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ORDINARY AND PARTIAL DIFFERENCE EQUATIONS
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Abstract

Ordinary difference equations (OAE's), mostly of order two and three, are derived for the
trigonometric, Jacobian elliptic, and hyperbolic functions. The results are used to derive
partial difference equations (PAE's) for simple solutions of the wave equation and three
nonlinear evolutionary partial differential equations.

1. Introduction

In a sequence of recent papers [4]-[9], it has been shown that, in choosing a
difference equation (AE) approximating a differential equation (DE), theoretical
advantage can be obtained by exploiting a wider range of approximations than is
customary. If the solution to an ordinary differential equation (ODE) satisfies an
addition formula, then this can be used to determine a 'best' ordinary difference
equation (OAE) approximating the ODE. If /(JC) is the solution of the ODE then
an OAE is called a best approximating OAE if it is exactly satisfied by

L=f{mp) (1.1)

where m is an integer, and p a constant stepsize of any magnitude, not
necessarily small in any sense. In the limit p -* 0, the best OAE will be expected
to converge to the corresponding ODE.

In this paper, OAE's and their limiting ODE's will be obtained for various
simple functions—trigonometric, Jacobian elliptic, and hyperbolic—which satisfy
addition formulae. The analysis will then be extended to some partial difference
equations (PAE's) and their associated PDE's. The results encompass some of the
canonical nonlinear evolutionary PDE's for which the hyperbolic functions tanh
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[21 Ordinary and partial difference equations 489

and sech play an important role in describing solitary-wave and single soliton
solutions.

The determination of PAE analogues of nonlinear evolutionary PDE s has been
considered from a different point of view by Hirota [3].

2. Trigonometric functions

In this section, first and second-order OAE's will be determined for the
trigonometric functions. The details will be given for the sine fuction; for other
trig functions, just the results will be presented.

2.1 f(x) = Asinkx

From the addition formula

sin/c(x + p) = sinkxcoskp + coskxsinkp, (2.1)

and with fm defined by (1.1) as

fm = Asinkmp, (2.2)

follow the first-order OAE's

(2.3)

L-i =/«cosAp -{A2 -f^sinkp. (2.4)

Equations (2.3) and (2.4) can be subtracted to give the nonlinear second-order
OAE

2k l sin kp

which is seen to converge to the first-order ODE

f'(x) = k{A>-f(x)2y/2 (2.6)
in the limit p -* 0.

Alternatively (2.3) and (2.4) can be added to give, after some manipulation, the
second-order OAE

*m+l ~ *m + Jm-l , ,2f _ n (~) -j\

4k lsmz(kp/2)

which converges to the second-order ODE

f"(x) + k2f(x) = 0 (2.8)
in the limit p -* 0.
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490 Renfrey B. Potts [3]

There are two interesting features of the OAE (2.7). First it is exactly satisfied
by f(x) = Asia kx at x = mp for any nonzero p, not necessarily small, so that it
is a best approximating OAE to the ODE (2.8). Secondly, the term
4A:"2sin2(A:/7/2), which is O(p2), replaces the usual p2 in the denominator of the
quotient approximating the second derivative.

The function f(x) = ,4cosfcc gives the same second-order OAE (2.7) and the
same ODE (2.8).

2.2f(x) = Atankx

The addition formula

tank(x + p) = (tankx + tankp)/{\ - tankx tankp) (2.9)

gives the nonlinear second-order OAE

fm+r2L + fm-i _ u2fm _ kiA-2f2(f +f ) = o (2.10)
k z taxi kp

for

fm = Atankmp (2.11)

with the limiting ODE

/"(*) - 2k2f(x) - 2k2A-2f(x)3 = 0. (2.12)

Regarded as an approximation of (2.12), the OAE (2.10) uses k'2 tan2kp, which
is O(p2), in the denominator of the quotient approximating the second deriva-
tive, and f(x)3 is replaced by f2(fm+l + fm-x)/2.

The function f(x) = Acotkx gives the same OAE (2.10) and the same ODE
(2.12).

