form

uv(x) = ω0

2 r2 (1 − e−r2
)(−y, x, 0), ω = ∇ × uv(x) = (0, 0, ω0 e−r2

), (2.1a,b)
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where r2 = x2 + y2, this vortex being stretched by the non-axisymmetric strain field

U = (−αx, −βy, (α + β)z), α + β > 0. (2.2)

At high vortex Reynolds number, such a vortex remains axisymmetric at leading order
(Moffatt, Kida & Ohkitani 1994). On the vortex axis r = 0, the components of the matrix
{Sij} are

Sij =
⎛
⎝

−α −ω0/2 0
ω0/2 −β 0

0 0 α + β

⎞
⎠ , (2.3)

and the corresponding expressions for Q, R and M take the simplified form

Q(α, β, ω0) = −(α2 + β2 + αβ) + ω2
0/4, R(α, β, ω0) = −(α + β)(αβ + ω2

0/4)

(2.4a,b)

and

M(α, β, ω0) = 27R2 + 4Q3 = − 1
16 [((α − β)2 − ω2

0)(8α2 + 20αβ + 8β2 + ω2
0)]. (2.5)

Taking α = 1, figure 1(c) shows the subdivisions of the {β, ω0} plane corresponding to
those of figure 1(b). As might be expected, the ‘vortex-stretching’ region is a sub-region
of the half-plane α + β > 0.

3. Three topological structures – or three in one?

DVC found further that their extreme events were associated with three apparently different
topological structures, which they describe as ‘screw vortex’, ‘roll vortex’ and ‘U-turn’;
sample streamlines are shown in their figures 7(a,b) and 8(a), respectively. They recognise
that these structures ‘may correspond to a single structure seen at different times or
in different frames of reference’. This is an issue that can again be probed through
consideration of an explicit vortex-stretching flow. We first replace (2.2) by the modified
strain field

U s = (−αxf ′(z), −βyf ′(z), (α + β)f (z)), (3.1)

with
f ′(z) = 1 − 2z2/(1 + z2), f (z) = −z + 2 tan−1 z. (3.2a,b)

This flow, which satisfies ∇ · U s = 0, ∇ × U s /= 0, could be produced by a system of
secondary vortices near the ‘primary vortex’ (2.1a,b). When α + β > 0, it gives positive
stretching for |z| < 2.33, negative (i.e. compression) for |z| > 2.33. (In this way, vortex
stretching may always be coupled with adjacent vortex compression, thus explaining the
surprisingly high probability of ‘vortex compressing’ in the p.d.f. plot of figure 1a.)
Particle paths (i.e. instantaneous streamlines) of this flow combined with the primary
vortex flow (2.1a,b) starting from any given point X (0) can be computed from the
associated dynamical system dX/dt = uv(X ) + U s(X ). Their structure depends on the
chosen point X (0) and on the frame of reference.

Three examples are shown in figure 2. Here, I have chosen α = 0.001, β =
0.0005, ω0 = 0.2, so that

Q(α, β, ω0) ≈ 0.01, R(α, β, ω0) ≈ −1.5 × 10−5, M(α, β, ω0) ≈ 4 × 10−6,
(3.3a–c)

and (for |z| < 2.33) we are indeed in the vortex-stretching regime R < 0, M > 0. Although
computed from the same velocity field in the same vortex neighbourhood, these streamline
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Figure 2. Streamlines computed from the dynamical system dX/dt = uv(x) + U s(x); α = 0.001,

β = 0.0005, ω0 = 0.2; the vorticity contour ω/ω0 = 0.3 is shown in brown, and, as in DVC, streamlines are
shown in blue when approaching the vortex, black when leaving it; (a) X (0) = (1, 0, ±0.01) and (1, 0, ±0.2);
(b) the same streamlines viewed in a frame of reference moving with velocity (0, 0, −0.01); X (0) =
(1, 0, ±0.2); (c) eight streamlines starting from points close to X (0) = (2.87, 0, 0) and plotted for
dimensionless time 1000 ≤ t ≤ 4000 when they first ‘encounter’ the vortex.

patterns nevertheless look quite different: figures 2(a), 2(b) and 2(c) have structures
comparable with those of DVC’s screw vortex, roll vortex and U-turn, respectively. Thus
care is certainly needed in classifying such observed structures, for which vorticity is
presumably a more robust topological feature than velocity.
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