2.3 f(x) = Acsckx, f(x) = Aseckx

The nonlinear second-order OAE is

L 2 f y £{ - k2A-2f2(fm+1 +/„_,) - 0 (2.13)\ 2 2 y + £{ kAf(fm+1
k sin kp cos (kp/2)

with the limiting ODE

+ k2f(x) - 2k2A-2f(xf = 0. (2.14)
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3. Jacobian elliptic functions

The Jacobian elliptic functions satisfy addition formulae which will now be
used to derive appropriate OAE's. The notation used in this section has been
altered to conform with [1]. The derivations are straightforward and only the
results are presented.

3.1 g(/) = Asn(o}t\m)

With constant stepsize q for the variable /, define
gn = Asn(wnq\m) (3.1)

where n is an integer. The addition formula [1]
, , snutcnuqdnwq + snuqcnutdnut ,„ „.,

sn«(( + ?) = f —2 f (3.2)
1 — wsn wf sn u>q

leads to the nonlinear second-order OAE
gn+i - 2 g n + gn_x | 2(m + 1 - m s n 2 ^ ) ^ 2

o>-2sn2uq l + cnaqdnaq " g " (3.3)
2-2g2

n(gn + l + gn_x) = 0.

In the limit q -* 0, the OAE (3.3) converges to the nonlinear ODE

g(t) +(m + l)w2g(/) - imJA^git)3 = 0. (3.4)

3.2 g(t) = ^cn(« / |m)

The nonlinear second-order OAE is

Sn + l ~ 28n + g»-l . 2(O2

+ gw •'sn^w^ l + cnw r̂ (3.5)

with the limiting nonUnear ODE

g(t) + (1 - 2m)u
2g(t) + 2mo>2A-2g(t)3 = 0. (3.6)

The nonlinear OAE is

8n + l ~ 28n + gn-1 , 2ffl(Q

1 + dnuq8"u-2sn2uq 1 + dnuq8" (37)

- " 2 ( « n + i + 8-1) + "2A-2gt(gn+1 + gn^) = 0
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with the limiting ODE

g(t) +(m- 2)w2g(t) + 2ul4-2g(/)3 = 0. (3.8)

More-complicated OAE's can be constructed in the same way for Ans(ut\m)
and related functions. The important case of the Weierstrass elliptic function
^(z) has been treated elsewhere [9].

4. Hyperbolic functions

The OAE's for the hyperbolic functions can be obtained directly from those for
the trigonometric functions. Detailed derivations of third-order OAE's for tanh
and sech will be given because of their application to certain nonlinear evolution
PAE's to be discussed later.

4.1 f(x) = Asinhkx, / (x) = ,4coshAjc

Since the replacements

k -* ik, A -> -iA (4.1)

transform A sin kx to A sinh kx, the OAE and ODE for A sinh kx are immediately
obtained from (2.7) and (2.8) as

f m + l ~ * - J m + J m - 1 _ i 2 f _ n (A T\
At -2 • 1.2/1 / i \ K Jm~ U Y*-A)

4k ^sinh2(A:/>/2)

and

f"(x)-k2f(x) = 0. (4.3)
These are also obtained for f(x) = coshfcx by using (2.7) and (2.8) with the
single replacement

k -* ik. (4.4)

In a similar way, the second-order OAE and ODE for A cosh kx are obtained as

J">+1 ~ 2/m + / m - l * fm r.2A-2f2( f , f \ _ n (A
1 2 u2; u.2/1 / i \ Jm\Jm + l + Jm-1) U K^-

and

/"(x) - k2f(x) - 2k2A-2f(xf = 0. (4.6)
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4.3 f(x) = A tanh kx

This function will be considered in more detail because it is to be used later and
first, second and third order equations for it will be derived.

For

fm = A tanh kmp (4.7)

the first-order OAE is obtained from the addition formula for tanh, in the forms

(/m+i "" fm-i){cosh2 kmp + sinh2kp) = Asinh2kp, (48)

(fm+i + /m-i)(cosh2 kmp + sinh2kp) = A sinh 2 kmp (4.9)

which combine to give the OAE

{"I1."/;:1 = k/m+1+L-1A(l - A-*£). (4.10)

This converges when p -» 0 to the ODE

f'(x) = kA{l-A-2f(x)2). (4.11)

It will be noted that (4.10) is in fact a second-order OAE because evaluation of
fm+i requires knowledge of fm and/m_j.

The second-order OAE

/ ~~ 2 / +

k'2ianh2kp
_x) = 0 (4.12)

can be obtained from the corresponding OAE (2.10) for A tan kx, together with
the ODE

/"(*) + 2k2f(x) - 2k2A'2f(xf = 0. (4.13)

To obtain third-order equations, (4.10) is modified to

/m + 3 ~/m-3 _ /m + 3 + / m - 3 . / - . *-2f2\ (d~\A\

which, together with (4.10), leads after some manipulation to the OAE

J rn 4- 3 J m+\ v^n — 1 J m — 3

(k-1 siah2kpf

(4.15)

_Ah.l\ Jm + 3 ' Jm-3 Jm + \ Jm-l I _ n
^f I r , / • I I , I — U.

/m+1 ' / m -
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This rather formidable-looking difference equation is of third order, and allows
the calculation of /m + 3 for given /m+1, fm-i, fm-y In the limit it converges to the
third-order ODE

/ '"(JC) + (,kA-lf'{xf - 4k2f'(x) = 0. (4.16)

These results will be used in the later discussion of the Korteweg-de Vries
equation.

4.4 f(x) = A sech kx

This function also arises in the analysis of nonlinear evolutionary equations
and first, second and third order equations will be derived.

For

fm=Asechkmp (4.17)

the first-order OAE is obtained from the addition formula for sech in the forms

(/m + i ~~ /m-iXcosh2*7"/7 + sinh2A:/?) = -2Asmhkmpsinhkp, (4.18)

(fm+i + fm-\)(cos^ kmp + sinh2A:/>) = 2A cosh kmp cosh kp (4.19)

which combine to give the second-order OAE

( f *(* - ^ 2 / m
2 ) 1 / 2 ( / m + i +fm-x)/2. (4.20)

2k ltanhkp

This converges to the first-order ODE

f)l/2f{x). (4.21)

The second order OAE which leads to the second-order ODE is similar to that
for A csch kx. The OAE is

Jm+\ ~ 2/m + / m - l ^ *m , ulA-itlt f , f \ — ft

(4.22)

and the corresponding ODE

/"(*) - k2f{x) + 2k2A-2f{xf = 0. (4.23)

To obtain third-order equations, (4.20) is modified to give

L^{ 1/2 (4.24)

https://doi.org/10.1017/S0334270000005099 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000005099


[ 8) Ordinary and partial difference equations 495

which, again after some manipulation, leads to the OAE

-cosh 3 A:/?fm + 3 JJm + 1 + A/m - 1 fm - 3 .

(2k-1 wait kp)

+ 3k2A~2fm(fm+i+fm-3)™shkpcosh2kpfm+_\ {"71 (4.25)
2k Uanh kp

r2\ fm + 3 •*" / m - 3 | /m + 1 / m - 1i 2 /m + J ' Jm-5 1Jm + l Jm-1 _ «
\/m+i+/m- / x h

The convergence to the third-order ODE

f'"(x) + 6k2A-2f(x)2f'(x) - k2f'(x) = 0 (4.26)

is evident. This equation will be used in the later discussion of the modified
Korteweg-de Vries equation.

5. Wave equation

As a first example of a partial difference equation (PAE) and an associated
partial differential equation (PDE) consider the one-dimensional wave equation

u,, = c2uxx (5.1)

satisfied, for example, by the function

u(x,t) = Asink(x + ct). (5.2)

To obtain the PAE corresponding to this solution, the discretization used is

x = mp, Ax=/>, (5.3)

t = nq, A* = q, (5.4)

with

u(x, t) = u(mp, mq) = umn. (5.5)

From (2.7) it immediately follows that

a n d

U

At - 2 - 2 - 2 / 1 / < i \

4A: 2c zsinl(kcq/2)

Um,n+\ ~ 2um,n + " r . , , - 1 , , 2 2 = n

At 2 2 - 2 / 1 < i \ ""."

4A 2 z l ( k 2
whence

Um,n+1 ~ ^-Um,n "*" "m,n-l _ 2M"i+l,n ~ ^Um,n "*" Um-\,n /c o\

4A-2i2(^/2)

https://doi.org/10.1017/S0334270000005099 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000005099


496 Renfrey B. Potts M

This linear second-order PAE converges in the limit p -* 0, q -* 0 to the PDE
(5.1). The function u(x, t) = Asink(x - ct) is also a solution of the PAE (5.8)
and the PDE (5.1).

The analysis can be extended to a solution consisting of a sum of two terms, for
example

u{x,t) = A1sinki(x + ct) +A2sink2(x + ct). (5.9)

From the relation

u(x + p,t) - (coskiP + cosk2p)u(x,t) + u(x - p,t)

= (cosk1p — cosk2p)[A1sink1(x + ct) — A2sink2(x + ct)]

(5.10)
follows the required PAE

[«»,»+i - ( c o s V ? + cosk2cq)umn + umn_1]/(cosklcq - cosk2cq)

= [um+i,n -(cosk^ + cosk2p)umn + um_ln]/(coskxp - cosk2p).

(5.11)

This converges to the wave equation (5.1) as />,<?-> 0 since

cosk^q + cosk2cq -* 2, coskxcq — cosk2cq -» c2q2(k\ — kf)/2,

(5.12)

cosk1p + cosk2p -* 2, cosk1p — cosk2p -* p2(k\ — k2)/2.
(5.13)

It is not possible to find a simple PAE for the general solution u(x, t) =
T.Aj cos kj(x + ct) although this is trivially still a solution of the wave equation.
The appearance of k in the denominator 4k~2sin2(kp/2) loses the advantage
enjoyed by the usual approximation term p 2 .

One generalization is possible and that is to the three-dimensional wave
equation

u,t = C2AM. (5.14)

The plane-wave solution
u = Asin(kx + at) (5.15)

is a solution of an approximating PAE which is a straightforward generalization
of (5.8).

6. FitzHugh-Nagumo equation

As a first example of a nonlinear evolution equation, consider the PDE

u, = uxx/2 + (uA -k2u)(A-2u2- 1) (6.1)
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which was considered by FitzHugh and Nagumo in modelling the propagation of
a nerve pulse [2]. The PAE has the solitary-wave solution

u(x,t) = Atanh(kx + ut). (6.2)

The derivation of the first and second-order OAE's (4.10) and (4.12) for
A tanh kx can now be extended to find the PAE satisfied by (6.2). From

um n = tanh(kmp + unq) (6.3)

first follows

«™.»+i - um,n = ^tanhto^(yl-2Mm nwm n + 1 - l ) (6.4)

which, combined with the obvious extension of (4.12), gives the required PAE
Um,n+l ~ Um,n Um+l,n ~ ^Um,n + U 1 .

^~—T = \ , - 2 t u2, ~ UA + UA Mm,«"m,« + 1

« tanhw^r 2k tanh kp
+ k2um,n - k2A-2u2

mJum+Un + um_xJ/2. (6.5)

In the limit p,q -* 0, this PAE gives

", = uxx/2 ~ uA + uA^u2 + k2u - k2A~2u3 (6.6)

which is equivalent to (6.1).
Equation (6.5) is a simple example of a nonlinear evolutionary PAE. Given, say,

the initial values um0 for all m, (6.5) can be solved for uml for all m, and then
for um2 and so on. The evolution of um „ exactly follows that of the nerve-pulse
solution of the PAE, regardless of the magnitude of the stepsizes p and q. In this
sense the PAE (6.5) is the best approximation to the PDE (6.1).

7. Korteweg-de Vries equation

As a second, and more difficult, example of a nonlinear evolutionary PDE
consider the equation

"*** -3u2
x + u, = 0 (7.1)

which, when differentiated with respect to x and the substitution ux = u made,
gives the Korteweg-de Vries equation in the usual form

vxxx - 6vvx + v, = 0. (7.2)

We shall determine a PAE for the single-soli ton solution

u(x, t) = -2k tanh(fcc - 4k3t) (7.3)

of the equation (7.1) by considering the third-order equations satisfied by

u(x,t) = Atnnh(kx + at) (7.4)
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and

um „ = A t&tih(kmp + anq). (7.5)

From (4.10) follows the relation

l.n~ Um-l.n] 1 \Um.n-H ~ Um.n-l] 1 ^ ^

which, when used with the OAE (4.15), gives the PAE

- M . U

(7-7)

Um.n + 1 ~ Um,n-X 1 =Q1 J
The limiting ODE is

uxxx + bkA-lu2
x -(4k3/u)u, = 0. (7.8)

When A = -2k and w = -4k\ so that u(x, t) becomes (7.3), the ODE (7.8)
takes the required form (7.1).

8. Modified KdV equation

As a third example of a nonlinear evolutionary PDE consider the modified
Korteweg-de Vries equation [2,10] in the form

«xxx + 6 " 2 " * + «, = 0. (8.1)

We shall determine a PAE for the solitary-wave solution given by

u(x,t) = ksech(kx- kh). (8.2)

Consider first the function

u(x,t) = 4̂sech(A:jc + ut) (8.3)

and consequently

um „ = Asech(kmp + unq). (8.4)

From (4.20) follows the relation

= I U">,n+1 ~ Um,n-l \ ^ /g c\
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which, used with the OAE (4.25), gives the PAE

(2k-lsinh kpf

n-i J[
mn+l - umn_x 1 = Q

J
(8.6)

The limiting ODE is

uxxx + 6k2A-2u2ux-(k
3/u)u, = 0. (8.7)

The special choices A = k and w = -k2 lead to the modified KdV equation (8.1).
It will be noted that the PAE (8.6) is of second order in the time index n, the

values of um n_l and um n being required for um+l „ to be determined.

9. Discussion

There are four significant points to be made about the special difference
equations which have been derived in this paper.

The first point is the importance of generating a class of difference equations
for which exact solutions are known. The usual difference equation approxima-
tions for differential equations cannot be solved exactly. Their behaviour can be
quite bizarre, and their indiscriminant use fraught with danger, especially when
nonlinear equations are approximated. For even the simplest nonlinear ordinary
differential equation, the logistic equation, it has been shown that a central
discretization scheme for any mesh size gives a difference equation which cannot
be solved exactly and which exhibits chaotic behaviour! As has been pointed out
[6], a more careful discretization along the lines of this paper leads to a difference
equation which can be solved exactly and which exhibits precisely the true
behaviour of the logistic equation. As Whitham [10] has highlighted, one of the
most remarkable developments in recent work on nonlinear waves has been the
discovery of explicit exact solutions for some of the simple standard nonlinear
evolutionary partial differential equations. The present paper shows how to
generate corresponding difference equations for which exact solutions are also
available.
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This leads to the second significant point. For nonlinear differential equations
for which explicit exact solutions are not known, it is often necessary to resort to
a perturbation method based on a simpler equation which can be solved. If the
simpler equation can be discretized along the lines developed in this paper, then
this can provide a suitable zeroth-order approximation for a perturbation scheme.
The Van der Pol and Mathieu differential equations, for which exact solutions are
not known, have been investigated in this way. As has been shown [7, 8],
difference schemes can be chosen which have the advantage that for the unper-
turbed problem they are exact. Why choose an inexact zeroth-order approxima-
tion?

The third significant point is that the difference equations derived in this paper
are exact approximations regardless of the magnitude of the stepsize. It is now a
well-known and sobering fact that large three-dimensional nonlinear problems,
which can only be analysed numerically with meshes with comparatively large
step sizes, may be producing solutions which appear plausible but which are
indeed spurious, simply a product of the discretization scheme used. The spurious
behaviour is, in general, enhanced by increasing stepsize so that the difference
equations valid for any stepsize are of particular interest.

The last point is that, although the approach followed in this paper is a limited
one, being confined to functions for which simple addition formulae are available,
yet it covers an important class which includes the standard nonlinear evolution-
ary equations. Had their exact solutions not satisfied addition formulae, then the
method of this paper would not be applicable. Is it just a happy coincidence that
the functions which figure prominently in the exact solutions, trigonometric,
hyperbolic, Jacobian elliptic and Weierstrass elliptic, are just the functions which
satisfy addition formulae? It is a point which is being explored, one clue being the
relation of these differential equations to the ordinary Euler differential equation
with separated variables.

The results presented in this paper extend an approach used for linear and
nonlinear ordinary difference and differential equations to standard partial
equations. It is proposed to apply the method to other such equations, and to two
and more soliton solutions. The numerical behaviour of the difference equations
that have been developed is also being investigated.
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